[Kernel][RFC] Refactor the punica kernel based on Triton (#5036)

This commit is contained in:
Jee Jee Li 2024-08-01 08:12:24 +08:00 committed by GitHub
parent 7eb0cb4a14
commit 7ecee34321
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
47 changed files with 3177 additions and 4366 deletions

View File

@ -13,8 +13,6 @@ $python_executable -m pip install -r requirements-cuda.txt
# Limit the number of parallel jobs to avoid OOM
export MAX_JOBS=1
# Make sure punica is built for the release (for LoRA)
export VLLM_INSTALL_PUNICA_KERNELS=1
# Make sure release wheels are built for the following architectures
export TORCH_CUDA_ARCH_LIST="7.0 7.5 8.0 8.6 8.9 9.0+PTX"
# Build

View File

@ -223,61 +223,7 @@ define_gpu_extension_target(
USE_SABI 3
WITH_SOABI)
#
# _punica_C extension
#
set(VLLM_PUNICA_EXT_SRC
"csrc/punica/bgmv/bgmv_bf16_bf16_bf16.cu"
"csrc/punica/bgmv/bgmv_bf16_fp32_bf16.cu"
"csrc/punica/bgmv/bgmv_fp16_fp16_fp16.cu"
"csrc/punica/bgmv/bgmv_fp16_fp32_fp16.cu"
"csrc/punica/bgmv/bgmv_fp32_bf16_bf16.cu"
"csrc/punica/bgmv/bgmv_fp32_fp16_fp16.cu"
"csrc/punica/punica_ops.cu"
"csrc/punica/torch_bindings.cpp")
#
# Copy GPU compilation flags+update for punica
#
set(VLLM_PUNICA_GPU_FLAGS ${VLLM_GPU_FLAGS})
list(REMOVE_ITEM VLLM_PUNICA_GPU_FLAGS
"-D__CUDA_NO_HALF_OPERATORS__"
"-D__CUDA_NO_HALF_CONVERSIONS__"
"-D__CUDA_NO_BFLOAT16_CONVERSIONS__"
"-D__CUDA_NO_HALF2_OPERATORS__")
#
# Filter out CUDA architectures < 8.0 for punica.
#
if (${VLLM_GPU_LANG} STREQUAL "CUDA")
set(VLLM_PUNICA_GPU_ARCHES)
foreach(ARCH ${VLLM_GPU_ARCHES})
string_to_ver(CODE_VER ${ARCH})
if (CODE_VER GREATER_EQUAL 8.0)
list(APPEND VLLM_PUNICA_GPU_ARCHES ${ARCH})
endif()
endforeach()
message(STATUS "Punica target arches: ${VLLM_PUNICA_GPU_ARCHES}")
elseif(${VLLM_GPU_LANG} STREQUAL "HIP")
set(VLLM_PUNICA_GPU_ARCHES ${VLLM_GPU_ARCHES})
message(STATUS "Punica target arches: ${VLLM_PUNICA_GPU_ARCHES}")
endif()
if (VLLM_PUNICA_GPU_ARCHES)
define_gpu_extension_target(
_punica_C
DESTINATION vllm
LANGUAGE ${VLLM_GPU_LANG}
SOURCES ${VLLM_PUNICA_EXT_SRC}
COMPILE_FLAGS ${VLLM_PUNICA_GPU_FLAGS}
ARCHITECTURES ${VLLM_PUNICA_GPU_ARCHES}
USE_SABI 3
WITH_SOABI)
else()
message(WARNING "Unable to create _punica_C target because none of the "
"requested architectures (${VLLM_GPU_ARCHES}) are supported, i.e. >= 8.0")
endif()
#
# Add the `default` target which detects which extensions should be
@ -301,12 +247,4 @@ if(VLLM_GPU_LANG STREQUAL "CUDA" OR VLLM_GPU_LANG STREQUAL "HIP")
message(STATUS "Enabling moe extension.")
add_dependencies(default _moe_C)
# Enable punica if -DVLLM_INSTALL_PUNICA_KERNELS=ON or
# VLLM_INSTALL_PUNICA_KERNELS is set in the environment and
# there are supported target arches.
if (VLLM_PUNICA_GPU_ARCHES AND
(ENV{VLLM_INSTALL_PUNICA_KERNELS} OR VLLM_INSTALL_PUNICA_KERNELS))
message(STATUS "Enabling punica extension.")
add_dependencies(default _punica_C)
endif()
endif()

View File

@ -88,8 +88,6 @@ ENV MAX_JOBS=${max_jobs}
# number of threads used by nvcc
ARG nvcc_threads=8
ENV NVCC_THREADS=$nvcc_threads
# make sure punica kernels are built (for LoRA)
ENV VLLM_INSTALL_PUNICA_KERNELS=1
ARG buildkite_commit
ENV BUILDKITE_COMMIT=${buildkite_commit}

View File

@ -131,8 +131,7 @@ COPY . .
RUN --mount=type=cache,target=/root/.cache/pip \
python3 -m pip install --upgrade numba scipy huggingface-hub[cli]
# Make sure punica kernels are built (for LoRA)
ENV VLLM_INSTALL_PUNICA_KERNELS=1
# Workaround for ray >= 2.10.0
ENV RAY_EXPERIMENTAL_NOSET_ROCR_VISIBLE_DEVICES=1
# Silences the HF Tokenizers warning

View File

@ -1,217 +0,0 @@
Contains code from https://github.com/punica-ai/punica
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "{}"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright {yyyy} {name of copyright owner}
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
------------------------------------------------------------------------------------
This product bundles various third-party components under other open source licenses.
This section summarizes those components and their licenses. See licenses/
for text of these licenses.
Apache-2.0
* third_party/nvbench (with LLVM exception)
* third_party/flashinfer
BSD-3-Clause:
* third_party/cutlass

View File

@ -1,5 +0,0 @@
#include "bgmv_config.h"
#include "bgmv_impl.cuh"
FOR_BGMV_WIDE_NARROW(INST_BGMV_TWOSIDE, nv_bfloat16, nv_bfloat16, nv_bfloat16)
FOR_INST_BGMV_WIDE_NARROW(INST_BGMV_ONESIDE, nv_bfloat16, nv_bfloat16, nv_bfloat16)

View File

@ -1,5 +0,0 @@
#include "bgmv_config.h"
#include "bgmv_impl.cuh"
FOR_BGMV_WIDE_NARROW(INST_BGMV_TWOSIDE, nv_bfloat16, float, nv_bfloat16)
FOR_INST_BGMV_WIDE_NARROW(INST_BGMV_ONESIDE, nv_bfloat16, float, nv_bfloat16)

View File

@ -1,218 +0,0 @@
#pragma once
template <int feat_in, int feat_out, typename in_T, typename out_T,
typename W_T>
void bgmv_kernel(out_T *__restrict__ Y, const in_T *__restrict__ X,
const W_T *__restrict__ W,
const int64_t *__restrict__ indicies, int64_t y_offset,
int64_t full_y_size, int64_t batch_size, int64_t num_layers,
int64_t layer_idx, float scale);
// clang-format off
#define FOR_BGMV_WIDE(f, in_T, out_T, W_T, narrow) \
f(in_T, out_T, W_T, narrow, 128) \
f(in_T, out_T, W_T, narrow, 256) \
f(in_T, out_T, W_T, narrow, 512) \
f(in_T, out_T, W_T, narrow, 640) \
f(in_T, out_T, W_T, narrow, 768) \
f(in_T, out_T, W_T, narrow, 896) \
f(in_T, out_T, W_T, narrow, 1024) \
f(in_T, out_T, W_T, narrow, 1152) \
f(in_T, out_T, W_T, narrow, 1216) \
f(in_T, out_T, W_T, narrow, 1280) \
f(in_T, out_T, W_T, narrow, 1536) \
f(in_T, out_T, W_T, narrow, 1664) \
f(in_T, out_T, W_T, narrow, 1728) \
f(in_T, out_T, W_T, narrow, 1792) \
f(in_T, out_T, W_T, narrow, 2048) \
f(in_T, out_T, W_T, narrow, 2240) \
f(in_T, out_T, W_T, narrow, 2304) \
f(in_T, out_T, W_T, narrow, 2368) \
f(in_T, out_T, W_T, narrow, 2432) \
f(in_T, out_T, W_T, narrow, 2560) \
f(in_T, out_T, W_T, narrow, 2752) \
f(in_T, out_T, W_T, narrow, 2816) \
f(in_T, out_T, W_T, narrow, 3072) \
f(in_T, out_T, W_T, narrow, 3328) \
f(in_T, out_T, W_T, narrow, 3456) \
f(in_T, out_T, W_T, narrow, 3584) \
f(in_T, out_T, W_T, narrow, 3712) \
f(in_T, out_T, W_T, narrow, 4096) \
f(in_T, out_T, W_T, narrow, 4480) \
f(in_T, out_T, W_T, narrow, 4608) \
f(in_T, out_T, W_T, narrow, 4736) \
f(in_T, out_T, W_T, narrow, 4864) \
f(in_T, out_T, W_T, narrow, 5120) \
f(in_T, out_T, W_T, narrow, 5504) \
f(in_T, out_T, W_T, narrow, 5632) \
f(in_T, out_T, W_T, narrow, 5888) \
f(in_T, out_T, W_T, narrow, 6144) \
f(in_T, out_T, W_T, narrow, 6400) \
f(in_T, out_T, W_T, narrow, 6848) \
f(in_T, out_T, W_T, narrow, 6912) \
f(in_T, out_T, W_T, narrow, 7168) \
f(in_T, out_T, W_T, narrow, 7424) \
f(in_T, out_T, W_T, narrow, 8192) \
f(in_T, out_T, W_T, narrow, 8960) \
f(in_T, out_T, W_T, narrow, 9216) \
f(in_T, out_T, W_T, narrow, 9472) \
f(in_T, out_T, W_T, narrow, 10240) \
f(in_T, out_T, W_T, narrow, 11008) \
f(in_T, out_T, W_T, narrow, 11264) \
f(in_T, out_T, W_T, narrow, 12288) \
f(in_T, out_T, W_T, narrow, 13696) \
f(in_T, out_T, W_T, narrow, 13824) \
f(in_T, out_T, W_T, narrow, 14336) \
f(in_T, out_T, W_T, narrow, 14784) \
f(in_T, out_T, W_T, narrow, 14848) \
f(in_T, out_T, W_T, narrow, 15360) \
f(in_T, out_T, W_T, narrow, 16384) \
f(in_T, out_T, W_T, narrow, 18944) \
f(in_T, out_T, W_T, narrow, 20480) \
f(in_T, out_T, W_T, narrow, 22016) \
f(in_T, out_T, W_T, narrow, 22528) \
f(in_T, out_T, W_T, narrow, 24576) \
f(in_T, out_T, W_T, narrow, 27392) \
f(in_T, out_T, W_T, narrow, 27648) \
f(in_T, out_T, W_T, narrow, 28672) \
f(in_T, out_T, W_T, narrow, 29568) \
f(in_T, out_T, W_T, narrow, 29696) \
f(in_T, out_T, W_T, narrow, 32000) \
f(in_T, out_T, W_T, narrow, 32256) \
f(in_T, out_T, W_T, narrow, 32512) \
f(in_T, out_T, W_T, narrow, 32768) \
f(in_T, out_T, W_T, narrow, 33024) \
f(in_T, out_T, W_T, narrow, 36864) \
f(in_T, out_T, W_T, narrow, 43264) \
f(in_T, out_T, W_T, narrow, 49152) \
f(in_T, out_T, W_T, narrow, 49408) \
f(in_T, out_T, W_T, narrow, 60544) \
f(in_T, out_T, W_T, narrow, 60672) \
f(in_T, out_T, W_T, narrow, 64000) \
f(in_T, out_T, W_T, narrow, 64256) \
f(in_T, out_T, W_T, narrow, 64512) \
f(in_T, out_T, W_T, narrow, 102400) \
f(in_T, out_T, W_T, narrow, 102656) \
f(in_T, out_T, W_T, narrow, 102912) \
f(in_T, out_T, W_T, narrow, 128000) \
f(in_T, out_T, W_T, narrow, 128256) \
f(in_T, out_T, W_T, narrow, 128512) \
// Keep above in sync with vllm/lora/layers::LogitsProcessorWithLoRA
// and vllm/tests/lora/test_punica.py
// Used for defining kernels going from the variety of
// dim in to the narrow dim out
// Using it for the fully sharded column
// parallel LoRA A which splits the rank dim
#define FOR_INST_BGMV_NARROW(f, in_T, out_T, W_T, narrow) \
f(in_T, out_T, W_T, 128, narrow) \
f(in_T, out_T, W_T, 256, narrow) \
f(in_T, out_T, W_T, 512, narrow) \
f(in_T, out_T, W_T, 640, narrow) \
f(in_T, out_T, W_T, 768, narrow) \
f(in_T, out_T, W_T, 896, narrow) \
f(in_T, out_T, W_T, 1024, narrow) \
f(in_T, out_T, W_T, 1152, narrow) \
f(in_T, out_T, W_T, 1216, narrow) \
f(in_T, out_T, W_T, 1280, narrow) \
f(in_T, out_T, W_T, 1536, narrow) \
f(in_T, out_T, W_T, 1664, narrow) \
f(in_T, out_T, W_T, 1728, narrow) \
f(in_T, out_T, W_T, 1792, narrow) \
f(in_T, out_T, W_T, 2048, narrow) \
f(in_T, out_T, W_T, 2240, narrow) \
f(in_T, out_T, W_T, 2304, narrow) \
f(in_T, out_T, W_T, 2368, narrow) \
f(in_T, out_T, W_T, 2432, narrow) \
f(in_T, out_T, W_T, 2560, narrow) \
f(in_T, out_T, W_T, 2752, narrow) \
f(in_T, out_T, W_T, 2816, narrow) \
f(in_T, out_T, W_T, 3072, narrow) \
f(in_T, out_T, W_T, 3328, narrow) \
f(in_T, out_T, W_T, 3456, narrow) \
f(in_T, out_T, W_T, 3584, narrow) \
f(in_T, out_T, W_T, 3712, narrow) \
f(in_T, out_T, W_T, 4096, narrow) \
f(in_T, out_T, W_T, 4480, narrow) \
f(in_T, out_T, W_T, 4608, narrow) \
f(in_T, out_T, W_T, 4736, narrow) \
f(in_T, out_T, W_T, 4864, narrow) \
f(in_T, out_T, W_T, 5120, narrow) \
f(in_T, out_T, W_T, 5504, narrow) \
f(in_T, out_T, W_T, 5632, narrow) \
f(in_T, out_T, W_T, 5888, narrow) \
f(in_T, out_T, W_T, 6144, narrow) \
f(in_T, out_T, W_T, 6400, narrow) \
f(in_T, out_T, W_T, 6848, narrow) \
f(in_T, out_T, W_T, 6912, narrow) \
f(in_T, out_T, W_T, 7168, narrow) \
f(in_T, out_T, W_T, 7424, narrow) \
f(in_T, out_T, W_T, 8192, narrow) \
f(in_T, out_T, W_T, 8960, narrow) \
f(in_T, out_T, W_T, 9216, narrow) \
f(in_T, out_T, W_T, 9472, narrow) \
f(in_T, out_T, W_T, 10240, narrow) \
f(in_T, out_T, W_T, 11008, narrow) \
f(in_T, out_T, W_T, 11264, narrow) \
f(in_T, out_T, W_T, 12288, narrow) \
f(in_T, out_T, W_T, 13696, narrow) \
f(in_T, out_T, W_T, 13824, narrow) \
f(in_T, out_T, W_T, 14336, narrow) \
f(in_T, out_T, W_T, 14784, narrow) \
f(in_T, out_T, W_T, 14848, narrow) \
f(in_T, out_T, W_T, 15360, narrow) \
f(in_T, out_T, W_T, 16384, narrow) \
f(in_T, out_T, W_T, 18944, narrow) \
f(in_T, out_T, W_T, 20480, narrow) \
f(in_T, out_T, W_T, 22016, narrow) \
f(in_T, out_T, W_T, 22528, narrow) \
f(in_T, out_T, W_T, 24576, narrow) \
f(in_T, out_T, W_T, 27392, narrow) \
f(in_T, out_T, W_T, 27648, narrow) \
f(in_T, out_T, W_T, 28672, narrow) \
f(in_T, out_T, W_T, 29568, narrow) \
f(in_T, out_T, W_T, 29696, narrow) \
f(in_T, out_T, W_T, 32000, narrow) \
f(in_T, out_T, W_T, 32256, narrow) \
f(in_T, out_T, W_T, 32512, narrow) \
f(in_T, out_T, W_T, 32768, narrow) \
f(in_T, out_T, W_T, 33024, narrow) \
f(in_T, out_T, W_T, 36864, narrow) \
f(in_T, out_T, W_T, 43264, narrow) \
f(in_T, out_T, W_T, 49152, narrow) \
f(in_T, out_T, W_T, 49408, narrow) \
f(in_T, out_T, W_T, 60544, narrow) \
f(in_T, out_T, W_T, 60672, narrow) \
f(in_T, out_T, W_T, 64000, narrow) \
f(in_T, out_T, W_T, 64256, narrow) \
f(in_T, out_T, W_T, 64512, narrow) \
f(in_T, out_T, W_T, 102400, narrow) \
f(in_T, out_T, W_T, 102656, narrow) \
f(in_T, out_T, W_T, 102912, narrow) \
f(in_T, out_T, W_T, 128000, narrow) \
f(in_T, out_T, W_T, 128256, narrow) \
f(in_T, out_T, W_T, 128512, narrow) \
// Keep above in sync with vllm/lora/layers::SamplerWithLoRA
// Keep this in sync with vllm/config::LoRAConfig
#define FOR_BGMV_WIDE_NARROW(f, in_T, out_T, W_T) \
FOR_BGMV_WIDE(f, in_T, out_T, W_T, 8) \
FOR_BGMV_WIDE(f, in_T, out_T, W_T, 16) \
FOR_BGMV_WIDE(f, in_T, out_T, W_T, 32) \
FOR_BGMV_WIDE(f, in_T, out_T, W_T, 64)
#define FOR_INST_BGMV_WIDE_NARROW(f, in_T, out_T, W_T) \
FOR_INST_BGMV_NARROW(f, in_T, out_T, W_T, 1) \
FOR_INST_BGMV_NARROW(f, in_T, out_T, W_T, 2) \
FOR_INST_BGMV_NARROW(f, in_T, out_T, W_T, 4) \
f(in_T, out_T, W_T, 8, 64) \
f(in_T, out_T, W_T, 16, 64) \
f(in_T, out_T, W_T, 32, 64) \
f(in_T, out_T, W_T, 64, 64)
// clang-format on

View File

@ -1,5 +0,0 @@
#include "bgmv_config.h"
#include "bgmv_impl.cuh"
FOR_BGMV_WIDE_NARROW(INST_BGMV_TWOSIDE, nv_half, nv_half, nv_half)
FOR_INST_BGMV_WIDE_NARROW(INST_BGMV_ONESIDE, nv_half, nv_half, nv_half)

View File

@ -1,5 +0,0 @@
#include "bgmv_config.h"
#include "bgmv_impl.cuh"
FOR_BGMV_WIDE_NARROW(INST_BGMV_TWOSIDE, nv_half, float, nv_half)
FOR_INST_BGMV_WIDE_NARROW(INST_BGMV_ONESIDE, nv_half, float, nv_half)

View File

@ -1,5 +0,0 @@
#include "bgmv_config.h"
#include "bgmv_impl.cuh"
FOR_BGMV_WIDE_NARROW(INST_BGMV_TWOSIDE, float, nv_bfloat16, nv_bfloat16)
FOR_INST_BGMV_WIDE_NARROW(INST_BGMV_ONESIDE, float, nv_bfloat16, nv_bfloat16)

View File

@ -1,5 +0,0 @@
#include "bgmv_config.h"
#include "bgmv_impl.cuh"
FOR_BGMV_WIDE_NARROW(INST_BGMV_TWOSIDE, float, nv_half, nv_half)
FOR_INST_BGMV_WIDE_NARROW(INST_BGMV_ONESIDE, float, nv_half, nv_half)

View File

@ -1,451 +0,0 @@
#pragma once
#include <ATen/cuda/CUDAContext.h>
#ifndef USE_ROCM
#include <cooperative_groups.h>
#else
#include <hip/hip_cooperative_groups.h>
#endif
#ifndef USE_ROCM
#include <cuda/pipeline>
#endif
#include <cuda_runtime.h>
#include <iostream>
#include <stdio.h>
#include "vec_dtypes.cuh"
namespace cg = cooperative_groups;
#ifdef USE_ROCM
template <size_t len>
__host__ __device__
inline void* memcpy_blocking(void *dst, const void *src) {
// Does not handle the case of long datatypes
char *d = reinterpret_cast<char *>(dst);
const char *s = reinterpret_cast<const char *>(src);
size_t i = 0;
#pragma unroll
for (i = 0; i < len; ++i) {
d[i] = s[i];
}
return dst;
}
#endif
#ifndef USE_ROCM
// nthrs = (32, 4)
template <int feat_in, int feat_out, size_t vec_size, size_t X_copy_size,
size_t W_copy_size, int tx, int ty, int tz, typename in_T,
typename out_T, typename W_T>
__global__ void
bgmv_shrink_kernel(out_T *__restrict__ Y, const in_T *__restrict__ X,
const W_T *__restrict__ W,
const int64_t *__restrict__ indicies, int64_t y_offset,
int64_t full_y_size, int64_t num_layers, int64_t layer_idx,
float scale) {
size_t batch_idx = blockIdx.y;
int64_t idx = indicies[batch_idx] * num_layers + layer_idx;
if (idx < 0) {
return;
}
auto block = cg::this_thread_block();
size_t j = blockIdx.x;
constexpr size_t num_pipeline_stages = 2;
constexpr size_t tile_size = tx * ty * vec_size;
__shared__ W_T W_shared[num_pipeline_stages * tile_size];
__shared__ in_T X_shared[num_pipeline_stages * tile_size];
__shared__ float y_warpwise[ty];
size_t W_shared_offset[num_pipeline_stages] = {0U, 1U * tile_size};
size_t X_shared_offset[num_pipeline_stages] = {0U, 1U * tile_size};
auto pipe = cuda::make_pipeline();
// pipeline load W/X and compute WX;
pipe.producer_acquire();
cuda::memcpy_async(W_shared + (threadIdx.y * tx + threadIdx.x) * vec_size,
W + (idx * feat_out + j) * feat_in +
(threadIdx.y * tx + threadIdx.x) * vec_size,
cuda::aligned_size_t<W_copy_size>(W_copy_size), pipe);
cuda::memcpy_async(X_shared + (threadIdx.y * tx + threadIdx.x) * vec_size,
X + (batch_idx * feat_in) +
(threadIdx.y * tx + threadIdx.x) * vec_size,
cuda::aligned_size_t<X_copy_size>(X_copy_size), pipe);
pipe.producer_commit();
size_t copy_idx, compute_idx;
float y = 0.f;
vec_t<in_T, vec_size> x_vec;
vec_t<W_T, vec_size> w_vec;
size_t tile_idx;
#pragma unroll
for (tile_idx = 1; tile_idx < (feat_in + tile_size - 1) / tile_size;
++tile_idx) {
copy_idx = tile_idx % num_pipeline_stages;
// pipeline stage: async copy W fragment
pipe.producer_acquire();
if (tile_idx * tile_size + threadIdx.y * tx * vec_size < feat_in) {
cuda::memcpy_async(W_shared + W_shared_offset[copy_idx] +
(threadIdx.y * tx + threadIdx.x) * vec_size,
W + (idx * feat_out + j) * feat_in +
tile_idx * tile_size +
(threadIdx.y * tx + threadIdx.x) * vec_size,
cuda::aligned_size_t<W_copy_size>(W_copy_size), pipe);
cuda::memcpy_async(X_shared + X_shared_offset[copy_idx] +
(threadIdx.y * tx + threadIdx.x) * vec_size,
X + (batch_idx * feat_in) + tile_idx * tile_size +
(threadIdx.y * tx + threadIdx.x) * vec_size,
cuda::aligned_size_t<X_copy_size>(X_copy_size), pipe);
}
pipe.producer_commit();
compute_idx = (tile_idx - 1) % num_pipeline_stages;
// pipeline stage: compute WX
pipe.consumer_wait();
block.sync();
x_vec.load(X_shared + X_shared_offset[compute_idx] +
(threadIdx.y * tx + threadIdx.x) * vec_size);
w_vec.load(W_shared + W_shared_offset[compute_idx] +
(threadIdx.y * tx + threadIdx.x) * vec_size);
float sum = 0.f;
#pragma unroll
for (size_t i = 0; i < vec_size; ++i) {
sum += float(w_vec[i]) * float(x_vec[i]) * scale;
}
#pragma unroll
for (size_t offset = tx / 2; offset > 0; offset /= 2) {
sum += __shfl_down_sync(0xffffffff, sum, offset);
}
y_warpwise[threadIdx.y] = sum;
block.sync();
#pragma unroll
for (size_t i = 0; i < ty; ++i) {
y += y_warpwise[i];
}
block.sync();
pipe.consumer_release();
}
compute_idx = (tile_idx - 1) % num_pipeline_stages;
// final pipeline stage
pipe.consumer_wait();
block.sync();
x_vec.load(X_shared + X_shared_offset[compute_idx] +
(threadIdx.y * tx + threadIdx.x) * vec_size);
w_vec.load(W_shared + W_shared_offset[compute_idx] +
(threadIdx.y * tx + threadIdx.x) * vec_size);
float sum = 0.f;
#pragma unroll
for (size_t i = 0; i < vec_size; ++i) {
sum += float(w_vec[i]) * float(x_vec[i]) * scale;
}
#pragma unroll
for (size_t offset = tx / 2; offset > 0; offset /= 2) {
sum += __shfl_down_sync(0xffffffff, sum, offset);
}
y_warpwise[threadIdx.y] =
((tile_idx - 1) * tile_size + threadIdx.y * tx * vec_size < feat_in)
? sum
: 0.f;
block.sync();
#pragma unroll
for (size_t i = 0; i < ty; ++i) {
y += y_warpwise[i];
}
block.sync();
pipe.consumer_release();
// write Y;
if (block.thread_rank() == 0) {
Y[batch_idx * full_y_size + y_offset + j] += static_cast<out_T>(y);
}
}
#else
template <int feat_in, int feat_out, size_t vec_size, size_t X_copy_size,
size_t W_copy_size, int tx, int ty, int tz, typename in_T,
typename out_T, typename W_T>
__global__ void
bgmv_shrink_kernel(out_T *__restrict__ Y, const in_T *__restrict__ X,
const W_T *__restrict__ W,
const int64_t *__restrict__ indicies, int64_t y_offset,
int64_t full_y_size, int64_t num_layers, int64_t layer_idx,
float scale) {
size_t batch_idx = blockIdx.y;
int64_t idx = indicies[batch_idx] * num_layers + layer_idx;
if (idx < 0) {
return;
}
size_t j = blockIdx.x;
constexpr size_t tile_size = tx * ty * vec_size;
constexpr size_t num_tiles = (feat_in + tile_size - 1) / tile_size;
__shared__ float y_warpwise[ty];
float y = 0;
vec_t<in_T, vec_size> x_vec;
vec_t<W_T, vec_size> w_vec;
size_t tile_idx;
#pragma unroll
for (tile_idx = 0; tile_idx < num_tiles; ++tile_idx) {
if (tile_idx * tile_size + (threadIdx.y * tx + threadIdx.x + 1) * vec_size - 1 < feat_in) {
x_vec.load(X + (batch_idx * feat_in) +
tile_idx * tile_size +
(threadIdx.y * tx + threadIdx.x) * vec_size);
w_vec.load(W + (idx * feat_out + j) * feat_in +
tile_idx * tile_size +
(threadIdx.y * tx + threadIdx.x) * vec_size);
}
float sum = 0.f;
#pragma unroll
for (size_t i = 0; i < vec_size; ++i) {
sum += convert_type<W_T, float>(w_vec[i]) * convert_type<in_T, float>(x_vec[i]) * scale;
}
#pragma unroll
for (size_t offset = tx / 2; offset > 0; offset /= 2) {
sum += VLLM_SHFL_DOWN_SYNC(sum, offset);
}
__syncthreads();
if (tile_idx * tile_size + (threadIdx.y * tx + threadIdx.x + 1) * vec_size - 1 < feat_in) {
y += sum;
}
}
if (threadIdx.x == 0) {
y_warpwise[threadIdx.y] = y;
}
__syncthreads();
float y_write = 0.f;
#pragma unroll
for (size_t i = 0; i < ty; ++i) {
y_write += y_warpwise[i];
}
// write Y;
if (threadIdx.x == 0 && threadIdx.y == 0) {
size_t y_idx = batch_idx * full_y_size + y_offset + j;
Y[y_idx] = vllm_add<out_T>(Y[y_idx], convert_type<float, out_T>(y_write));
}
}
#endif
// nthrs = (2, 16, 4)
template <int feat_in, int feat_out, size_t vec_size, int tx, int ty, int tz,
typename in_T, typename out_T, typename W_T>
__global__ void
bgmv_expand_kernel(out_T *__restrict__ Y, const in_T *__restrict__ X,
const W_T *__restrict__ W,
const int64_t *__restrict__ indicies, int64_t y_offset,
int64_t full_y_size, int64_t num_layers, int64_t layer_idx,
float scale) {
size_t batch_idx = blockIdx.y;
int64_t idx = indicies[batch_idx] * num_layers + layer_idx;
if (idx < 0) {
return;
}
auto block = cg::this_thread_block();
size_t tile_idx = blockIdx.x;
// load X;
vec_t<in_T, vec_size> x_vec;
x_vec.load(X + batch_idx * feat_in + threadIdx.x * vec_size);
// load W;
vec_t<W_T, vec_size> w_vec;
w_vec.load(W + (idx * feat_out + tile_idx * tz * ty) * feat_in +
block.thread_rank() * vec_size);
float sum = 0.f;
#pragma unroll
for (size_t i = 0; i < vec_size; ++i) {
#ifndef USE_ROCM
sum += float(w_vec[i]) * float(x_vec[i]) * scale;
#else
sum += convert_type<W_T, float>(w_vec[i]) * convert_type<in_T, float>(x_vec[i]) * scale;
#endif
}
cg::thread_block_tile g = cg::tiled_partition<tx>(block);
#pragma unroll
for (size_t offset = tx / 2; offset > 0; offset /= 2) {
sum += g.shfl_down(sum, offset);
}
sum = g.shfl(sum, 0);
if (threadIdx.x == 0) {
#ifndef USE_ROCM
Y[batch_idx * full_y_size + y_offset + tile_idx * (tz * ty) +
threadIdx.z * ty + threadIdx.y] += static_cast<out_T>(sum);
#else
size_t y_idx = batch_idx * full_y_size + y_offset + tile_idx * (tz * ty) +
threadIdx.z * ty + threadIdx.y;
Y[y_idx] = vllm_add<out_T>(Y[y_idx], convert_type<float, out_T>(sum));
#endif
}
}
template <int feat_in, int feat_out, typename in_T, typename out_T,
typename W_T>
void bgmv_kernel(out_T *__restrict__ Y, const in_T *__restrict__ X,
const W_T *__restrict__ W,
const int64_t *__restrict__ indicies, int64_t y_offset,
int64_t full_y_size, int64_t batch_size, int64_t num_layers,
int64_t layer_idx, float scale) {
constexpr size_t vec_size = 8;
constexpr int tz = 4;
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
if constexpr (feat_in <= feat_out) {
static_assert(feat_in % vec_size == 0);
constexpr int tx = feat_in / vec_size;
static_assert((32 % tx == 0 && feat_out % (32 / tx * tz) == 0) ||
(16 % tx == 0 && feat_out % (16 / tx * tz) == 0) ||
(8 % tx == 0 && feat_out % (8 / tx * tz) == 0));
if constexpr (32 % tx == 0 && feat_out % (32 / tx * tz) == 0) {
constexpr int ty = 32 / tx;
dim3 nblks(feat_out / (ty * tz), batch_size);
dim3 nthrs(tx, ty, tz);
bgmv_expand_kernel<feat_in, feat_out, vec_size, tx, ty, tz>
<<<nblks, nthrs, 0, stream>>>(Y, X, W, indicies, y_offset,
full_y_size, num_layers, layer_idx,
scale);
} else if (16 % tx == 0 && feat_out % (16 / tx * tz) == 0) {
constexpr int ty = 16 / tx;
dim3 nblks(feat_out / (ty * tz), batch_size);
dim3 nthrs(tx, ty, tz);
bgmv_expand_kernel<feat_in, feat_out, vec_size, tx, ty, tz>
<<<nblks, nthrs, 0, stream>>>(Y, X, W, indicies, y_offset,
full_y_size, num_layers, layer_idx,
scale);
} else {
constexpr int ty = 8 / tx;
dim3 nblks(feat_out / (ty * tz), batch_size);
dim3 nthrs(tx, ty, tz);
bgmv_expand_kernel<feat_in, feat_out, vec_size, tx, ty, tz>
<<<nblks, nthrs, 0, stream>>>(Y, X, W, indicies, y_offset,
full_y_size, num_layers, layer_idx,
scale);
}
} else {
#ifndef USE_ROCM
static_assert(feat_in % (vec_size * 32) == 0 ||
feat_in % (vec_size * 16) == 0 ||
feat_in % (vec_size * 8) == 0);
if constexpr (feat_in % (vec_size * 32) == 0) {
constexpr int tx = 32;
constexpr int ty = 4;
dim3 nblks(feat_out, batch_size);
dim3 nthrs(tx, ty);
bgmv_shrink_kernel<feat_in, feat_out, vec_size, vec_size * sizeof(in_T),
vec_size * sizeof(W_T), tx, ty, tz>
<<<nblks, nthrs, 0, stream>>>(Y, X, W, indicies, y_offset,
full_y_size, num_layers, layer_idx,
scale);
} else if constexpr (feat_in % (vec_size / 2 * 32) == 0) {
constexpr int tx = 32;
constexpr int ty = 4;
dim3 nblks(feat_out, batch_size);
dim3 nthrs(tx, ty);
bgmv_shrink_kernel<feat_in, feat_out, vec_size / 2,
vec_size * sizeof(in_T) / 2,
vec_size * sizeof(W_T) / 2, tx, ty, tz>
<<<nblks, nthrs, 0, stream>>>(Y, X, W, indicies, y_offset,
full_y_size, num_layers, layer_idx,
scale);
} else if constexpr (feat_in % (vec_size / 2 * 16) == 0) {
constexpr int tx = 16;
constexpr int ty = 4;
dim3 nblks(feat_out, batch_size);
dim3 nthrs(tx, ty);
bgmv_shrink_kernel<feat_in, feat_out, vec_size / 2,
vec_size * sizeof(in_T) / 2,
vec_size * sizeof(W_T) / 2, tx, ty, tz>
<<<nblks, nthrs, 0, stream>>>(Y, X, W, indicies, y_offset,
full_y_size, num_layers, layer_idx,
scale);
}
#else
constexpr size_t rocm_warp_size = warpSize;
#define CHECK_INPUT_TILEABLE_BY(vec_size_) \
feat_in % (rocm_warp_size * vec_size_) == 0
#define LAUNCH_BGMV_SHRINK_KERNELS_ROCM(factor_, vec_size_, tx_, ty_) \
if constexpr (CHECK_INPUT_TILEABLE_BY(factor_)) { \
constexpr size_t vec_size_shrink = vec_size_; \
constexpr int tx = tx_; \
constexpr int ty = ty_; \
dim3 nblks(feat_out, batch_size); \
dim3 nthrs(tx, ty); \
bgmv_shrink_kernel<feat_in, feat_out, vec_size_shrink, \
vec_size_shrink * sizeof(in_T), \
vec_size_shrink * sizeof(W_T), \
tx, ty, tz> \
<<<nblks, nthrs, 0, stream>>>(Y, X, W, indicies, y_offset, \
full_y_size, num_layers, layer_idx, \
scale); \
}
static_assert(CHECK_INPUT_TILEABLE_BY(32) ||
CHECK_INPUT_TILEABLE_BY(16) ||
CHECK_INPUT_TILEABLE_BY( 8) ||
CHECK_INPUT_TILEABLE_BY( 4) ||
CHECK_INPUT_TILEABLE_BY( 2) ||
CHECK_INPUT_TILEABLE_BY( 1));
LAUNCH_BGMV_SHRINK_KERNELS_ROCM(32, vec_size, rocm_warp_size, 32/vec_size)
else
LAUNCH_BGMV_SHRINK_KERNELS_ROCM(16, vec_size, rocm_warp_size, 16/vec_size)
else
LAUNCH_BGMV_SHRINK_KERNELS_ROCM( 8, vec_size, rocm_warp_size, 8/vec_size)
else
LAUNCH_BGMV_SHRINK_KERNELS_ROCM( 4, vec_size, rocm_warp_size/(vec_size/4), vec_size/4)
else
LAUNCH_BGMV_SHRINK_KERNELS_ROCM( 2, vec_size, rocm_warp_size/(vec_size/2), vec_size/2)
else
LAUNCH_BGMV_SHRINK_KERNELS_ROCM( 1, vec_size, rocm_warp_size/(vec_size/1), vec_size/1)
#undef CHECK_INPUT_TILEABLE_BY
#undef LAUNCH_BGMV_SHRINK_KERNELS_ROCM
#endif
}
}
#define INST_BGMV(feat_in, feat_out, in_T, out_T, W_T) \
template void bgmv_kernel<feat_in, feat_out>( \
out_T * __restrict__ Y, const in_T *__restrict__ X, \
const W_T *__restrict__ W, const int64_t *__restrict__ indicies, \
int64_t y_offset, int64_t full_y_size, int64_t batch_size, \
int64_t num_layers, int64_t layer_idx, float scale);
#define INST_BGMV_ONESIDE(in_T, out_T, W_T, feat_in, feat_out) \
INST_BGMV(feat_in, feat_out, in_T, out_T, W_T)
#define INST_BGMV_TWOSIDE(in_T, out_T, W_T, narrow, wide) \
INST_BGMV(narrow, wide, in_T, out_T, W_T) \
INST_BGMV(wide, narrow, in_T, out_T, W_T)

View File

@ -1,48 +0,0 @@
DTYPES = ["fp16", "bf16", "fp32"]
DTYPE_MAP = {
"fp16": "nv_half",
"bf16": "nv_bfloat16",
"fp32": "float",
}
TEMPLATE = """
#include "bgmv_config.h"
#include "bgmv_impl.cuh"
FOR_BGMV_WIDE_NARROW(INST_BGMV_TWOSIDE, {input_dtype}, {output_dtype}, {weight_dtype})
FOR_INST_BGMV_WIDE_NARROW(INST_BGMV_ONESIDE, {input_dtype}, {output_dtype}, {weight_dtype})
""".lstrip() # noqa: E501
for input_dtype in DTYPES:
for output_dtype in DTYPES:
for weight_dtype in DTYPES:
if weight_dtype == "fp32":
# FP32 weights are not supported.
continue
if output_dtype == "fp32":
# LoRA A matrix.
if input_dtype != weight_dtype:
# NOTE(woosuk): While Punica supports the case where the
# input and weight dtypes are different, we only generate
# the kernels the same dtypes to reduce the binary size.
continue
elif input_dtype == "fp32":
# LoRA B matrix.
if output_dtype != weight_dtype:
# NOTE(woosuk): While Punica supports the case where the
# output and weight dtypes are different, we only generate
# the kernels the same dtypes to reduce the binary size.
continue
elif not (input_dtype == output_dtype == weight_dtype):
# NOTE(woosuk): While Punica supports mixed data types for
# input, output, and weight, we only generate the kernels with
# the same data types to reduce the binary size.
continue
kernel_definition = TEMPLATE.format(
input_dtype=DTYPE_MAP[input_dtype],
output_dtype=DTYPE_MAP[output_dtype],
weight_dtype=DTYPE_MAP[weight_dtype])
filename = f"bgmv_{input_dtype}_{output_dtype}_{weight_dtype}.cu"
with open(filename, "w") as f:
f.write(kernel_definition)

File diff suppressed because it is too large Load Diff

View File

@ -1,569 +0,0 @@
#include <torch/all.h>
#include <c10/cuda/CUDAGuard.h>
#include <cstdint>
#include "type_convert.h"
#include "../cuda_compat.h"
#include "bgmv/bgmv_config.h"
//====== utils ======
inline void check_shape(const torch::Tensor &a, const torch::Tensor &b,
const char *a_name, const char *b_name) {
TORCH_CHECK(a.dim() == b.dim(), a_name, ".dim() != ", b_name, ".dim(). ",
a.dim(), " vs ", b.dim());
for (int i = 0; i < a.dim(); ++i) {
TORCH_CHECK(a.size(i) == b.size(i), a_name, ".size(", i, ") != ", b_name,
".size(", i, ")");
}
}
inline constexpr uint64_t pack_u32(uint32_t a, uint32_t b) {
return (uint64_t(a) << 32) | uint64_t(b);
}
#define CHECK_CUDA(x) TORCH_CHECK(x.is_cuda(), #x " must be a CUDA tensor")
#define CHECK_CONTIGUOUS(x) \
TORCH_CHECK(x.is_contiguous(), #x " must be contiguous")
#define CHECK_INPUT(x) \
CHECK_CUDA(x); \
CHECK_CONTIGUOUS(x)
#define CHECK_DIM(d, x) \
TORCH_CHECK(x.dim() == d, #x " must be a " #d "D tensor")
#define CHECK_SHAPE(a, b) check_shape(a, b, #a, #b)
#define CHECK_EQ(a, b) \
TORCH_CHECK(a == b, "CHECK_EQ(" #a ", " #b ") failed. ", a, " vs ", b)
//====== bgmv ======
template <typename in_T, typename out_T, typename W_T>
inline bool launch_bgmv_kernel(out_T *Y, const in_T *X, const W_T *W,
const int64_t *lora_indices,
uint32_t in_features, uint32_t out_features,
int64_t y_offset, int64_t full_y_size,
int64_t batch_size, int64_t num_layers,
int64_t layer_idx, float scale) {
// NOTE(woosuk): While Punica supports various combinations of input/output
// data types, we limit the supported data types to reduce the binary size.
constexpr bool is_input_float = std::is_same<in_T, float>::value;
constexpr bool is_output_float = std::is_same<out_T, float>::value;
if (is_input_float) {
if (!std::is_same<out_T, W_T>::value) {
return false;
}
} else if (is_output_float) {
if (!std::is_same<in_T, W_T>::value) {
return false;
}
} else if (!(std::is_same<in_T, W_T>::value &&
std::is_same<out_T, W_T>::value)) {
return false;
}
switch (pack_u32(in_features, out_features)) {
#define CASE_ONESIDE(_in_T, _out_T, _W_T, feat_in, feat_out) \
case pack_u32(feat_in, feat_out): \
bgmv_kernel<feat_in, feat_out>(Y, X, W, lora_indices, y_offset, \
full_y_size, batch_size, num_layers, \
layer_idx, scale); \
break;
#define CASE(_in_T, _out_T, _W_T, narrow, wide) \
CASE_ONESIDE(in_T, out_T, W_T, narrow, wide) \
CASE_ONESIDE(in_T, out_T, W_T, wide, narrow)
FOR_BGMV_WIDE_NARROW(CASE, _, _, _)
FOR_INST_BGMV_WIDE_NARROW(CASE_ONESIDE, _, _, _)
#undef CASE
#undef CASE_ONESIDE
default:
return false;
}
return true;
}
void dispatch_bgmv(torch::Tensor y, torch::Tensor x, torch::Tensor w,
torch::Tensor indicies, int64_t layer_idx, double scale) {
CHECK_INPUT(y);
CHECK_INPUT(x);
CHECK_INPUT(w);
CHECK_INPUT(indicies);
CHECK_DIM(2, y);
CHECK_DIM(2, x);
CHECK_DIM(4, w);
CHECK_DIM(1, indicies);
int64_t B = x.size(0);
int64_t h_in = x.size(1);
int64_t h_out = y.size(1);
int64_t num_layers = w.size(1);
CHECK_EQ(w.size(3), h_in);
CHECK_EQ(w.size(2), h_out);
CHECK_EQ(indicies.size(0), x.size(0));
CHECK_EQ(y.size(0), x.size(0));
const at::cuda::OptionalCUDAGuard device_guard(device_of(x));
bool ok = false;
if (h_in <= 128512 && h_out <= 128512) {
// TODO: See if we can get rid of this massive nested switch
switch (x.scalar_type()) {
case at::ScalarType::Half:
switch (y.scalar_type()) {
case at::ScalarType::Half:
switch (w.scalar_type()) {
case at::ScalarType::Half:
ok = launch_bgmv_kernel(static_cast<nv_half *>(y.data_ptr()),
static_cast<nv_half *>(x.data_ptr()),
static_cast<nv_half *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out, 0,
h_out, B, num_layers, layer_idx, scale);
break;
case at::ScalarType::BFloat16:
ok = launch_bgmv_kernel(static_cast<nv_half *>(y.data_ptr()),
static_cast<nv_half *>(x.data_ptr()),
static_cast<nv_bfloat16 *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out, 0,
h_out, B, num_layers, layer_idx, scale);
break;
default:
break;
}
break;
case at::ScalarType::BFloat16:
switch (w.scalar_type()) {
case at::ScalarType::Half:
ok = launch_bgmv_kernel(static_cast<nv_bfloat16 *>(y.data_ptr()),
static_cast<nv_half *>(x.data_ptr()),
static_cast<nv_half *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out, 0,
h_out, B, num_layers, layer_idx, scale);
break;
case at::ScalarType::BFloat16:
ok = launch_bgmv_kernel(static_cast<nv_bfloat16 *>(y.data_ptr()),
static_cast<nv_half *>(x.data_ptr()),
static_cast<nv_bfloat16 *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out, 0,
h_out, B, num_layers, layer_idx, scale);
break;
default:
break;
}
break;
case at::ScalarType::Float:
switch (w.scalar_type()) {
case at::ScalarType::Half:
ok = launch_bgmv_kernel(static_cast<float *>(y.data_ptr()),
static_cast<nv_half *>(x.data_ptr()),
static_cast<nv_half *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out, 0,
h_out, B, num_layers, layer_idx, scale);
break;
case at::ScalarType::BFloat16:
ok = launch_bgmv_kernel(static_cast<float *>(y.data_ptr()),
static_cast<nv_half *>(x.data_ptr()),
static_cast<nv_bfloat16 *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out, 0,
h_out, B, num_layers, layer_idx, scale);
break;
default:
break;
}
break;
default:
break;
}
break;
case at::ScalarType::BFloat16:
switch (y.scalar_type()) {
case at::ScalarType::Half:
switch (w.scalar_type()) {
case at::ScalarType::Half:
ok = launch_bgmv_kernel(static_cast<nv_half *>(y.data_ptr()),
static_cast<nv_bfloat16 *>(x.data_ptr()),
static_cast<nv_half *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out, 0,
h_out, B, num_layers, layer_idx, scale);
break;
case at::ScalarType::BFloat16:
ok = launch_bgmv_kernel(static_cast<nv_half *>(y.data_ptr()),
static_cast<nv_bfloat16 *>(x.data_ptr()),
static_cast<nv_bfloat16 *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out, 0,
h_out, B, num_layers, layer_idx, scale);
break;
default:
break;
}
break;
case at::ScalarType::BFloat16:
switch (w.scalar_type()) {
case at::ScalarType::Half:
ok = launch_bgmv_kernel(static_cast<nv_bfloat16 *>(y.data_ptr()),
static_cast<nv_bfloat16 *>(x.data_ptr()),
static_cast<nv_half *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out, 0,
h_out, B, num_layers, layer_idx, scale);
break;
case at::ScalarType::BFloat16:
ok = launch_bgmv_kernel(static_cast<nv_bfloat16 *>(y.data_ptr()),
static_cast<nv_bfloat16 *>(x.data_ptr()),
static_cast<nv_bfloat16 *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out, 0,
h_out, B, num_layers, layer_idx, scale);
break;
default:
break;
}
break;
case at::ScalarType::Float:
switch (w.scalar_type()) {
case at::ScalarType::Half:
ok = launch_bgmv_kernel(static_cast<float *>(y.data_ptr()),
static_cast<nv_bfloat16 *>(x.data_ptr()),
static_cast<nv_half *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out, 0,
h_out, B, num_layers, layer_idx, scale);
break;
case at::ScalarType::BFloat16:
ok = launch_bgmv_kernel(static_cast<float *>(y.data_ptr()),
static_cast<nv_bfloat16 *>(x.data_ptr()),
static_cast<nv_bfloat16 *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out, 0,
h_out, B, num_layers, layer_idx, scale);
break;
default:
break;
}
break;
default:
break;
}
break;
case at::ScalarType::Float:
switch (y.scalar_type()) {
case at::ScalarType::Half:
switch (w.scalar_type()) {
case at::ScalarType::Half:
ok = launch_bgmv_kernel(static_cast<nv_half *>(y.data_ptr()),
static_cast<float *>(x.data_ptr()),
static_cast<nv_half *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out, 0,
h_out, B, num_layers, layer_idx, scale);
break;
case at::ScalarType::BFloat16:
ok = launch_bgmv_kernel(static_cast<nv_half *>(y.data_ptr()),
static_cast<float *>(x.data_ptr()),
static_cast<nv_bfloat16 *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out, 0,
h_out, B, num_layers, layer_idx, scale);
break;
default:
break;
}
break;
case at::ScalarType::BFloat16:
switch (w.scalar_type()) {
case at::ScalarType::Half:
ok = launch_bgmv_kernel(static_cast<nv_bfloat16 *>(y.data_ptr()),
static_cast<float *>(x.data_ptr()),
static_cast<nv_half *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out, 0,
h_out, B, num_layers, layer_idx, scale);
break;
case at::ScalarType::BFloat16:
ok = launch_bgmv_kernel(static_cast<nv_bfloat16 *>(y.data_ptr()),
static_cast<float *>(x.data_ptr()),
static_cast<nv_bfloat16 *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out, 0,
h_out, B, num_layers, layer_idx, scale);
break;
default:
break;
}
break;
case at::ScalarType::Float:
switch (w.scalar_type()) {
case at::ScalarType::Half:
ok = launch_bgmv_kernel(static_cast<float *>(y.data_ptr()),
static_cast<float *>(x.data_ptr()),
static_cast<nv_half *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out, 0,
h_out, B, num_layers, layer_idx, scale);
break;
case at::ScalarType::BFloat16:
ok = launch_bgmv_kernel(static_cast<float *>(y.data_ptr()),
static_cast<float *>(x.data_ptr()),
static_cast<nv_bfloat16 *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out, 0,
h_out, B, num_layers, layer_idx, scale);
break;
default:
break;
}
break;
default:
break;
}
break;
default:
break;
}
}
TORCH_CHECK(ok, "No suitable kernel.", " h_in=", h_in, " h_out=", h_out,
" dtype=", x.scalar_type(), " out_dtype=", y.scalar_type());
}
void dispatch_bgmv_low_level(torch::Tensor y, torch::Tensor x, torch::Tensor w,
torch::Tensor indicies, int64_t layer_idx,
double scale, int64_t h_in, int64_t h_out,
int64_t y_offset) {
CHECK_INPUT(y);
CHECK_INPUT(x);
CHECK_INPUT(w);
CHECK_INPUT(indicies);
CHECK_DIM(2, y);
CHECK_DIM(2, x);
CHECK_DIM(4, w);
CHECK_DIM(1, indicies);
int64_t B = x.size(0);
int64_t num_layers = w.size(1);
int64_t full_y_size = y.size(1);
CHECK_EQ(w.size(3), h_in);
CHECK_EQ(w.size(2), h_out);
CHECK_EQ(indicies.size(0), x.size(0));
CHECK_EQ(y.size(0), x.size(0));
const at::cuda::OptionalCUDAGuard device_guard(device_of(x));
bool ok = false;
if (h_in <= 128512 && h_out <= 128512) {
// TODO: See if we can get rid of this massive nested switch
switch (x.scalar_type()) {
case at::ScalarType::Half:
switch (y.scalar_type()) {
case at::ScalarType::Half:
switch (w.scalar_type()) {
case at::ScalarType::Half:
ok = launch_bgmv_kernel(static_cast<nv_half *>(y.data_ptr()),
static_cast<nv_half *>(x.data_ptr()),
static_cast<nv_half *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out,
y_offset, full_y_size, B, num_layers,
layer_idx, scale);
break;
case at::ScalarType::BFloat16:
ok = launch_bgmv_kernel(static_cast<nv_half *>(y.data_ptr()),
static_cast<nv_half *>(x.data_ptr()),
static_cast<nv_bfloat16 *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out,
y_offset, full_y_size, B, num_layers,
layer_idx, scale);
break;
default:
break;
}
break;
case at::ScalarType::BFloat16:
switch (w.scalar_type()) {
case at::ScalarType::Half:
ok = launch_bgmv_kernel(static_cast<nv_bfloat16 *>(y.data_ptr()),
static_cast<nv_half *>(x.data_ptr()),
static_cast<nv_half *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out,
y_offset, full_y_size, B, num_layers,
layer_idx, scale);
break;
case at::ScalarType::BFloat16:
ok = launch_bgmv_kernel(static_cast<nv_bfloat16 *>(y.data_ptr()),
static_cast<nv_half *>(x.data_ptr()),
static_cast<nv_bfloat16 *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out,
y_offset, full_y_size, B, num_layers,
layer_idx, scale);
break;
default:
break;
}
break;
case at::ScalarType::Float:
switch (w.scalar_type()) {
case at::ScalarType::Half:
ok = launch_bgmv_kernel(static_cast<float *>(y.data_ptr()),
static_cast<nv_half *>(x.data_ptr()),
static_cast<nv_half *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out,
y_offset, full_y_size, B, num_layers,
layer_idx, scale);
break;
case at::ScalarType::BFloat16:
ok = launch_bgmv_kernel(static_cast<float *>(y.data_ptr()),
static_cast<nv_half *>(x.data_ptr()),
static_cast<nv_bfloat16 *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out,
y_offset, full_y_size, B, num_layers,
layer_idx, scale);
break;
default:
break;
}
break;
default:
break;
}
break;
case at::ScalarType::BFloat16:
switch (y.scalar_type()) {
case at::ScalarType::Half:
switch (w.scalar_type()) {
case at::ScalarType::Half:
ok = launch_bgmv_kernel(static_cast<nv_half *>(y.data_ptr()),
static_cast<nv_bfloat16 *>(x.data_ptr()),
static_cast<nv_half *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out,
y_offset, full_y_size, B, num_layers,
layer_idx, scale);
break;
case at::ScalarType::BFloat16:
ok = launch_bgmv_kernel(static_cast<nv_half *>(y.data_ptr()),
static_cast<nv_bfloat16 *>(x.data_ptr()),
static_cast<nv_bfloat16 *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out,
y_offset, full_y_size, B, num_layers,
layer_idx, scale);
break;
default:
break;
}
break;
case at::ScalarType::BFloat16:
switch (w.scalar_type()) {
case at::ScalarType::Half:
ok = launch_bgmv_kernel(static_cast<nv_bfloat16 *>(y.data_ptr()),
static_cast<nv_bfloat16 *>(x.data_ptr()),
static_cast<nv_half *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out,
y_offset, full_y_size, B, num_layers,
layer_idx, scale);
break;
case at::ScalarType::BFloat16:
ok = launch_bgmv_kernel(static_cast<nv_bfloat16 *>(y.data_ptr()),
static_cast<nv_bfloat16 *>(x.data_ptr()),
static_cast<nv_bfloat16 *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out,
y_offset, full_y_size, B, num_layers,
layer_idx, scale);
break;
default:
break;
}
break;
case at::ScalarType::Float:
switch (w.scalar_type()) {
case at::ScalarType::Half:
ok = launch_bgmv_kernel(static_cast<float *>(y.data_ptr()),
static_cast<nv_bfloat16 *>(x.data_ptr()),
static_cast<nv_half *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out,
y_offset, full_y_size, B, num_layers,
layer_idx, scale);
break;
case at::ScalarType::BFloat16:
ok = launch_bgmv_kernel(static_cast<float *>(y.data_ptr()),
static_cast<nv_bfloat16 *>(x.data_ptr()),
static_cast<nv_bfloat16 *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out,
y_offset, full_y_size, B, num_layers,
layer_idx, scale);
break;
default:
break;
}
break;
default:
break;
}
break;
case at::ScalarType::Float:
switch (y.scalar_type()) {
case at::ScalarType::Half:
switch (w.scalar_type()) {
case at::ScalarType::Half:
ok = launch_bgmv_kernel(static_cast<nv_half *>(y.data_ptr()),
static_cast<float *>(x.data_ptr()),
static_cast<nv_half *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out,
y_offset, full_y_size, B, num_layers,
layer_idx, scale);
break;
case at::ScalarType::BFloat16:
ok = launch_bgmv_kernel(static_cast<nv_half *>(y.data_ptr()),
static_cast<float *>(x.data_ptr()),
static_cast<nv_bfloat16 *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out,
y_offset, full_y_size, B, num_layers,
layer_idx, scale);
break;
default:
break;
}
break;
case at::ScalarType::BFloat16:
switch (w.scalar_type()) {
case at::ScalarType::Half:
ok = launch_bgmv_kernel(static_cast<nv_bfloat16 *>(y.data_ptr()),
static_cast<float *>(x.data_ptr()),
static_cast<nv_half *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out,
y_offset, full_y_size, B, num_layers,
layer_idx, scale);
break;
case at::ScalarType::BFloat16:
ok = launch_bgmv_kernel(static_cast<nv_bfloat16 *>(y.data_ptr()),
static_cast<float *>(x.data_ptr()),
static_cast<nv_bfloat16 *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out,
y_offset, full_y_size, B, num_layers,
layer_idx, scale);
break;
default:
break;
}
break;
case at::ScalarType::Float:
switch (w.scalar_type()) {
case at::ScalarType::Half:
ok = launch_bgmv_kernel(static_cast<float *>(y.data_ptr()),
static_cast<float *>(x.data_ptr()),
static_cast<nv_half *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out,
y_offset, full_y_size, B, num_layers,
layer_idx, scale);
break;
case at::ScalarType::BFloat16:
ok = launch_bgmv_kernel(static_cast<float *>(y.data_ptr()),
static_cast<float *>(x.data_ptr()),
static_cast<nv_bfloat16 *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out,
y_offset, full_y_size, B, num_layers,
layer_idx, scale);
break;
default:
break;
}
break;
default:
break;
}
break;
default:
break;
}
}
TORCH_CHECK(ok, "No suitable kernel.", " h_in=", h_in, " h_out=", h_out,
" dtype=", x.scalar_type(), " out_dtype=", y.scalar_type());
}

View File

@ -1,11 +0,0 @@
#pragma once
#include <torch/all.h>
void dispatch_bgmv(torch::Tensor y, torch::Tensor x, torch::Tensor w,
torch::Tensor indicies, int64_t layer_idx, double scale);
void dispatch_bgmv_low_level(torch::Tensor y, torch::Tensor x, torch::Tensor w,
torch::Tensor indicies, int64_t layer_idx,
double scale, int64_t h_in, int64_t h_out,
int64_t y_offset);

View File

@ -1,18 +0,0 @@
#include "registration.h"
#include "punica_ops.h"
TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, m) {
m.def(
"dispatch_bgmv(Tensor! y, Tensor x, Tensor w, Tensor indicies, int "
"layer_idx, float scale) -> ()");
m.impl("dispatch_bgmv", torch::kCUDA, &dispatch_bgmv);
m.def(
"dispatch_bgmv_low_level(Tensor! y, Tensor x, Tensor w,"
"Tensor indicies, int layer_idx,"
"float scale, int h_in, int h_out,"
"int y_offset) -> ()");
m.impl("dispatch_bgmv_low_level", torch::kCUDA, &dispatch_bgmv_low_level);
}
REGISTER_EXTENSION(TORCH_EXTENSION_NAME)

View File

@ -1,82 +0,0 @@
#ifndef CSRC__PUNICA__TYPE_CONVERT_H__
#define CSRC__PUNICA__TYPE_CONVERT_H__
#ifndef USE_ROCM
#include <cuda_bf16.h>
#include <cuda_fp16.h>
#else
#include <hip/hip_bf16.h>
#include <hip/hip_fp16.h>
#define __TYPE_CONVERT__HOST_DEVICE__ __host__ __device__
typedef __half nv_half;
typedef __hip_bfloat16 nv_bfloat16;
typedef __hip_bfloat162 nv_bfloat162;
__TYPE_CONVERT__HOST_DEVICE__
inline __hip_bfloat162 make_bfloat162(__hip_bfloat16 val) {
return __hip_bfloat162{val, val};
}
__TYPE_CONVERT__HOST_DEVICE__
inline __hip_bfloat162 make_bfloat162(__hip_bfloat16 vall, __hip_bfloat16 valr) {
return __hip_bfloat162{vall, valr};
}
template <typename T_src, typename T_dst>
__TYPE_CONVERT__HOST_DEVICE__
inline T_dst convert_type(T_src val) {
return static_cast<T_dst>(val);
}
template <>
__TYPE_CONVERT__HOST_DEVICE__
inline float convert_type<__half, float>(__half val) {
return __half2float(val);
}
template <>
__TYPE_CONVERT__HOST_DEVICE__
inline __half convert_type<float, __half>(float val) {
return __float2half(val);
}
template <>
__TYPE_CONVERT__HOST_DEVICE__
inline float convert_type<__hip_bfloat16, float>(__hip_bfloat16 val) {
return __bfloat162float(val);
}
template <>
__TYPE_CONVERT__HOST_DEVICE__
inline __hip_bfloat16 convert_type<float, __hip_bfloat16>(float val) {
return __float2bfloat16(val);
}
template <typename T>
__TYPE_CONVERT__HOST_DEVICE__
inline T vllm_add(T a, T b) {
return a + b;
}
template <>
__TYPE_CONVERT__HOST_DEVICE__
inline __half vllm_add<__half>(__half a, __half b) {
return __hadd(a, b);
}
template <>
__TYPE_CONVERT__HOST_DEVICE__
inline __hip_bfloat16 vllm_add<__hip_bfloat16>(__hip_bfloat16 a, __hip_bfloat16 b) {
return __hadd(a, b);
}
#undef __TYPE_CONVERT__HOST_DEVICE__
#endif // USE_ROCM
#endif // CSRC__PUNICA__TYPE_CONVERT_H__

View File

@ -66,7 +66,6 @@ You can also build and install vLLM from source:
$ git clone https://github.com/vllm-project/vllm.git
$ cd vllm
$ # export VLLM_INSTALL_PUNICA_KERNELS=1 # optionally build for multi-LoRA capability
$ pip install -e . # This may take 5-10 minutes.
.. tip::

View File

@ -181,9 +181,6 @@ class cmake_build_ext(build_ext):
# match.
cmake_args += ['-DVLLM_PYTHON_EXECUTABLE={}'.format(sys.executable)]
if _install_punica():
cmake_args += ['-DVLLM_INSTALL_PUNICA_KERNELS=ON']
#
# Setup parallelism and build tool
#
@ -274,10 +271,6 @@ def _build_custom_ops() -> bool:
return _is_cuda() or _is_hip() or _is_cpu()
def _install_punica() -> bool:
return envs.VLLM_INSTALL_PUNICA_KERNELS
def get_hipcc_rocm_version():
# Run the hipcc --version command
result = subprocess.run(['hipcc', '--version'],
@ -446,9 +439,6 @@ if _is_cuda() or _is_hip():
if _build_custom_ops():
ext_modules.append(CMakeExtension(name="vllm._C"))
if _install_punica():
ext_modules.append(CMakeExtension(name="vllm._punica_C"))
package_data = {
"vllm": ["py.typed", "model_executor/layers/fused_moe/configs/*.json"]
}

View File

@ -1,14 +1,17 @@
import gc
from unittest.mock import patch
import pytest
import torch
import triton
import triton.language as tl
from vllm.model_executor.layers.ops.sample import (_uniform_to_exponential,
from vllm.model_executor.layers.ops.sample import (_sample_triton,
_uniform_to_exponential,
sample)
from vllm.model_executor.sampling_metadata import SamplingTensors
from vllm.model_executor.utils import set_random_seed
from vllm.triton_utils.libentry import LibEntry
from vllm.triton_utils.sample import (MAX_TRITON_N_COLS,
get_num_triton_sampler_splits)
@ -76,15 +79,20 @@ def test_sample_decoding_only(random_sampling, max_best_of,
seeds = torch.randint(1,
torch.iinfo(torch.long).max, (n_splits, bs),
device="cuda").mul_(random_sampling_mask)
sampled_tokens, sampled_logprobs, sampled_modified_probs = sample(
probs=probs,
logprobs=logprobs,
sample_indices=sample_indices,
seeds=seeds,
max_best_of=max_best_of,
modify_greedy_probs=modify_greedy_probs,
save_logprobs=save_logprobs,
_save_modified_probs=True)
#The current _sample_triton does not utilize the
# libentry decoration. The purpose of adding this patch is to test
# the correctness of libentry.
with patch("vllm.model_executor.layers.ops.sample._sample_triton",
LibEntry(_sample_triton)):
sampled_tokens, sampled_logprobs, sampled_modified_probs = sample(
probs=probs,
logprobs=logprobs,
sample_indices=sample_indices,
seeds=seeds,
max_best_of=max_best_of,
modify_greedy_probs=modify_greedy_probs,
save_logprobs=save_logprobs,
_save_modified_probs=True)
assert sampled_tokens.shape == (bs, max_best_of)
for i in range(bs):
assert torch.all(sampled_tokens[i] == i * (vocab_size // bs))
@ -130,6 +138,7 @@ def test_sample_decoding_only(random_sampling, max_best_of,
[SINGLE_SPLIT_VOCAB_SIZE, MULTI_SPLIT_VOCAB_SIZE])
def test_sample_prompt_logprobs(random_sampling, max_best_of,
modify_greedy_probs, seed, vocab_size):
set_random_seed(seed)
prompt_sizes = [16, 32, 64, 128] * 2
samples = 8
@ -157,14 +166,17 @@ def test_sample_prompt_logprobs(random_sampling, max_best_of,
seeds = torch.randint(1,
torch.iinfo(torch.long).max, (n_splits, samples),
device="cuda").mul_(random_sampling_mask)
sampled_tokens, sampled_logprobs, _ = sample(
probs=probs,
logprobs=logprobs,
sample_indices=sample_indices,
seeds=seeds,
max_best_of=max_best_of,
modify_greedy_probs=modify_greedy_probs,
save_logprobs=True)
#ditto
with patch("vllm.model_executor.layers.ops.sample._sample_triton",
LibEntry(_sample_triton)):
sampled_tokens, sampled_logprobs, _ = sample(
probs=probs,
logprobs=logprobs,
sample_indices=sample_indices,
seeds=seeds,
max_best_of=max_best_of,
modify_greedy_probs=modify_greedy_probs,
save_logprobs=True)
assert sampled_tokens.shape == (samples, max_best_of)
assert sampled_logprobs.shape == (samples, max_best_of)
for i, t in enumerate(sample_indices):

View File

@ -37,7 +37,7 @@ def test_gemma_lora(gemma_lora_files):
expected_lora_output = [
"more important than knowledge.\nAuthor: Albert Einstein\n",
"everyone else is already taken.\nAuthor: Oscar Wilde\n",
"so little time\nAuthor: Frank Zappa\n",
"so little time.\nAuthor: Frank Zappa\n",
]
output1 = do_sample(llm, gemma_lora_files, lora_id=1)

View File

@ -26,7 +26,8 @@ from vllm.lora.layers import (BaseLayerWithLoRA, ColumnParallelLinearWithLoRA,
VocabParallelEmbeddingWithLoRA)
# yapf: enable
from vllm.lora.models import (LongContextLoRAContext, LoRALayerWeights,
PackedLoRALayerWeights, convert_mapping)
PackedLoRALayerWeights)
from vllm.lora.punica import PunicaWrapper
from vllm.model_executor.layers.linear import (ColumnParallelLinear,
MergedColumnParallelLinear,
QKVParallelLinear,
@ -47,6 +48,9 @@ TOLERANCES = {
CUDA_DEVICES = [
f"cuda:{i}" for i in range(1 if torch.cuda.device_count() == 1 else 2)
]
# We will launch different triton kernels between the prefill and decode
# stages, so we need to verify this. prefill stage(True) or decode stage(False)
STAGES = [True, False]
def get_random_id_to_index(num_loras: int,
@ -182,10 +186,12 @@ def create_random_inputs(
@pytest.mark.parametrize("num_loras", [1, 2, 4, 8])
@pytest.mark.parametrize("device", CUDA_DEVICES)
@pytest.mark.parametrize("vocab_size", [512, 32000, 64000, 128000])
def test_embeddings(dist_init, num_loras, device, vocab_size) -> None:
@pytest.mark.parametrize("stage", STAGES)
def test_embeddings(dist_init, num_loras, device, vocab_size, stage) -> None:
torch.set_default_device(device)
max_loras = 8
punica_wrapper = PunicaWrapper(8192, 256, device)
lora_config = LoRAConfig(max_loras=max_loras,
max_lora_rank=8,
lora_dtype=torch.float16)
@ -204,7 +210,7 @@ def test_embeddings(dist_init, num_loras, device, vocab_size) -> None:
id_to_index = get_random_id_to_index(num_loras, max_loras)
embedding, lora_embedding = create_random_embedding_layer()
lora_embedding.set_mapping(punica_wrapper)
lora_dict, _ = populate_loras(
id_to_index,
layer=lora_embedding,
@ -217,12 +223,12 @@ def test_embeddings(dist_init, num_loras, device, vocab_size) -> None:
input_size=(200, ),
input_range=(1, vocab_size),
)
lora_mapping = LoRAMapping(index_mapping, prompt_mapping)
mapping_info = convert_mapping(lora_mapping, id_to_index, max_loras,
lora_mapping = LoRAMapping(index_mapping,
prompt_mapping,
is_prefill=stage)
punica_wrapper.update_metadata(lora_mapping, id_to_index, max_loras,
vocab_size,
lora_config.lora_extra_vocab_size)
lora_embedding.set_mapping(*mapping_info)
lora_result = lora_embedding(torch.cat(inputs))
@ -255,12 +261,12 @@ def test_embeddings(dist_init, num_loras, device, vocab_size) -> None:
input_size=(200, ),
input_range=(1, vocab_size),
)
lora_mapping = LoRAMapping(index_mapping, prompt_mapping)
mapping_info = convert_mapping(lora_mapping, id_to_index, max_loras,
lora_mapping = LoRAMapping(index_mapping,
prompt_mapping,
is_prefill=stage)
punica_wrapper.update_metadata(lora_mapping, id_to_index, max_loras,
vocab_size,
lora_config.lora_extra_vocab_size)
lora_embedding.set_mapping(*mapping_info, )
lora_result = lora_embedding(torch.cat(inputs))
expected_result = embedding(torch.cat(inputs))
@ -278,11 +284,13 @@ def test_embeddings(dist_init, num_loras, device, vocab_size) -> None:
@pytest.mark.parametrize("num_loras", [1, 2, 4, 8])
@pytest.mark.parametrize("device", CUDA_DEVICES)
@pytest.mark.parametrize("vocab_size", [512, 32000, 64000, 128000])
@pytest.mark.parametrize("stage", STAGES)
def test_embeddings_with_new_embeddings(dist_init, num_loras, device,
vocab_size) -> None:
vocab_size, stage) -> None:
torch.set_default_device(device)
max_loras = 8
punica_wrapper = PunicaWrapper(8192, 256, device)
lora_config = LoRAConfig(max_loras=max_loras,
max_lora_rank=8,
lora_dtype=torch.float16)
@ -318,6 +326,7 @@ def test_embeddings_with_new_embeddings(dist_init, num_loras, device,
generate_embeddings_tensor=256,
)
lora_embedding.set_mapping(punica_wrapper)
# All embeddings tensors have the same shape.
embeddings_tensors = [
lora_dict[id].embeddings_tensor for id in sorted(lora_dict.keys())
@ -334,8 +343,12 @@ def test_embeddings_with_new_embeddings(dist_init, num_loras, device,
input_size=(200, ),
input_range=(1, vocab_size),
)
lora_mapping = LoRAMapping(index_mapping, prompt_mapping)
lora_mapping = LoRAMapping(index_mapping,
prompt_mapping,
is_prefill=stage)
punica_wrapper.update_metadata(lora_mapping, id_to_index, max_loras,
vocab_size,
lora_config.lora_extra_vocab_size)
original_inputs = deepcopy(inputs)
# Force some of the inputs to be in the extended embeddings range
@ -349,11 +362,6 @@ def test_embeddings_with_new_embeddings(dist_init, num_loras, device,
(embedding_id + 1) * embeddings_tensor_len - 1)
original_input_[-2] = vocab_size + embeddings_tensor_len - 1
mapping_info = convert_mapping(lora_mapping, id_to_index, max_loras,
vocab_size,
lora_config.lora_extra_vocab_size)
lora_embedding.set_mapping(*mapping_info, )
expanded_embedding.weight[vocab_size:vocab_size +
(embeddings_tensor_len *
max_loras)] = torch.cat(embeddings_tensors)
@ -390,15 +398,13 @@ def test_embeddings_with_new_embeddings(dist_init, num_loras, device,
input_size=(200, ),
input_range=(1, vocab_size),
)
lora_mapping = LoRAMapping(index_mapping, prompt_mapping)
original_inputs = deepcopy(inputs)
mapping_info = convert_mapping(lora_mapping, id_to_index, max_loras,
lora_mapping = LoRAMapping(index_mapping,
prompt_mapping,
is_prefill=stage)
punica_wrapper.update_metadata(lora_mapping, id_to_index, max_loras,
vocab_size,
lora_config.lora_extra_vocab_size)
lora_embedding.set_mapping(*mapping_info, )
lora_result = lora_embedding(torch.cat(original_inputs))
expected_result = expanded_embedding(torch.cat(inputs))
@ -413,11 +419,13 @@ def test_embeddings_with_new_embeddings(dist_init, num_loras, device,
@pytest.mark.parametrize("num_loras", [1, 2, 4, 8])
@pytest.mark.parametrize("device", CUDA_DEVICES)
@pytest.mark.parametrize("vocab_size", [512, 32000, 64000, 128000])
def test_lm_head_logits_processor(dist_init, num_loras, device,
vocab_size) -> None:
@pytest.mark.parametrize("stage", STAGES)
def test_lm_head_logits_processor(dist_init, num_loras, device, vocab_size,
stage) -> None:
torch.set_default_device(device)
max_loras = 8
punica_wrapper = PunicaWrapper(8192, 256, device)
lora_config = LoRAConfig(max_loras=max_loras,
max_lora_rank=8,
lora_dtype=torch.float16)
@ -443,7 +451,7 @@ def test_lm_head_logits_processor(dist_init, num_loras, device,
id_to_index = get_random_id_to_index(num_loras, max_loras)
linear, logits_processor, lora_logits_processor = _pretest()
lora_logits_processor.set_mapping(punica_wrapper)
# NOTE: all the generated loras share the same embeddings tensor.
lora_dict, _ = populate_loras(
id_to_index,
@ -461,17 +469,17 @@ def test_lm_head_logits_processor(dist_init, num_loras, device,
input_range=(0, 1),
input_type=torch.float16,
)
lora_mapping = LoRAMapping(index_mapping, prompt_mapping)
input_ = torch.rand(20, 1024)
mapping_info = convert_mapping(
lora_mapping = LoRAMapping(index_mapping,
prompt_mapping,
is_prefill=stage)
punica_wrapper.update_metadata(
lora_mapping,
id_to_index,
max_loras,
vocab_size,
lora_config.lora_extra_vocab_size,
)
lora_logits_processor.set_mapping(*mapping_info, )
input_ = torch.rand(20, 1024)
lora_result = lora_logits_processor._get_logits(
hidden_states=torch.cat(inputs),
@ -510,12 +518,16 @@ def test_lm_head_logits_processor(dist_init, num_loras, device,
input_range=(0, 1),
input_type=torch.float16,
)
lora_mapping = LoRAMapping(index_mapping, prompt_mapping)
mapping_info = convert_mapping(lora_mapping, id_to_index, max_loras,
vocab_size,
lora_config.lora_extra_vocab_size)
lora_logits_processor.set_mapping(*mapping_info, )
lora_mapping = LoRAMapping(index_mapping,
prompt_mapping,
is_prefill=stage)
punica_wrapper.update_metadata(
lora_mapping,
id_to_index,
max_loras,
vocab_size,
lora_config.lora_extra_vocab_size,
)
lora_result = lora_logits_processor._get_logits(
hidden_states=torch.cat(inputs),
@ -538,10 +550,12 @@ def test_lm_head_logits_processor(dist_init, num_loras, device,
@pytest.mark.parametrize("orientation", ["row", "column"])
@pytest.mark.parametrize("fully_shard", [True, False])
@pytest.mark.parametrize("device", CUDA_DEVICES)
@pytest.mark.parametrize("stage", STAGES)
def test_linear_parallel(dist_init, num_loras, orientation, fully_shard,
device) -> None:
device, stage) -> None:
torch.set_default_device(device)
punica_wrapper = PunicaWrapper(8192, 256, device)
max_loras = 8
lora_config = LoRAConfig(max_loras=max_loras,
max_lora_rank=8,
@ -575,7 +589,7 @@ def test_linear_parallel(dist_init, num_loras, orientation, fully_shard,
id_to_index = get_random_id_to_index(num_loras, max_loras)
linear, lora_linear = create_random_linear_parallel_layer()
lora_linear.set_mapping(punica_wrapper)
lora_dict, _ = populate_loras(
id_to_index,
layer=lora_linear,
@ -589,16 +603,16 @@ def test_linear_parallel(dist_init, num_loras, orientation, fully_shard,
input_range=(0, 1),
input_type=torch.float16,
)
lora_mapping = LoRAMapping(index_mapping, prompt_mapping)
mapping_info = convert_mapping(
lora_mapping = LoRAMapping(index_mapping,
prompt_mapping,
is_prefill=stage)
punica_wrapper.update_metadata(
lora_mapping,
id_to_index,
max_loras,
512,
lora_config.lora_extra_vocab_size,
)
lora_linear.set_mapping(*mapping_info, )
lora_result = lora_linear(torch.cat(inputs))[0]
@ -628,11 +642,12 @@ def test_linear_parallel(dist_init, num_loras, orientation, fully_shard,
input_range=(0, 1),
input_type=torch.float16,
)
lora_mapping = LoRAMapping(index_mapping, prompt_mapping)
lora_mapping = LoRAMapping(index_mapping,
prompt_mapping,
is_prefill=stage)
mapping_info = convert_mapping(lora_mapping, id_to_index, max_loras,
punica_wrapper.update_metadata(lora_mapping, id_to_index, max_loras,
512, lora_config.lora_extra_vocab_size)
lora_linear.set_mapping(*mapping_info, )
lora_result = lora_linear(torch.cat(inputs))[0]
expected_result = linear(torch.cat(inputs))[0]
@ -649,10 +664,12 @@ def test_linear_parallel(dist_init, num_loras, orientation, fully_shard,
@pytest.mark.parametrize("repeats", [1, 2, 3])
@pytest.mark.parametrize("fully_shard", [True, False])
@pytest.mark.parametrize("device", CUDA_DEVICES)
@pytest.mark.parametrize("stage", STAGES)
def test_column_parallel_packed(dist_init, num_loras, repeats, fully_shard,
device) -> None:
device, stage) -> None:
torch.set_default_device(device)
punica_wrapper = PunicaWrapper(8192, 256, device)
max_loras = 8
lora_config = LoRAConfig(max_loras=max_loras,
max_lora_rank=8,
@ -707,7 +724,7 @@ def test_column_parallel_packed(dist_init, num_loras, repeats, fully_shard,
id_to_index = get_random_id_to_index(num_loras, max_loras)
linear, lora_linear = create_column_parallel_packed_layer()
lora_linear.set_mapping(punica_wrapper)
lora_dict, sublora_dict = populate_loras(
id_to_index,
layer=lora_linear,
@ -722,16 +739,17 @@ def test_column_parallel_packed(dist_init, num_loras, repeats, fully_shard,
input_range=(0, 1),
input_type=torch.float16,
)
lora_mapping = LoRAMapping(index_mapping, prompt_mapping)
lora_mapping = LoRAMapping(index_mapping,
prompt_mapping,
is_prefill=stage)
mapping_info = convert_mapping(
punica_wrapper.update_metadata(
lora_mapping,
id_to_index,
max_loras,
512,
lora_config.lora_extra_vocab_size,
)
lora_linear.set_mapping(*mapping_info)
lora_result = lora_linear(torch.cat(inputs))[0]
@ -762,16 +780,18 @@ def test_column_parallel_packed(dist_init, num_loras, repeats, fully_shard,
input_range=(0, 1),
input_type=torch.float16,
)
lora_mapping = LoRAMapping(index_mapping, prompt_mapping)
lora_mapping = LoRAMapping(index_mapping,
prompt_mapping,
is_prefill=stage)
mapping_info = convert_mapping(
punica_wrapper.update_metadata(
lora_mapping,
id_to_index,
max_loras,
512,
lora_config.lora_extra_vocab_size,
)
lora_linear.set_mapping(*mapping_info)
# lora_linear.set_mapping(*mapping_info)
lora_result = lora_linear(torch.cat(inputs))[0]
expected_result = linear(torch.cat(inputs))[0]
@ -803,7 +823,7 @@ def test_rotary_embedding_long_context(dist_init, num_loras, device,
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
torch.set_default_device(device)
punica_wrapper = PunicaWrapper(8192, 256, device)
max_loras = 8
lora_config = LoRAConfig(max_loras=max_loras,
max_lora_rank=8,
@ -825,6 +845,7 @@ def test_rotary_embedding_long_context(dist_init, num_loras, device,
is_neox_style,
)
lora_rope = LinearScalingRotaryEmbeddingWithLora(rope)
lora_rope.set_mapping(punica_wrapper)
lora_rope.create_lora_weights(max_loras, lora_config)
linear_rope = get_rope(head_size, rotary_dim, max_position, base,
is_neox_style, {
@ -840,6 +861,7 @@ def test_rotary_embedding_long_context(dist_init, num_loras, device,
input_range=(0, lora_config.lora_extra_vocab_size),
input_type=torch.float16,
)
lora_mapping = LoRAMapping(index_mapping, prompt_mapping)
long_lora_context = LongContextLoRAContext(list(scaling_factors),
rotary_dim)
@ -854,7 +876,7 @@ def test_rotary_embedding_long_context(dist_init, num_loras, device,
for i in range(len(scaling_factors)):
long_lora_context.offsets_by_lora_id[i] = scaling_factor_to_offset.get(
scaling_factors[i], 0)
mapping_info = convert_mapping(
punica_wrapper.update_metadata(
lora_mapping,
id_to_index,
max_loras,
@ -862,7 +884,7 @@ def test_rotary_embedding_long_context(dist_init, num_loras, device,
lora_config.lora_extra_vocab_size,
long_lora_context=long_lora_context,
)
lora_rope.set_mapping(*mapping_info)
# lora_rope.set_mapping(*mapping_info)
positions = torch.randint(0, max_position, (batch_size, seq_len))
query = torch.randn(batch_size,

View File

@ -1,224 +0,0 @@
import pytest
import torch
from vllm.lora.layers import _apply_lora, _apply_lora_packed_nslice
from .utils import DummyLoRAManager
TENSOR_SIZES = [128, 1024, 2048, 4096, 8192, 11008, 11008 // 2, 11008 // 4]
QKV_TENSOR_SIZES = [
(8192, 1024, 1024),
(8192 // 8, 1024 // 8, 1024 // 8),
(4096, 4096, 4096),
(4096 // 2, 4096 // 2, 4096 // 2),
]
BATCH_SIZES = [8, 32, 256]
RANKS = [8]
DTYPES = [torch.float16]
TOLERANCES = {
torch.float16: (5e-3, 5e-3),
torch.bfloat16: (3e-2, 2e-2),
}
@pytest.mark.parametrize("m", TENSOR_SIZES)
@pytest.mark.parametrize("n", TENSOR_SIZES)
@pytest.mark.parametrize("k", BATCH_SIZES)
@pytest.mark.parametrize("rank", RANKS)
@pytest.mark.parametrize("dtype", DTYPES)
def test_apply_lora(m, n, k, rank, dtype) -> None:
manager = DummyLoRAManager()
module_name = "module"
weight = torch.rand([m, n], device="cuda", dtype=dtype)
manager.init_random_lora(module_name, weight, rank=rank)
lora = manager.get_module_lora(module_name)
input = torch.rand(k, n, device="cuda", dtype=dtype)
expected = input @ lora.lora_a @ lora.lora_b * lora.scaling
lora_a_stack = torch.zeros(8,
1,
lora.lora_a.shape[1],
lora.lora_a.shape[0],
device="cuda",
dtype=dtype)
lora_b_stack = torch.zeros(8,
1,
lora.lora_b.shape[1],
lora.lora_b.shape[0],
device="cuda",
dtype=dtype)
for i in range(lora_a_stack.shape[0]):
lora_a_stack[i][0] = lora.lora_a.T
lora_b_stack[i][0] = (lora.lora_b * lora.scaling).T
output = torch.zeros(k, m, device="cuda", dtype=dtype)
_apply_lora(
input, lora_a_stack, lora_b_stack,
torch.randint(0, lora_a_stack.shape[0], (len(input), ), device="cuda"),
output)
rtol, atol = TOLERANCES[dtype]
assert torch.allclose(expected, output, rtol=rtol, atol=atol)
output[:] = 0
_apply_lora(input, lora_a_stack, lora_b_stack,
torch.full((len(input), ), -1, device="cuda"), output)
assert torch.allclose(torch.zeros_like(output), output)
manager.reset_lora()
@pytest.mark.parametrize("m", TENSOR_SIZES)
@pytest.mark.parametrize("n", TENSOR_SIZES)
@pytest.mark.parametrize("k", BATCH_SIZES)
@pytest.mark.parametrize("rank", RANKS)
@pytest.mark.parametrize("dtype", DTYPES)
def test_apply_lora_packed_2slice(m, n, k, rank, dtype) -> None:
if m % 2 != 0:
pytest.skip("m must be divisible by 2")
if m // 2 not in TENSOR_SIZES:
pytest.skip("m//2 must be in TENSOR_SIZES")
manager = DummyLoRAManager()
module_name = "module"
weight = torch.rand([m // 2, n], device="cuda", dtype=dtype)
manager.init_random_lora(module_name + "1", weight, rank=rank)
lora_1 = manager.get_module_lora(module_name + "1")
manager.init_random_lora(module_name + "2", weight, rank=rank)
lora_2 = manager.get_module_lora(module_name + "2")
input = torch.rand(k, n, device="cuda", dtype=dtype)
expected = torch.cat([
input @ lora_1.lora_a @ lora_1.lora_b * lora_1.scaling,
input @ lora_2.lora_a @ lora_2.lora_b * lora_2.scaling
],
dim=1)
lora_a_stacks = [
torch.zeros(8,
1,
lora_1.lora_a.shape[1],
lora_1.lora_a.shape[0],
device="cuda",
dtype=dtype) for i in range(2)
]
lora_b_stacks = [
torch.zeros(8,
1,
lora_1.lora_b.shape[1],
lora_1.lora_b.shape[0],
device="cuda",
dtype=dtype) for i in range(2)
]
for i in range(lora_a_stacks[0].shape[0]):
lora_a_stacks[0][i][0] = lora_1.lora_a.T
lora_b_stacks[0][i][0] = (lora_1.lora_b * lora_1.scaling).T
lora_a_stacks[1][i][0] = lora_2.lora_a.T
lora_b_stacks[1][i][0] = (lora_2.lora_b * lora_2.scaling).T
output = torch.zeros(k, m, device="cuda", dtype=dtype)
_apply_lora_packed_nslice(
input, lora_a_stacks, lora_b_stacks,
torch.randint(0,
lora_a_stacks[0].shape[0], (len(input), ),
device="cuda"), output, (m // 2, m // 2))
rtol, atol = TOLERANCES[dtype]
assert torch.allclose(expected, output, rtol=rtol, atol=atol)
output[:] = 0
_apply_lora_packed_nslice(input, lora_a_stacks, lora_b_stacks,
torch.full((len(input), ), -1, device="cuda"),
output, (m // 2, m // 2))
assert torch.allclose(torch.zeros_like(output), output)
manager.reset_lora()
@pytest.mark.parametrize("qkv", QKV_TENSOR_SIZES)
@pytest.mark.parametrize("n", TENSOR_SIZES)
@pytest.mark.parametrize("k", BATCH_SIZES)
@pytest.mark.parametrize("rank", RANKS)
@pytest.mark.parametrize("dtype", DTYPES)
def test_apply_lora_packed_3slice(qkv, n, k, rank, dtype) -> None:
manager = DummyLoRAManager()
module_name = "module"
weight_q = torch.empty(qkv[0], n, device="cuda", dtype=dtype)
weight_kv = torch.empty(qkv[1], n, device="cuda", dtype=dtype)
manager.init_random_lora(module_name + "q", weight_q, rank=rank)
lora_q = manager.get_module_lora(module_name + "q")
manager.init_random_lora(module_name + "k", weight_kv, rank=rank)
lora_k = manager.get_module_lora(module_name + "k")
manager.init_random_lora(module_name + "v", weight_kv, rank=rank)
lora_v = manager.get_module_lora(module_name + "v")
input = torch.rand(k, n, device="cuda", dtype=dtype)
expected = torch.cat([
input @ lora_q.lora_a @ lora_q.lora_b * lora_q.scaling,
input @ lora_k.lora_a @ lora_k.lora_b * lora_k.scaling,
input @ lora_v.lora_a @ lora_v.lora_b * lora_v.scaling
],
dim=1)
lora_a_stacks = [
torch.zeros(8,
1,
lora_q.lora_a.shape[1],
lora_q.lora_a.shape[0],
device="cuda",
dtype=dtype)
] + [
torch.zeros(8,
1,
lora_k.lora_a.shape[1],
lora_k.lora_a.shape[0],
device="cuda",
dtype=dtype) for i in range(2)
]
lora_b_stacks = [
torch.zeros(8,
1,
lora_q.lora_b.shape[1],
lora_q.lora_b.shape[0],
device="cuda",
dtype=dtype)
] + [
torch.zeros(8,
1,
lora_k.lora_b.shape[1],
lora_k.lora_b.shape[0],
device="cuda",
dtype=dtype) for i in range(2)
]
for i in range(lora_a_stacks[0].shape[0]):
lora_a_stacks[0][i][0] = lora_q.lora_a.T
lora_b_stacks[0][i][0] = (lora_q.lora_b * lora_q.scaling).T
lora_a_stacks[1][i][0] = lora_k.lora_a.T
lora_b_stacks[1][i][0] = (lora_k.lora_b * lora_k.scaling).T
lora_a_stacks[2][i][0] = lora_v.lora_a.T
lora_b_stacks[2][i][0] = (lora_v.lora_b * lora_v.scaling).T
output = torch.zeros(k, sum(qkv), device="cuda", dtype=dtype)
_apply_lora_packed_nslice(
input, lora_a_stacks, lora_b_stacks,
torch.randint(0,
lora_a_stacks[0].shape[0], (len(input), ),
device="cuda"), output, (qkv[0], qkv[1], qkv[2]))
rtol, atol = TOLERANCES[dtype]
assert torch.allclose(expected, output, rtol=rtol, atol=atol)
output[:] = 0
_apply_lora_packed_nslice(input, lora_a_stacks, lora_b_stacks,
torch.full((len(input), ), -1, device="cuda"),
output, (qkv[0], qkv[1], qkv[2]))
assert torch.allclose(torch.zeros_like(output), output)
manager.reset_lora()

View File

@ -1,258 +0,0 @@
# Based on code from https://github.com/punica-ai/punica
import pytest
import torch
import vllm.lora.punica as punica
def assert_close(a, b):
rtol, atol = {
torch.float16: (5e-3, 5e-3),
torch.bfloat16: (3e-2, 2e-2),
torch.float32: (None, None),
}[a.dtype]
torch.testing.assert_close(a, b, rtol=rtol, atol=atol)
def _lora_ref_impl(
y_final: torch.Tensor,
x: torch.Tensor,
wa_T_all: torch.Tensor,
wb_T_all: torch.Tensor,
indicies: torch.LongTensor,
layer_idx: int,
scale: float,
):
y_stage_1 = torch.empty(
(x.size(0), wa_T_all.size(-2)),
dtype=torch.float32,
device=x.device,
)
bs = x.shape[0]
s = torch.tensor(scale, dtype=torch.float32, device=x.device)
for i, lora_idx in zip(range(bs), indicies.cpu().tolist()):
xi = x[i].unsqueeze(0).to(torch.float32)
wa = wa_T_all[lora_idx, layer_idx].transpose(-1, -2).to(torch.float32)
if wb_T_all is not None:
wb = wb_T_all[lora_idx, layer_idx].transpose(-1,
-2).to(torch.float32)
tmp = xi @ wa
y_stage_1[i] = tmp.squeeze(0)
y_final[i] += ((tmp @ wb).squeeze(0) *
s if wb_T_all is not None else y_stage_1[i])
return y_final, y_stage_1
H1 = H2 = [
128,
256,
512,
896,
1024,
1152,
1216,
1280,
1536,
1664,
2048,
2240,
2304,
2368,
2432,
2560,
2752,
3072,
3328,
3456,
3584,
3712,
4096,
4480,
4608,
4736,
4864,
5120,
5504,
5632,
5888,
6144,
6400,
6848,
6912,
7168,
7424,
8192,
8960,
9216,
9472,
10240,
11008,
11264,
13824,
14336,
14784,
14848,
15360,
18944,
22016,
22528,
24576,
27392,
27648,
29568,
29696,
32000,
32256,
32512,
32768,
33024,
36864,
43264,
49152,
49408,
60544,
60672,
64000,
64256,
102400,
102656,
128000,
128256,
]
H2 = [64] + H2
R = [1, 2, 4]
SEED = [0xabcdabcd987]
CUDA_DEVICES = [
f"cuda:{i}" for i in range(1 if torch.cuda.device_count() == 1 else 2)
]
@pytest.mark.parametrize("dtype_str", ["float16", "bfloat16"])
@pytest.mark.parametrize("h1", H1)
@pytest.mark.parametrize("r", R)
@pytest.mark.parametrize("seed", SEED)
@torch.inference_mode()
def test_lora_a_extra_shapes(dtype_str, h1, r, seed):
torch.manual_seed(seed)
num_loras = 4
num_layers = 1
bs = 32
dtype = getattr(torch, dtype_str)
device = torch.device("cuda")
wa_T_all = torch.randn(num_loras,
num_layers,
r,
h1,
dtype=dtype,
device=device)
indices = torch.randint(num_loras, (bs, ), dtype=torch.long, device=device)
for layer_idx in range(num_layers):
x = torch.randn(bs, h1, dtype=dtype, device=device)
y = torch.randn(bs, r, dtype=dtype, device=device)
y_ref = y.clone()
_lora_ref_impl(
y_ref,
x,
wa_T_all,
None,
indices,
layer_idx,
1.0,
)
y_our = y.clone()
punica.bgmv(y_our, x, wa_T_all, indices, layer_idx, 1.0)
assert_close(y_ref, y_our)
@pytest.mark.parametrize("dtype_str", ["float16", "bfloat16"])
@pytest.mark.parametrize("h1", H1)
@pytest.mark.parametrize("h2", H2)
@pytest.mark.parametrize("seed", SEED)
@pytest.mark.parametrize("device", CUDA_DEVICES)
@torch.inference_mode()
def test_lora_correctness(dtype_str, h1, h2, seed, device):
torch.manual_seed(seed)
num_loras = 4
num_layers = 1
r = 8
bs = 32
scale = 0.123
dtype = getattr(torch, dtype_str)
torch.set_default_device(device)
wa_T_all = torch.randn(num_loras, num_layers, r, h1, dtype=dtype)
wb_T_all = torch.randn(num_loras, num_layers, h2, r, dtype=dtype)
indices = torch.randint(num_loras, (bs, ), dtype=torch.long)
for layer_idx in range(num_layers):
x = torch.randn(bs, h1, dtype=dtype)
y = torch.randn(bs, h2, dtype=dtype)
y_ref = y.clone()
_lora_ref_impl(y_ref, x, wa_T_all, wb_T_all, indices, layer_idx, scale)
y_our = y.clone()
punica.add_lora(y_our, x, wa_T_all, wb_T_all, indices, layer_idx,
scale)
assert_close(y_ref, y_our)
@pytest.mark.parametrize("dtype_str", ["float16", "bfloat16"])
@pytest.mark.parametrize("h1", H1)
@pytest.mark.parametrize("h2", H2)
@pytest.mark.parametrize("seed", SEED)
@pytest.mark.parametrize("device", CUDA_DEVICES)
@torch.inference_mode()
def test_lora_correctness_slice(dtype_str, h1, h2, seed, device):
if h2 % 3 != 0 or h2 // 3 not in H1:
pytest.skip("h2 must be divisible by 3 and in supported shapes")
torch.manual_seed(seed)
num_loras = 4
num_layers = 1
r = 8
bs = 32
scale = 0.123
dtype = getattr(torch, dtype_str)
torch.set_default_device(device)
wa_T_all_0 = torch.randn(num_loras, num_layers, r, h1, dtype=dtype)
wa_T_all_1 = torch.randn(num_loras, num_layers, r, h1, dtype=dtype)
wa_T_all_2 = torch.randn(num_loras, num_layers, r, h1, dtype=dtype)
wb_T_all_0 = torch.randn(num_loras, num_layers, h2 // 3, r, dtype=dtype)
wb_T_all_1 = torch.randn(num_loras, num_layers, h2 // 3, r, dtype=dtype)
wb_T_all_2 = torch.randn(num_loras, num_layers, h2 // 3, r, dtype=dtype)
indices = torch.randint(num_loras, (bs, ), dtype=torch.long)
for layer_idx in range(num_layers):
x = torch.randn(bs, h1, dtype=dtype)
y = torch.randn(bs, h2, dtype=dtype)
s = h2 // 3
y_ref = y.clone()
_lora_ref_impl(y_ref[:, :s], x, wa_T_all_0, wb_T_all_0, indices,
layer_idx, scale)
_lora_ref_impl(y_ref[:, s:s * 2], x, wa_T_all_1, wb_T_all_1, indices,
layer_idx, scale)
_lora_ref_impl(y_ref[:, s * 2:], x, wa_T_all_2, wb_T_all_2, indices,
layer_idx, scale)
y_our = y.clone()
punica.add_lora_slice(y_our, x, wa_T_all_0, wb_T_all_0, indices,
layer_idx, scale, 0, s)
punica.add_lora_slice(y_our, x, wa_T_all_1, wb_T_all_1, indices,
layer_idx, scale, s, s)
punica.add_lora_slice(y_our, x, wa_T_all_2, wb_T_all_2, indices,
layer_idx, scale, s * 2, s)
assert_close(y_ref[:, :s], y_our[:, :s])
assert_close(y_ref[:, s:s * 2], y_our[:, s:s * 2])
assert_close(y_ref[:, s * 2:], y_our[:, s * 2:])

View File

@ -0,0 +1,408 @@
"""
This script is mainly used to tests various hidden_sizes. We have collected the
hidden_sizes included in the LoRA models currently supported by vLLM. It tests
whether the corresponding Triton kernel can run normally when tensor parallelism
is set to [1, 2, 4, 8, 16, 32, 64].
"""
import random
from unittest.mock import patch
import pytest
import torch
from vllm.lora.ops.bgmv_expand import bgmv_expand
from vllm.lora.ops.bgmv_expand_slice import bgmv_expand_slice
from vllm.lora.ops.bgmv_shrink import bgmv_shrink
from vllm.lora.ops.sgmv_expand import sgmv_expand
from vllm.lora.ops.sgmv_expand_slice import sgmv_expand_slice
from vllm.lora.ops.sgmv_shrink import sgmv_shrink
from vllm.triton_utils.libentry import LibEntry
from .utils import (generate_data, generate_data_for_expand_nslices,
ref_torch_groupgemm)
HIDDEN_SIZES = [
128,
256,
512,
896,
1024,
1152,
1216,
1280,
1536,
1664,
2048,
2240,
2304,
2368,
2432,
2560,
2752,
3072,
3328,
3456,
3584,
3712,
4096,
4480,
4608,
4736,
4864,
5120,
5504,
5632,
5888,
6144,
6400,
6848,
6912,
7168,
7424,
8192,
8960,
9216,
9472,
10240,
11008,
11264,
13824,
14336,
14784,
14848,
15360,
18944,
22016,
22528,
24576,
27392,
27648,
29568,
29696,
32000,
32256,
32512,
32768,
33024,
36864,
43264,
49152,
49408,
60544,
60672,
64000,
64256,
102400,
102656,
128000,
128256,
]
#The size of TP
divisibility = [1, 2, 4, 8, 16, 32, 64]
all_hidden_size = []
for div in divisibility:
for hidden_size in HIDDEN_SIZES:
all_hidden_size.append(hidden_size // div)
HIDDEN_SIZES = list(set(all_hidden_size))
BATCHES = [4]
NUM_LORA = [4]
DTYPES = [torch.float16, torch.bfloat16]
MAX_RANKS = [32]
SCALES = [0.5]
SEED = [0]
CUDA_DEVICES = [f"cuda:{0}"]
def assert_close(a, b):
rtol, atol = {
torch.float16: (6e-2, 6e-2),
torch.bfloat16: (6e-2, 6e-2),
torch.float32: (1e-2, 1e-2),
}[a.dtype]
torch.testing.assert_close(a, b, rtol=rtol, atol=atol)
@pytest.mark.parametrize("batches", BATCHES)
@pytest.mark.parametrize("num_loras", NUM_LORA)
@pytest.mark.parametrize("rank", MAX_RANKS)
@pytest.mark.parametrize("hidden_size", HIDDEN_SIZES)
@pytest.mark.parametrize("scaling", SCALES)
@pytest.mark.parametrize("dtype", DTYPES)
@pytest.mark.parametrize("op_type", ["shrink", "expand"])
@pytest.mark.parametrize("seed", SEED)
@pytest.mark.parametrize("device", CUDA_DEVICES)
def test_punica_sgmv(
batches: int,
num_loras: int,
rank: int,
hidden_size: int,
scaling: float,
dtype: torch.dtype,
op_type: str,
seed: int,
device: str,
):
random.seed(seed)
torch.set_default_device(device)
torch.random.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
seq_length = 128
(
inputs_tensor,
lora_weights,
our_out_tensor,
ref_out_tensor,
b_seq_start_loc,
lora_indices_tensor,
seq_len_tensor,
indices,
) = generate_data(
batches,
hidden_size,
num_loras,
rank,
seq_length,
dtype,
op_type,
device,
)
max_seq_length = seq_len_tensor.max()
if isinstance(max_seq_length, tuple):
max_seq_length = max_seq_length[0].item()
else:
max_seq_length = max_seq_length.item()
if op_type == "shrink":
sgmv_shrink(
inputs_tensor,
lora_weights,
our_out_tensor,
b_seq_start_loc,
seq_len_tensor,
lora_indices_tensor,
batches,
max_seq_length,
scaling,
)
else:
sgmv_expand(
inputs_tensor,
lora_weights,
our_out_tensor,
b_seq_start_loc,
seq_len_tensor,
lora_indices_tensor,
batches,
max_seq_length,
add_inputs=True,
)
ref_torch_groupgemm(
ref_out_tensor,
inputs_tensor,
lora_weights,
lora_indices_tensor,
seq_len_tensor,
batches,
scaling if op_type == "shrink" else 1.0,
op_type,
)
if op_type == "shrink":
ref_out_tensor = ref_out_tensor.to(torch.float32)
assert_close(our_out_tensor, ref_out_tensor)
@pytest.mark.parametrize("batches", BATCHES)
@pytest.mark.parametrize("num_loras", NUM_LORA)
@pytest.mark.parametrize("rank", MAX_RANKS)
@pytest.mark.parametrize("hidden_size", HIDDEN_SIZES)
@pytest.mark.parametrize("scaling", SCALES)
@pytest.mark.parametrize("dtype", DTYPES)
@pytest.mark.parametrize("op_type", ["shrink", "expand"])
@pytest.mark.parametrize("seed", SEED)
@pytest.mark.parametrize("device", CUDA_DEVICES)
def test_punica_bgmv(
batches: int,
num_loras: int,
rank: int,
hidden_size: int,
scaling: float,
dtype: torch.dtype,
op_type: str,
seed: int,
device: str,
):
from vllm.lora.ops.bgmv_expand import _bgmv_expand_kernel
from vllm.lora.ops.bgmv_shrink import _bgmv_shrink_kernel
random.seed(seed)
torch.set_default_device(device)
torch.random.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
seq_length = 1
(
inputs_tensor,
lora_weights,
our_out_tensor,
ref_out_tensor,
b_seq_start_loc,
lora_indices_tensor,
seq_len_tensor,
indices,
) = generate_data(
batches,
hidden_size,
num_loras,
rank,
seq_length,
dtype,
op_type,
device,
)
if op_type == "shrink":
# The current _bgmv_shrink_kernel does not require the libentry
# decoration. The purpose of adding this patch is to test the
# correctness of libentry.
with patch(
"vllm.lora.ops.bgmv_shrink._bgmv_shrink_kernel",
LibEntry(_bgmv_shrink_kernel),
):
bgmv_shrink(
inputs_tensor,
lora_weights,
our_out_tensor,
indices,
scaling,
)
else:
# ditto
with patch(
"vllm.lora.ops.bgmv_expand._bgmv_expand_kernel",
LibEntry(_bgmv_expand_kernel),
):
bgmv_expand(
inputs_tensor,
lora_weights,
our_out_tensor,
indices,
add_inputs=True,
)
ref_torch_groupgemm(
ref_out_tensor,
inputs_tensor,
lora_weights,
lora_indices_tensor,
seq_len_tensor,
batches,
scaling if op_type == "shrink" else 1.0,
op_type,
)
if op_type == "shrink":
ref_out_tensor = ref_out_tensor.to(torch.float32)
assert_close(our_out_tensor, ref_out_tensor)
@pytest.mark.parametrize("batches", BATCHES)
@pytest.mark.parametrize("num_loras", NUM_LORA)
@pytest.mark.parametrize("rank", MAX_RANKS)
@pytest.mark.parametrize("hidden_size", HIDDEN_SIZES)
@pytest.mark.parametrize("nslices", [2, 3])
@pytest.mark.parametrize("dtype", DTYPES)
@pytest.mark.parametrize("op_type", ["sgmv", "bgmv"])
@pytest.mark.parametrize("seed", SEED)
@pytest.mark.parametrize("device", CUDA_DEVICES)
def test_punica_expand_nslices(
batches: int,
num_loras: int,
rank: int,
hidden_size: int,
nslices: int,
dtype: torch.dtype,
op_type: str,
seed: int,
device: str,
):
from vllm.lora.ops.bgmv_expand_slice import _bgmv_expand_slice_kernel
random.seed(seed)
torch.set_default_device(device)
torch.random.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
seq_length = 128 if op_type == "sgmv" else 1
(
inputs_tensor,
lora_weights_lst,
our_outputs,
ref_outputs,
b_seq_start_loc,
lora_indices_tensor,
seq_len_tensor,
indices,
) = generate_data_for_expand_nslices(
batches,
hidden_size,
num_loras,
rank,
seq_length,
dtype,
nslices,
device,
)
max_seq_length = seq_len_tensor.max()
if isinstance(max_seq_length, tuple):
max_seq_length = max_seq_length[0].item()
else:
max_seq_length = max_seq_length.item()
slice_offset = 0
for index in range(nslices):
lora_weights = lora_weights_lst[index]
if op_type == "sgmv":
sgmv_expand_slice(
inputs_tensor,
lora_weights,
our_outputs,
b_seq_start_loc,
seq_len_tensor,
lora_indices_tensor,
batches,
max_seq_length,
slice_offset,
hidden_size,
add_inputs=True,
)
else:
# The current _bgmv_expand_slice_kernel does not require the
# libentry decoration. The purpose of adding this patch is to test
# the correctness of libentry.
with patch(
"vllm.lora.ops.bgmv_expand_slice._bgmv_expand_slice_kernel",
LibEntry(_bgmv_expand_slice_kernel),
):
bgmv_expand_slice(
inputs_tensor,
lora_weights,
our_outputs,
indices,
slice_offset,
slice_size=hidden_size,
add_inputs=True,
)
ref_torch_groupgemm(
ref_outputs[:, slice_offset:slice_offset + hidden_size],
inputs_tensor,
lora_weights,
lora_indices_tensor,
seq_len_tensor,
batches,
1.0,
op_type="expand",
)
slice_offset += hidden_size
assert_close(our_outputs, ref_outputs)

View File

@ -0,0 +1,342 @@
"""
This script is mainly used to test whether trtion kernels can run normally
under different conditions, including various batches, numbers of LoRA , and
maximum ranks.
"""
import random
from unittest.mock import patch
import pytest
import torch
from vllm.lora.ops.bgmv_expand import bgmv_expand
from vllm.lora.ops.bgmv_expand_slice import bgmv_expand_slice
from vllm.lora.ops.bgmv_shrink import bgmv_shrink
from vllm.lora.ops.sgmv_expand import sgmv_expand
from vllm.lora.ops.sgmv_expand_slice import sgmv_expand_slice
from vllm.lora.ops.sgmv_shrink import sgmv_shrink
from vllm.triton_utils.libentry import LibEntry
from .utils import (generate_data, generate_data_for_expand_nslices,
ref_torch_groupgemm)
HIDDEN_SIZES = [3424, 4096, 4097]
BATCHES = [1, 4, 16, 32]
NUM_LORA = [1, 4, 8, 16, 32, 64, 128]
DTYPES = [torch.float16, torch.bfloat16]
MAX_RANKS = [1, 4, 8, 16, 32, 64, 128]
SCALES = [0.5]
SEED = [0]
CUDA_DEVICES = [f"cuda:{0}"]
def assert_close(a, b):
rtol, atol = {
torch.float16: (6e-2, 6e-2),
torch.bfloat16: (6e-2, 6e-2),
torch.float32: (1e-2, 1e-2),
}[a.dtype]
torch.testing.assert_close(a, b, rtol=rtol, atol=atol)
@pytest.mark.parametrize("batches", BATCHES)
@pytest.mark.parametrize("num_loras", NUM_LORA)
@pytest.mark.parametrize("rank", MAX_RANKS)
@pytest.mark.parametrize("hidden_size", HIDDEN_SIZES)
@pytest.mark.parametrize("scaling", SCALES)
@pytest.mark.parametrize("dtype", DTYPES)
@pytest.mark.parametrize("op_type", ["shrink", "expand"])
@pytest.mark.parametrize("seed", SEED)
@pytest.mark.parametrize("device", CUDA_DEVICES)
def test_punica_sgmv(
batches: int,
num_loras: int,
rank: int,
hidden_size: int,
scaling: float,
dtype: torch.dtype,
op_type: str,
seed: int,
device: str,
):
random.seed(seed)
torch.set_default_device(device)
torch.random.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
seq_length = 128
(
inputs_tensor,
lora_weights,
our_out_tensor,
ref_out_tensor,
b_seq_start_loc,
lora_indices_tensor,
seq_len_tensor,
indices,
) = generate_data(
batches,
hidden_size,
num_loras,
rank,
seq_length,
dtype,
op_type,
device,
)
max_seq_length = seq_len_tensor.max()
if isinstance(max_seq_length, tuple):
max_seq_length = max_seq_length[0].item()
else:
max_seq_length = max_seq_length.item()
if op_type == "shrink":
sgmv_shrink(
inputs_tensor,
lora_weights,
our_out_tensor,
b_seq_start_loc,
seq_len_tensor,
lora_indices_tensor,
batches,
max_seq_length,
scaling,
)
else:
sgmv_expand(
inputs_tensor,
lora_weights,
our_out_tensor,
b_seq_start_loc,
seq_len_tensor,
lora_indices_tensor,
batches,
max_seq_length,
add_inputs=True,
)
ref_torch_groupgemm(
ref_out_tensor,
inputs_tensor,
lora_weights,
lora_indices_tensor,
seq_len_tensor,
batches,
scaling if op_type == "shrink" else 1.0,
op_type,
)
if op_type == "shrink":
ref_out_tensor = ref_out_tensor.to(torch.float32)
assert_close(our_out_tensor, ref_out_tensor)
@pytest.mark.parametrize("batches", BATCHES)
@pytest.mark.parametrize("num_loras", NUM_LORA)
@pytest.mark.parametrize("rank", MAX_RANKS)
@pytest.mark.parametrize("hidden_size", HIDDEN_SIZES)
@pytest.mark.parametrize("scaling", SCALES)
@pytest.mark.parametrize("dtype", DTYPES)
@pytest.mark.parametrize("op_type", ["shrink", "expand"])
@pytest.mark.parametrize("seed", SEED)
@pytest.mark.parametrize("device", CUDA_DEVICES)
def test_punica_bgmv(
batches: int,
num_loras: int,
rank: int,
hidden_size: int,
scaling: float,
dtype: torch.dtype,
op_type: str,
seed: int,
device: str,
):
from vllm.lora.ops.bgmv_expand import _bgmv_expand_kernel
from vllm.lora.ops.bgmv_shrink import _bgmv_shrink_kernel
random.seed(seed)
torch.set_default_device(device)
torch.random.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
seq_length = 1
(
inputs_tensor,
lora_weights,
our_out_tensor,
ref_out_tensor,
b_seq_start_loc,
lora_indices_tensor,
seq_len_tensor,
indices,
) = generate_data(
batches,
hidden_size,
num_loras,
rank,
seq_length,
dtype,
op_type,
device,
)
if op_type == "shrink":
# The current _bgmv_shrink_kernel does not require the libentry
# decoration. The purpose of adding this patch is to test the
# correctness of libentry.
with patch(
"vllm.lora.ops.bgmv_shrink._bgmv_shrink_kernel",
LibEntry(_bgmv_shrink_kernel),
):
bgmv_shrink(
inputs_tensor,
lora_weights,
our_out_tensor,
indices,
scaling,
)
else:
# ditto
with patch(
"vllm.lora.ops.bgmv_expand._bgmv_expand_kernel",
LibEntry(_bgmv_expand_kernel),
):
bgmv_expand(
inputs_tensor,
lora_weights,
our_out_tensor,
indices,
add_inputs=True,
)
ref_torch_groupgemm(
ref_out_tensor,
inputs_tensor,
lora_weights,
lora_indices_tensor,
seq_len_tensor,
batches,
scaling if op_type == "shrink" else 1.0,
op_type,
)
if op_type == "shrink":
ref_out_tensor = ref_out_tensor.to(torch.float32)
assert_close(our_out_tensor, ref_out_tensor)
@pytest.mark.parametrize("batches", BATCHES)
@pytest.mark.parametrize("num_loras", NUM_LORA)
@pytest.mark.parametrize("rank", MAX_RANKS)
@pytest.mark.parametrize("hidden_size", HIDDEN_SIZES)
@pytest.mark.parametrize("nslices", [2, 3])
@pytest.mark.parametrize("dtype", DTYPES)
@pytest.mark.parametrize("op_type", ["sgmv", "bgmv"])
@pytest.mark.parametrize("seed", SEED)
@pytest.mark.parametrize("device", CUDA_DEVICES)
def test_punica_expand_nslices(
batches: int,
num_loras: int,
rank: int,
hidden_size: int,
nslices: int,
dtype: torch.dtype,
op_type: str,
seed: int,
device: str,
):
from vllm.lora.ops.bgmv_expand_slice import _bgmv_expand_slice_kernel
random.seed(seed)
torch.set_default_device(device)
torch.random.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
seq_length = 128 if op_type == "sgmv" else 1
(
inputs_tensor,
lora_weights_lst,
our_outputs,
ref_outputs,
b_seq_start_loc,
lora_indices_tensor,
seq_len_tensor,
indices,
) = generate_data_for_expand_nslices(
batches,
hidden_size,
num_loras,
rank,
seq_length,
dtype,
nslices,
device,
)
max_seq_length = seq_len_tensor.max()
if isinstance(max_seq_length, tuple):
max_seq_length = max_seq_length[0].item()
else:
max_seq_length = max_seq_length.item()
slice_offset = 0
for index in range(nslices):
lora_weights = lora_weights_lst[index]
if op_type == "sgmv":
sgmv_expand_slice(
inputs_tensor,
lora_weights,
our_outputs,
b_seq_start_loc,
seq_len_tensor,
lora_indices_tensor,
batches,
max_seq_length,
slice_offset,
hidden_size,
add_inputs=True,
)
else:
# The current _bgmv_expand_slice_kernel does not require the
# libentry decoration. The purpose of adding this patch is to test
# the correctness of libentry.
with patch(
"vllm.lora.ops.bgmv_expand_slice._bgmv_expand_slice_kernel",
LibEntry(_bgmv_expand_slice_kernel),
):
bgmv_expand_slice(
inputs_tensor,
lora_weights,
our_outputs,
indices,
slice_offset,
slice_size=hidden_size,
add_inputs=True,
)
ref_torch_groupgemm(
ref_outputs[:, slice_offset:slice_offset + hidden_size],
inputs_tensor,
lora_weights,
lora_indices_tensor,
seq_len_tensor,
batches,
1.0,
op_type="expand",
)
slice_offset += hidden_size
assert_close(our_outputs, ref_outputs)
if __name__ == "__main__":
from itertools import product
lst = list(
product(
BATCHES,
NUM_LORA,
MAX_RANKS,
[1.0],
[torch.float16],
["expand"],
SEED,
CUDA_DEVICES,
))
for ele in lst:
test_punica_bgmv(*ele)
print(f"{ele},pass")

View File

@ -64,14 +64,16 @@ def test_quant_model_lora(tinyllama_lora_files, model, tp_size):
# if torch.cuda.device_count() < tp_size:
# pytest.skip(f"Not enough GPUs for tensor parallelism {tp_size}")
llm = vllm.LLM(model=model.model_path,
enable_lora=True,
max_num_seqs=16,
max_loras=4,
max_model_len=400,
tensor_parallel_size=tp_size,
quantization=model.quantization,
trust_remote_code=True)
llm = vllm.LLM(
model=model.model_path,
enable_lora=True,
max_num_seqs=16,
max_loras=4,
max_model_len=400,
tensor_parallel_size=tp_size,
gpu_memory_utilization=0.2, #avoid OOM
quantization=model.quantization,
trust_remote_code=True)
if model.quantization is None:
expected_no_lora_output = [
@ -156,24 +158,28 @@ def test_quant_model_tp_equality(tinyllama_lora_files, model):
# if torch.cuda.device_count() < 2:
# pytest.skip(f"Not enough GPUs for tensor parallelism {2}")
llm_tp1 = vllm.LLM(model=model.model_path,
enable_lora=True,
max_num_seqs=16,
max_loras=4,
tensor_parallel_size=1,
quantization=model.quantization,
trust_remote_code=True)
llm_tp1 = vllm.LLM(
model=model.model_path,
enable_lora=True,
max_num_seqs=16,
max_loras=4,
tensor_parallel_size=1,
gpu_memory_utilization=0.2, #avoid OOM
quantization=model.quantization,
trust_remote_code=True)
output_tp1 = do_sample(llm_tp1, tinyllama_lora_files, lora_id=1)
del llm_tp1
cleanup()
llm_tp2 = vllm.LLM(model=model.model_path,
enable_lora=True,
max_num_seqs=16,
max_loras=4,
tensor_parallel_size=2,
quantization=model.quantization)
llm_tp2 = vllm.LLM(
model=model.model_path,
enable_lora=True,
max_num_seqs=16,
max_loras=4,
tensor_parallel_size=2,
gpu_memory_utilization=0.2, #avoid OOM
quantization=model.quantization)
output_tp2 = do_sample(llm_tp2, tinyllama_lora_files, lora_id=1)
del llm_tp2

View File

@ -86,3 +86,151 @@ class DummyLoRAManager:
packed_lora = PackedLoRALayerWeights.pack(base_loras)
self.set_module_lora(module_name, packed_lora)
return packed_lora
def assert_close(a, b):
rtol, atol = {
torch.float16: (6e-2, 6e-2),
torch.bfloat16: (6e-2, 6e-2),
torch.float32: (1e-2, 1e-2),
}[a.dtype]
torch.testing.assert_close(a, b, rtol=rtol, atol=atol)
def ref_torch_groupgemm(
out_tensor,
inputs,
lora_weights,
lora_indices_tensor,
seq_len_tensor,
batches,
scaling,
op_type,
) -> torch.Tensor:
out_list = []
current_offset = 0
for lora_index, b_length in zip(range(batches), seq_len_tensor):
input_weight = inputs[current_offset:b_length + current_offset, :]
current_offset += b_length
lora_weight = lora_weights[lora_indices_tensor[lora_index]]
result = torch.nn.functional.linear(input_weight, lora_weight)
result *= scaling
out_list.append(result)
cat_result = torch.cat(out_list, dim=0)
if op_type == "expand":
out_tensor += cat_result
else:
out_tensor.copy_(cat_result)
return
def generate_data(batches, hidden_size, lora_nums, max_rank, seq_length, dtype,
op_type, device):
seq_len_tensor = torch.randint(seq_length, seq_length + 1,
(batches, )).to(device)
b_seq_start_loc = torch.cumsum(
torch.tensor([0] + seq_len_tensor[:-1].tolist(), dtype=torch.long),
dim=0,
).to(device)
total_tokens = seq_len_tensor.sum()
if op_type == "shrink":
inputs_tensor = torch.rand((total_tokens, hidden_size),
dtype=dtype).to(device)
lora_weights = torch.rand(
(lora_nums, max_rank, hidden_size), # col-major
dtype=dtype,
).to(device)
# shrink op need atomic_add, so output is initinized by 0
ref_out_tensor = torch.zeros((total_tokens, max_rank),
dtype=dtype,
device=inputs_tensor.device)
# NOTE shrink kernel using torch.float32 as output type
our_out_tensor = torch.zeros((total_tokens, max_rank),
dtype=torch.float32).to(device)
else:
inputs_tensor = torch.rand(
(total_tokens, max_rank),
dtype=dtype,
).to(device)
lora_weights = torch.rand(
(lora_nums, hidden_size, max_rank), # col-major
dtype=dtype,
).to(device)
# expand op needs to complete y+=a@lora_b, so output is
# initinized randomly
ref_out_tensor = torch.rand(
(total_tokens, hidden_size),
dtype=dtype,
).to(device)
# Ensure the same input.
our_out_tensor = ref_out_tensor.clone()
lora_indices_tensor = torch.randint(0,
lora_nums - 1 if lora_nums > 1 else 1,
(batches, )).to(device)
indices = torch.zeros((total_tokens), dtype=torch.long).to(device)
current_offset = 0
for b_id in range(batches):
lora_index = lora_indices_tensor[b_id]
indices[current_offset:current_offset +
seq_len_tensor[b_id]].copy_(lora_index)
current_offset += seq_len_tensor[b_id].item()
return (
inputs_tensor,
lora_weights,
our_out_tensor,
ref_out_tensor,
b_seq_start_loc,
lora_indices_tensor,
seq_len_tensor,
indices,
)
def generate_data_for_expand_nslices(batches, hidden_size, lora_nums, max_rank,
seq_length, dtype, nslices, device):
seq_len_tensor = torch.randint(seq_length, seq_length + 1,
(batches, )).to(device)
b_seq_start_loc = torch.cumsum(
torch.tensor([0] + seq_len_tensor[:-1].tolist(), dtype=torch.long),
dim=0,
).to(device)
total_tokens = seq_len_tensor.sum()
inputs_tensor = torch.rand(
(total_tokens, max_rank),
dtype=dtype,
).to(device)
lora_weights_lst = []
for _ in range(nslices):
lora_weights_lst.append(
torch.rand(
(lora_nums, hidden_size, max_rank), # col-major
dtype=dtype,
).to(device))
# expand op needs to complete y+=a@lora_b, so output is
# initinized randomly
ref_out_tensor = torch.rand((total_tokens, hidden_size * nslices),
dtype=dtype).to(device)
# Ensure the same input.
our_out_tensor = ref_out_tensor.clone()
lora_indices_tensor = torch.randint(0,
lora_nums - 1 if lora_nums > 1 else 1,
(batches, ))
indices = torch.zeros((total_tokens), dtype=torch.long).to(device)
current_offset = 0
for b_id in range(batches):
lora_index = lora_indices_tensor[b_id]
indices[current_offset:current_offset +
seq_len_tensor[b_id]] = lora_index.item()
current_offset += seq_len_tensor[b_id].item()
lora_indices_tensor = lora_indices_tensor.to(device)
return (
inputs_tensor,
lora_weights_lst,
our_out_tensor,
ref_out_tensor,
b_seq_start_loc,
lora_indices_tensor,
seq_len_tensor,
indices,
)

View File

@ -13,12 +13,9 @@ try:
except ImportError as e:
logger.warning("Failed to import from vllm._C with %r", e)
with contextlib.suppress(ImportError):
import vllm._moe_C
with contextlib.suppress(ImportError):
# ruff: noqa: F401
import vllm._punica_C
import vllm._moe_C
def is_custom_op_supported(op_name: str) -> bool:
@ -519,43 +516,6 @@ def register_graph_buffers(fa: int, handles: List[str],
torch.ops._C_custom_ar.register_graph_buffers(fa, handles, offsets)
# punica
def dispatch_bgmv(
y: torch.Tensor,
x: torch.Tensor,
w_t_all: torch.Tensor,
indicies: torch.Tensor,
layer_idx: int,
scale: float,
) -> None:
torch.ops._punica_C.dispatch_bgmv(y, x, w_t_all, indicies, layer_idx,
scale)
def dispatch_bgmv_low_level(
y: torch.Tensor,
x: torch.Tensor,
w_t_all: torch.Tensor,
indicies: torch.Tensor,
layer_idx: int,
scale: float,
h_in: int,
h_out: int,
y_offset: int,
) -> None:
torch.ops._punica_C.dispatch_bgmv_low_level(
y,
x,
w_t_all,
indicies,
layer_idx,
scale,
h_in,
h_out,
y_offset,
)
# temporary fix for https://github.com/vllm-project/vllm/issues/5456
# TODO: remove this in v0.6.0
names_and_values = globals()

View File

@ -45,7 +45,6 @@ if TYPE_CHECKING:
MAX_JOBS: Optional[str] = None
NVCC_THREADS: Optional[str] = None
VLLM_USE_PRECOMPILED: bool = False
VLLM_INSTALL_PUNICA_KERNELS: bool = False
VLLM_NO_DEPRECATION_WARNING: bool = False
CMAKE_BUILD_TYPE: Optional[str] = None
VERBOSE: bool = False
@ -94,10 +93,6 @@ environment_variables: Dict[str, Callable[[], Any]] = {
"VLLM_USE_PRECOMPILED":
lambda: bool(os.environ.get("VLLM_USE_PRECOMPILED")),
# If set, vllm will install Punica kernels
"VLLM_INSTALL_PUNICA_KERNELS":
lambda: bool(int(os.getenv("VLLM_INSTALL_PUNICA_KERNELS", "0"))),
# CMake build type
# If not set, defaults to "Debug" or "RelWithDebInfo"
# Available options: "Debug", "Release", "RelWithDebInfo"

View File

@ -14,7 +14,6 @@ from vllm.lora.layers import (ColumnParallelLinearWithLoRA,
MergedQKVParallelLinearWithLora,
QKVParallelLinearWithLora,
RowParallelLinearWithLoRA)
from vllm.lora.punica import bgmv, dispatch_bgmv_low_level
if TYPE_CHECKING:
pass
@ -28,7 +27,7 @@ def _fully_sharded_can_replace(can_replace):
def dec(*args, **kwargs):
return (can_replace(*args, **kwargs)
and kwargs['lora_config'].fully_sharded_loras)
and kwargs["lora_config"].fully_sharded_loras)
return dec
@ -59,25 +58,30 @@ class ColumnParallelLinearWithShardedLoRA(ColumnParallelLinearWithLoRA):
x = x.view(-1, x.shape[-1])
output, out_orig_shape = output.view(-1,
output.shape[-1]), output.shape
buffer = torch.zeros((x.shape[0], self.lora_a_stacked.shape[2]),
dtype=torch.float32,
device=x.device)
bgmv(buffer, x, self.lora_a_stacked,
self.indices[:self.indices_len[0]], 0, 1.0)
buffer = torch.zeros(
(x.shape[0], self.lora_a_stacked.shape[2]),
dtype=torch.float32,
device=x.device,
)
self.punica_wrapper.add_shrink(buffer, x, self.lora_a_stacked, 1.0)
buffer = tensor_model_parallel_all_gather(buffer)
bgmv(output, buffer, self.lora_b_stacked,
self.indices[:self.indices_len[0]], 0, 1.0)
self.punica_wrapper.add_expand(output,
buffer,
self.lora_b_stacked,
add_input=True)
# now have column partitioned output
output = output.view(*out_orig_shape)
return output
@classmethod
@_fully_sharded_can_replace
def can_replace_layer(cls, source_layer: nn.Module,
lora_config: LoRAConfig, packed_modules_list: List,
model_config: Optional[PretrainedConfig]) -> bool:
def can_replace_layer(
cls,
source_layer: nn.Module,
lora_config: LoRAConfig,
packed_modules_list: List,
model_config: Optional[PretrainedConfig],
) -> bool:
# specifying kwargs so they can be easily accessed in decorator
return super().can_replace_layer(
source_layer=source_layer,
@ -88,14 +92,14 @@ class ColumnParallelLinearWithShardedLoRA(ColumnParallelLinearWithLoRA):
)
def _mcp_apply(x, bias, layer):
def _mcp_apply(x, bias, layer: QKVParallelLinearWithLora):
"""
MergedColumnParallelLinearWithShardedLoRA and
MergedQKVParallelLinearWithShardedLora share the same
MergedColumnParallelLinearWithShardedLoRA and
MergedQKVParallelLinearWithShardedLora share the same
LoRa weight application method.
The main difference is the step by shard_size for lora_b which can
vary for MergedQKVParallelLinearWithShardedLora but is constant for
vary for MergedQKVParallelLinearWithShardedLora but is constant for
MergedColumnParallelLinearWithShardedLoRA.
"""
# expecting 2 for column parallel and 3 for qkv
@ -104,21 +108,27 @@ def _mcp_apply(x, bias, layer):
x = x.view(-1, x.shape[-1])
output, out_orig_shape = output.view(-1, output.shape[-1]), output.shape
buffers = torch.zeros((n, x.shape[0], layer.lora_a_stacked[0].shape[2]),
dtype=torch.float32,
device=x.device)
buffers = torch.zeros(
(n, x.shape[0], layer.lora_a_stacked[0].shape[2]),
dtype=torch.float32,
device=x.device,
)
for idx in range(n):
bgmv(buffers[idx], x, layer.lora_a_stacked[idx],
layer.indices[:layer.indices_len[0]], 0, 1.0)
layer.punica_wrapper.add_shrink(buffers[idx], x,
layer.lora_a_stacked[idx], 1.0)
buffers = tensor_model_parallel_all_gather(buffers)
left_offset = 0
for idx in range(n):
shard_size = layer.lora_b_stacked[idx].shape[2]
dispatch_bgmv_low_level(output, buffers[idx],
layer.lora_b_stacked[idx],
layer.indices[:layer.indices_len[0]], 0, 1.0,
left_offset, shard_size)
layer.punica_wrapper.add_expand_slice(
output,
buffers[idx],
layer.lora_b_stacked[idx],
left_offset,
shard_size,
add_input=True,
)
left_offset += shard_size
output = output.view(*out_orig_shape)
@ -129,7 +139,7 @@ def _mcp_apply(x, bias, layer):
class MergedColumnParallelLinearWithShardedLoRA(
MergedColumnParallelLinearWithLoRA):
"""
Differs from MergedColumnParallelLinearWithLoRA by slicing the
Differs from MergedColumnParallelLinearWithLoRA by slicing the
LoRA A's also.
Based on S-LoRA, slicing happens along the rank dim.
@ -145,7 +155,8 @@ class MergedColumnParallelLinearWithShardedLoRA(
lora_a = [
lora_a[0][:,
output_start_idx:output_start_idx + output_shard_size],
lora_a[1][:, output_start_idx:output_start_idx + output_shard_size]
lora_a[1][:,
output_start_idx:output_start_idx + output_shard_size],
]
return lora_a
@ -155,9 +166,13 @@ class MergedColumnParallelLinearWithShardedLoRA(
@classmethod
@_fully_sharded_can_replace
def can_replace_layer(cls, source_layer: nn.Module,
lora_config: LoRAConfig, packed_modules_list: List,
model_config: Optional[PretrainedConfig]) -> bool:
def can_replace_layer(
cls,
source_layer: nn.Module,
lora_config: LoRAConfig,
packed_modules_list: List,
model_config: Optional[PretrainedConfig],
) -> bool:
# specifying kwargs so they can be easily accessed in decorator
return super().can_replace_layer(
source_layer=source_layer,
@ -170,7 +185,7 @@ class MergedColumnParallelLinearWithShardedLoRA(
class QKVParallelLinearWithShardedLora(QKVParallelLinearWithLora):
"""
Differs from QKVParallelLinearWithLora by slicing the
Differs from QKVParallelLinearWithLora by slicing the
LoRA A's also.
Based on S-LoRA, slicing happens along the rank dim.
@ -193,14 +208,13 @@ class QKVParallelLinearWithShardedLora(QKVParallelLinearWithLora):
buffer = torch.zeros((x.shape[0], self.lora_a_stacked.shape[2]),
dtype=torch.float32,
device=x.device)
bgmv(buffer, x, self.lora_a_stacked,
self.indices[:self.indices_len[0]], 0, 1.0)
self.punica_wrapper.add_shrink(buffer, x, self.lora_a_stacked, 1.0)
buffer = tensor_model_parallel_all_gather(buffer)
bgmv(output, buffer, self.lora_b_stacked,
self.indices[:self.indices_len[0]], 0, 1.0)
self.punica_wrapper.add_expand(output,
buffer,
self.lora_b_stacked,
add_input=True)
# now have column partitioned output
output = output.view(*out_orig_shape)
return output
@ -237,7 +251,7 @@ class MergedQKVParallelLinearWithShardedLora(MergedQKVParallelLinearWithLora):
lora_a = [
lora_a[0][:, start_idx[0]:start_idx[0] + shard_size[0]],
lora_a[1][:, start_idx[1]:start_idx[1] + shard_size[1]],
lora_a[2][:, start_idx[2]:start_idx[2] + shard_size[2]]
lora_a[2][:, start_idx[2]:start_idx[2] + shard_size[2]],
]
return lora_a
@ -247,9 +261,13 @@ class MergedQKVParallelLinearWithShardedLora(MergedQKVParallelLinearWithLora):
@classmethod
@_fully_sharded_can_replace
def can_replace_layer(cls, source_layer: nn.Module,
lora_config: LoRAConfig, packed_modules_list: List,
model_config: Optional[PretrainedConfig]) -> bool:
def can_replace_layer(
cls,
source_layer: nn.Module,
lora_config: LoRAConfig,
packed_modules_list: List,
model_config: Optional[PretrainedConfig],
) -> bool:
# specifying kwargs so they can be easily accessed in decorator
return super().can_replace_layer(
source_layer=source_layer,
@ -262,11 +280,11 @@ class MergedQKVParallelLinearWithShardedLora(MergedQKVParallelLinearWithLora):
class RowParallelLinearWithShardedLoRA(RowParallelLinearWithLoRA):
"""
Differs from RowParallelLinearWithLoRA by slicing the
Differs from RowParallelLinearWithLoRA by slicing the
LoRA B's also.
Based on S-LoRA, slicing happens along the output dim.
This yields a combined partial sum from the row parallel base
This yields a combined partial sum from the row parallel base
layer and column partitioned output from the LoRA.
"""
@ -283,11 +301,13 @@ class RowParallelLinearWithShardedLoRA(RowParallelLinearWithLoRA):
x = x.view(-1, x.shape[-1])
output, out_orig_shape = output.view(-1,
output.shape[-1]), output.shape
buffer = torch.zeros((x.shape[0], self.lora_a_stacked.shape[2]),
dtype=torch.float32,
device=x.device)
bgmv(buffer, x, self.lora_a_stacked,
self.indices[:self.indices_len[0]], 0, 1.0)
buffer = torch.zeros(
(x.shape[0], self.lora_a_stacked.shape[2]),
dtype=torch.float32,
device=x.device,
)
self.punica_wrapper.add_shrink(buffer, x, self.lora_a_stacked, 1.0)
buffer = tensor_model_parallel_all_reduce(buffer)
# following S-LoRA, allows the fusing of all_gather and all_reduce
@ -298,18 +318,21 @@ class RowParallelLinearWithShardedLoRA(RowParallelLinearWithLoRA):
# reduced before being used
shard_size = self.lora_b_stacked.shape[2]
start_idx = self.tp_rank * shard_size
dispatch_bgmv_low_level(output, buffer, self.lora_b_stacked,
self.indices[:self.indices_len[0]], 0, 1.0,
start_idx, shard_size)
self.punica_wrapper.add_expand_slice(output, buffer,
self.lora_b_stacked, start_idx,
shard_size)
output = output.view(*out_orig_shape)
return output
@classmethod
@_fully_sharded_can_replace
def can_replace_layer(cls, source_layer: nn.Module,
lora_config: LoRAConfig, packed_modules_list: List,
model_config: Optional[PretrainedConfig]) -> bool:
def can_replace_layer(
cls,
source_layer: nn.Module,
lora_config: LoRAConfig,
packed_modules_list: List,
model_config: Optional[PretrainedConfig],
) -> bool:
# specifying kwargs so they can be easily accessed in decorator
return super().can_replace_layer(
source_layer=source_layer,

View File

@ -17,7 +17,7 @@ from vllm.distributed import (get_tensor_model_parallel_rank,
tensor_model_parallel_all_reduce,
tensor_model_parallel_gather)
from vllm.distributed.utils import divide
from vllm.lora.punica import add_lora, add_lora_slice, bgmv
from vllm.lora.punica import PunicaWrapper
from vllm.model_executor.layers.linear import (ColumnParallelLinear,
MergedColumnParallelLinear,
QKVParallelLinear,
@ -55,88 +55,17 @@ def _not_fully_sharded_can_replace(can_replace):
"""
def dec(*args, **kwargs):
decorate = kwargs.pop('decorate') if 'decorate' in kwargs else True
condition = (not kwargs['lora_config'].fully_sharded_loras
decorate = kwargs.pop("decorate") if "decorate" in kwargs else True
condition = (not kwargs["lora_config"].fully_sharded_loras
if decorate else True)
return can_replace(*args, **kwargs) and condition
return dec
def _apply_lora(
x: torch.Tensor,
lora_a_stacked: torch.Tensor,
lora_b_stacked: torch.Tensor,
indices: torch.Tensor,
output: torch.Tensor,
):
"""Applies lora to each input.
This method applies all loras to each input. It uses the
indices vector to determine which lora yields the
correct output. An index of -1 means no lora should be
applied. This method adds the final lora results to the
output.
Input shapes:
x: (batch_size, hidden_dim)
lora_a_stacked: (num_loras, lora_rank, hidden_dim)
lora_b_stacked: (num_loras, output_dim, lora_rank)
indices: (batch_size)
output: (batch_size, output_dim)
"""
org_output = output
x = x.view(-1, x.shape[-1])
output = output.view(-1, output.shape[-1])
indices = indices.view(-1)
add_lora(output, x, lora_a_stacked, lora_b_stacked, indices, 0, 1.0)
return output.view_as(org_output)
def _apply_lora_packed_nslice(
x: torch.Tensor,
lora_a_stacked: Tuple[torch.Tensor, torch.Tensor, torch.Tensor],
lora_b_stacked: Tuple[torch.Tensor, torch.Tensor, torch.Tensor],
indices: torch.Tensor,
output: torch.Tensor,
output_slices: Tuple[int, ...],
):
"""Applies lora to each input.
This method applies all loras to each input. It uses the
indices vector to determine which lora yields the
correct output. An index of -1 means no lora should be
applied. This method adds the final lora results to the
output.
This method is used for layers that are composed of multiple sublayers
(slices) packed together.
Input shapes:
x: (batch_size, hidden_dim)
lora_a_stacked: 3 element tuple of (num_loras, lora_rank, hidden_dim)
lora_b_stacked: 3 element tuple of (num_loras, output_dim, lora_rank)
indices: (batch_size)
output: (batch_size, q_slice_size + 2*kv_slice_size)
output_slices: n-1 element tuple of (slice_size...),
where n is number of slices
"""
org_output = output
x = x.view(-1, x.shape[-1])
output = output.view(-1, output.shape[-1])
indices = indices.view(-1)
offset_left = 0
for slice_idx in range(len(output_slices)):
add_lora_slice(output, x, lora_a_stacked[slice_idx],
lora_b_stacked[slice_idx], indices, 0, 1.0, offset_left,
output_slices[slice_idx])
offset_left += output_slices[slice_idx]
return output.view_as(org_output)
@dataclass
class LoRAMapping(AdapterMapping):
pass
is_prefill: bool = False
class BaseLayerWithLoRA(nn.Module):
@ -154,10 +83,11 @@ class BaseLayerWithLoRA(nn.Module):
...
def create_lora_weights(
self,
max_loras: int,
lora_config: LoRAConfig,
model_config: Optional[PretrainedConfig] = None) -> None:
self,
max_loras: int,
lora_config: LoRAConfig,
model_config: Optional[PretrainedConfig] = None,
) -> None:
"""Initializes lora matrices."""
...
@ -177,20 +107,18 @@ class BaseLayerWithLoRA(nn.Module):
def set_mapping(
self,
base_indices: torch.Tensor,
sampler_indices: torch.Tensor,
sampler_indices_padded: torch.Tensor,
embeddings_indices: torch.Tensor,
long_lora_indices: torch.Tensor,
indices_len: List[int],
punica_wrapper: PunicaWrapper,
):
"""Sets the mapping indices."""
...
self.punica_wrapper: PunicaWrapper = punica_wrapper
@classmethod
def can_replace_layer(cls, source_layer: nn.Module,
lora_config: LoRAConfig, packed_modules_list: List,
model_config: Optional[PretrainedConfig]) -> bool:
def can_replace_layer(
cls,
source_layer: nn.Module,
lora_config: LoRAConfig,
packed_modules_list: List,
model_config: Optional[PretrainedConfig],
) -> bool:
"""Returns True if the layer can be replaced by this LoRA layer."""
raise NotImplementedError
@ -259,10 +187,6 @@ class VocabParallelEmbeddingWithLoRA(BaseLayerWithLoRA):
self.lora_a_stacked.shape[0] * self.lora_a_stacked.shape[1],
self.lora_a_stacked.shape[2],
)
# Lazily initialized.
self.indices: torch.Tensor
self.indices_len: List[int]
self.embeddings_indices: torch.Tensor
def reset_lora(self, index: int):
self.lora_a_stacked[index] = 0
@ -285,40 +209,27 @@ class VocabParallelEmbeddingWithLoRA(BaseLayerWithLoRA):
if embeddings_tensor is not None:
self.embeddings_tensors[
index, :embeddings_tensor.shape[0], :embeddings_tensor.
shape[1]].copy_(embeddings_tensor, non_blocking=True)
shape[1], ].copy_(embeddings_tensor, non_blocking=True)
if self.embeddings_slice is not None:
# TODO(yard1): Optimize this copy, we don't need to copy
# everything, just the modified part
embeddings = self.embeddings_tensors.view(
self.embeddings_tensors.shape[0] *
self.embeddings_tensors.shape[1],
self.embeddings_tensors.shape[2]
self.embeddings_tensors.shape[2],
)[self.embeddings_slice[0]:self.embeddings_slice[1]]
assert self.embeddings_weights is not None
self.embeddings_weights[:embeddings.shape[0]].copy_(embeddings)
def set_mapping(
self,
base_indices: torch.Tensor,
sampler_indices: torch.Tensor,
sampler_indices_padded: torch.Tensor,
embeddings_indices: torch.Tensor,
long_lora_indices: torch.Tensor,
indices_len: List[int],
):
self.indices = base_indices
self.embeddings_indices = embeddings_indices
self.indices_len = indices_len
def forward(self, x: torch.Tensor) -> torch.Tensor:
added_tokens_mask = x > self.base_layer.org_vocab_size - 1
embedding_len = self.indices_len[3]
indices = self.embeddings_indices[1][:embedding_len].view_as(x)
embeddings_indices = self.punica_wrapper.embeddings_indices
indices = embeddings_indices[1].view_as(x)
full_lora_a_embeddings = F.embedding(
x + indices,
self.lora_a_stacked_2d,
)
indices = self.embeddings_indices[0][:embedding_len].view_as(x)
indices = embeddings_indices[0].view_as(x)
full_output = self.base_layer.forward(
x.add_(indices * added_tokens_mask))
@ -329,22 +240,32 @@ class VocabParallelEmbeddingWithLoRA(BaseLayerWithLoRA):
if full_lora_a_embeddings.ndim == 3:
full_lora_a_embeddings = full_lora_a_embeddings.view(
full_lora_a_embeddings.shape[0] *
full_lora_a_embeddings.shape[1], -1)
bgmv(full_output, full_lora_a_embeddings, self.lora_b_stacked,
self.indices[:self.indices_len[0]], 0, 1.0)
full_lora_a_embeddings.shape[1],
-1,
)
# Embedding layer only need expand op
self.punica_wrapper.add_expand(full_output,
full_lora_a_embeddings,
self.lora_b_stacked,
add_input=True)
return full_output.view_as(full_output_org)
@classmethod
def can_replace_layer(cls, source_layer: nn.Module,
lora_config: LoRAConfig, packed_modules_list: List,
model_config: Optional[PretrainedConfig]) -> bool:
def can_replace_layer(
cls,
source_layer: nn.Module,
lora_config: LoRAConfig,
packed_modules_list: List,
model_config: Optional[PretrainedConfig],
) -> bool:
return type(source_layer) is VocabParallelEmbedding
class ColumnParallelLinearWithLoRA(BaseLayerWithLoRA):
"""
LoRA on top of ColumnParallelLinear layer.
LoRA B is sliced for tensor parallelism.
"""
@ -357,10 +278,11 @@ class ColumnParallelLinearWithLoRA(BaseLayerWithLoRA):
self.device = _get_lora_device(self.base_layer)
def create_lora_weights(
self,
max_loras: int,
lora_config: LoRAConfig,
model_config: Optional[PretrainedConfig] = None) -> None:
self,
max_loras: int,
lora_config: LoRAConfig,
model_config: Optional[PretrainedConfig] = None,
) -> None:
self.lora_config = lora_config
self.tp_size = get_tensor_model_parallel_world_size()
lora_a_output_size_per_partition = (
@ -384,10 +306,6 @@ class ColumnParallelLinearWithLoRA(BaseLayerWithLoRA):
)
self.output_dim = self.lora_b_stacked.shape[2]
# lazily initialized.
self.indices: torch.Tensor
self.indices_len: List[int]
def reset_lora(self, index: int):
self.lora_a_stacked[index] = 0
self.lora_b_stacked[index] = 0
@ -423,28 +341,11 @@ class ColumnParallelLinearWithLoRA(BaseLayerWithLoRA):
0, :lora_b.shape[1], :lora_b.shape[0]].copy_(
lora_b.T, non_blocking=True)
def set_mapping(
self,
base_indices: torch.Tensor,
sampler_indices: torch.Tensor,
sampler_indices_padded: torch.Tensor,
embeddings_indices: torch.Tensor,
long_lora_indices: torch.Tensor,
indices_len: List[int],
):
self.indices = base_indices
self.indices_len = indices_len
def apply(self, x: torch.Tensor,
bias: Optional[torch.Tensor]) -> torch.Tensor:
output = self.base_layer.quant_method.apply(self.base_layer, x, bias)
_apply_lora(
x,
self.lora_a_stacked,
self.lora_b_stacked,
self.indices[:self.indices_len[0]],
output,
)
self.punica_wrapper.add_lora(output, x, self.lora_a_stacked,
self.lora_b_stacked, 1.0)
return output
def forward(self, input_):
@ -473,9 +374,13 @@ class ColumnParallelLinearWithLoRA(BaseLayerWithLoRA):
@classmethod
@_not_fully_sharded_can_replace
def can_replace_layer(cls, source_layer: nn.Module,
lora_config: LoRAConfig, packed_modules_list: List,
model_config: Optional[PretrainedConfig]) -> bool:
def can_replace_layer(
cls,
source_layer: nn.Module,
lora_config: LoRAConfig,
packed_modules_list: List,
model_config: Optional[PretrainedConfig],
) -> bool:
return type(source_layer) is ColumnParallelLinear or (
type(source_layer) is MergedColumnParallelLinear
and len(packed_modules_list) == 1)
@ -494,10 +399,11 @@ class MergedColumnParallelLinearWithLoRA(ColumnParallelLinearWithLoRA):
super().__init__(base_layer)
def create_lora_weights(
self,
max_loras: int,
lora_config: LoRAConfig,
model_config: Optional[PretrainedConfig] = None) -> None:
self,
max_loras: int,
lora_config: LoRAConfig,
model_config: Optional[PretrainedConfig] = None,
) -> None:
self.lora_config = lora_config
n_slices = 2
if not (len(self.base_layer.output_sizes) == n_slices
@ -533,8 +439,6 @@ class MergedColumnParallelLinearWithLoRA(ColumnParallelLinearWithLoRA):
) for _ in range(n_slices))
self.output_dim = self.lora_b_stacked[0].shape[2]
# Lazily initialized.
self.indices: torch.Tensor
def reset_lora(self, index: int):
self.lora_a_stacked[0][index] = 0
@ -556,7 +460,8 @@ class MergedColumnParallelLinearWithLoRA(ColumnParallelLinearWithLoRA):
start_idx = self.tp_rank * shard_size
end_idx = (self.tp_rank + 1) * shard_size
lora_b = [
lora_b[0][:, start_idx:end_idx], lora_b[1][:, start_idx:end_idx]
lora_b[0][:, start_idx:end_idx],
lora_b[1][:, start_idx:end_idx],
]
return lora_b
@ -591,34 +496,33 @@ class MergedColumnParallelLinearWithLoRA(ColumnParallelLinearWithLoRA):
def apply(self, x: torch.Tensor,
bias: Optional[torch.Tensor]) -> torch.Tensor:
output = self.base_layer.quant_method.apply(self.base_layer, x, bias)
_apply_lora_packed_nslice(
x,
self.lora_a_stacked,
self.lora_b_stacked,
self.indices[:self.indices_len[0]],
output,
(self.output_dim, self.output_dim),
)
self.punica_wrapper.add_lora_packed_nslice(
output, x, self.lora_a_stacked, self.lora_b_stacked, 1.0,
(self.output_dim, self.output_dim))
return output
@classmethod
@_not_fully_sharded_can_replace
def can_replace_layer(cls, source_layer: nn.Module,
lora_config: LoRAConfig, packed_modules_list: List,
model_config: Optional[PretrainedConfig]) -> bool:
return type(source_layer) is MergedColumnParallelLinear and len(
packed_modules_list) == 2
def can_replace_layer(
cls,
source_layer: nn.Module,
lora_config: LoRAConfig,
packed_modules_list: List,
model_config: Optional[PretrainedConfig],
) -> bool:
return (type(source_layer) is MergedColumnParallelLinear
and len(packed_modules_list) == 2)
class QKVParallelLinearWithLora(ColumnParallelLinearWithLoRA):
"""
ColumnParallelLinear layer that is specifically designed for
qkv_proj. Certain models, such as chtglm3 and baichuan-7b,
only contains a single LoRA within their qkv_proj layer.
ColumnParallelLinear layer that is specifically designed for
qkv_proj. Certain models, such as chtglm3 and baichuan-7b,
only contains a single LoRA within their qkv_proj layer.
During inference with Tensor Parallel, the weights of lora_b
During inference with Tensor Parallel, the weights of lora_b
must be accurately partitioned according to the respective ranks.
Q slice may have different shape than K and V slices (which both have
the same shape).
"""
@ -696,10 +600,11 @@ class MergedQKVParallelLinearWithLora(ColumnParallelLinearWithLoRA):
super().__init__(base_layer)
def create_lora_weights(
self,
max_loras: int,
lora_config: LoRAConfig,
model_config: Optional[PretrainedConfig] = None) -> None:
self,
max_loras: int,
lora_config: LoRAConfig,
model_config: Optional[PretrainedConfig] = None,
) -> None:
self.lora_config = lora_config
self.tp_size = get_tensor_model_parallel_world_size()
self.tp_rank = get_tensor_model_parallel_rank()
@ -767,11 +672,15 @@ class MergedQKVParallelLinearWithLora(ColumnParallelLinearWithLoRA):
),
)
self.output_slices = (self.q_proj_shard_size, self.kv_proj_shard_size,
self.kv_proj_shard_size)
self.output_slices = (
self.q_proj_shard_size,
self.kv_proj_shard_size,
self.kv_proj_shard_size,
)
self.packed_indices: Optional[torch.Tensor] = None
self.standard_indices: Optional[torch.Tensor] = None
# lazily initialized.
self.indices: torch.Tensor
self.indices_len: List[int]
def reset_lora(self, index: int):
@ -794,15 +703,15 @@ class MergedQKVParallelLinearWithLora(ColumnParallelLinearWithLoRA):
if lora_b[0] is not None:
lora_b_q = lora_b[0][:, self.q_proj_shard_size *
self.q_shard_id:self.q_proj_shard_size *
(self.q_shard_id + 1)]
(self.q_shard_id + 1), ]
if lora_b[1] is not None:
lora_b_k = lora_b[1][:, self.kv_proj_shard_size *
self.kv_shard_id:self.kv_proj_shard_size *
(self.kv_shard_id + 1)]
(self.kv_shard_id + 1), ]
if lora_b[2] is not None:
lora_b_v = lora_b[2][:, self.kv_proj_shard_size *
self.kv_shard_id:self.kv_proj_shard_size *
(self.kv_shard_id + 1)]
(self.kv_shard_id + 1), ]
lora_b = [lora_b_q, lora_b_k, lora_b_v]
return lora_b
@ -851,23 +760,23 @@ class MergedQKVParallelLinearWithLora(ColumnParallelLinearWithLoRA):
def apply(self, x: torch.Tensor,
bias: Optional[torch.Tensor]) -> torch.Tensor:
output = self.base_layer.quant_method.apply(self.base_layer, x, bias)
_apply_lora_packed_nslice(
x,
self.lora_a_stacked,
self.lora_b_stacked,
self.indices[:self.indices_len[0]],
output,
self.output_slices,
)
self.punica_wrapper.add_lora_packed_nslice(output, x,
self.lora_a_stacked,
self.lora_b_stacked, 1.0,
self.output_slices)
return output
@classmethod
@_not_fully_sharded_can_replace
def can_replace_layer(cls, source_layer: nn.Module,
lora_config: LoRAConfig, packed_modules_list: List,
model_config: Optional[PretrainedConfig]) -> bool:
return type(source_layer) is QKVParallelLinear and len(
packed_modules_list) == 3
def can_replace_layer(
cls,
source_layer: nn.Module,
lora_config: LoRAConfig,
packed_modules_list: List,
model_config: Optional[PretrainedConfig],
) -> bool:
return (type(source_layer) is QKVParallelLinear
and len(packed_modules_list) == 3)
class RowParallelLinearWithLoRA(BaseLayerWithLoRA):
@ -880,10 +789,11 @@ class RowParallelLinearWithLoRA(BaseLayerWithLoRA):
self.device = _get_lora_device(self.base_layer)
def create_lora_weights(
self,
max_loras: int,
lora_config: LoRAConfig,
model_config: Optional[PretrainedConfig] = None) -> None:
self,
max_loras: int,
lora_config: LoRAConfig,
model_config: Optional[PretrainedConfig] = None,
) -> None:
self.lora_config = lora_config
self.tp_rank = get_tensor_model_parallel_rank()
self.lora_a_stacked = torch.zeros(
@ -911,9 +821,6 @@ class RowParallelLinearWithLoRA(BaseLayerWithLoRA):
dtype=lora_config.lora_dtype,
device=self.device,
)
# Lazily initialized
self.indices: torch.Tensor
self.indices_len: List[int]
def reset_lora(self, index: int):
self.lora_a_stacked[index] = 0
@ -950,27 +857,10 @@ class RowParallelLinearWithLoRA(BaseLayerWithLoRA):
0, :lora_b.shape[1], :lora_b.shape[0]].copy_(
lora_b.T, non_blocking=True)
def set_mapping(
self,
base_indices: torch.Tensor,
sampler_indices: torch.Tensor,
sampler_indices_padded: torch.Tensor,
embeddings_indices: torch.Tensor,
long_lora_indices: torch.Tensor,
indices_len: List[int],
):
self.indices = base_indices
self.indices_len = indices_len
def apply(self, x: torch.Tensor) -> torch.Tensor:
output = self.base_layer.quant_method.apply(self.base_layer, x)
_apply_lora(
x,
self.lora_a_stacked,
self.lora_b_stacked,
self.indices[:self.indices_len[0]],
output,
)
self.punica_wrapper.add_lora(output, x, self.lora_a_stacked,
self.lora_b_stacked, 1.0)
return output
def forward(self, input_):
@ -1013,14 +903,18 @@ class RowParallelLinearWithLoRA(BaseLayerWithLoRA):
@property
def weight(self):
return self.base_layer.weight if hasattr(
self.base_layer, "weight") else self.base_layer.qweight
return (self.base_layer.weight if hasattr(self.base_layer, "weight")
else self.base_layer.qweight)
@classmethod
@_not_fully_sharded_can_replace
def can_replace_layer(cls, source_layer: nn.Module,
lora_config: LoRAConfig, packed_modules_list: List,
model_config: Optional[PretrainedConfig]) -> bool:
def can_replace_layer(
cls,
source_layer: nn.Module,
lora_config: LoRAConfig,
packed_modules_list: List,
model_config: Optional[PretrainedConfig],
) -> bool:
return type(source_layer) is RowParallelLinear
@ -1125,10 +1019,6 @@ class LogitsProcessorWithLoRA(BaseLayerWithLoRA):
dtype=torch.long)
else:
self.sharded_to_full_mapping_gpu = None
# Lazily initialized.
self.indices: torch.Tensor
self.indices_len: List[int]
self.indices_padded: torch.Tensor
def reset_lora(self, index: int):
self.lora_a_stacked[index] = 0
@ -1154,19 +1044,6 @@ class LogitsProcessorWithLoRA(BaseLayerWithLoRA):
index, :embeddings_tensor.shape[0], :embeddings_tensor.
shape[1], ] = embeddings_tensor
def set_mapping(
self,
base_indices: torch.Tensor,
sampler_indices: torch.Tensor,
sampler_indices_padded: torch.Tensor,
embeddings_indices: torch.Tensor,
long_lora_indices: torch.Tensor,
indices_len: List[int],
):
self.indices = sampler_indices
self.indices_padded = sampler_indices_padded
self.indices_len = indices_len
def _get_logits(
self,
hidden_states: torch.Tensor,
@ -1212,38 +1089,37 @@ class LogitsProcessorWithLoRA(BaseLayerWithLoRA):
out=lora_logits[:-1])
lora_logits[-1] = float("-inf")
lora_logits = lora_logits.mT
indices_padded = self.punica_wrapper.sampler_indices_padded
lora_logits = (lora_logits.reshape(
lora_logits.shape[0] * lora_logits.shape[1],
lora_logits.shape[2],
).index_select(0,
self.indices_padded[:self.indices_len[2]]).nan_to_num_(
nan=float("-inf"),
posinf=float("inf"),
neginf=float("-inf")))
).index_select(0, indices_padded).nan_to_num_(nan=float("-inf"),
posinf=float("inf"),
neginf=float("-inf")))
logits[:,
self.base_layer.org_vocab_size:self.base_layer.org_vocab_size +
lora_logits.shape[1]] = lora_logits
lora_logits.shape[1], ] = lora_logits
_apply_lora(
hidden_states,
self.lora_a_stacked,
self.lora_b_stacked,
self.indices[:self.indices_len[1]],
logits,
)
# LogitsProcessorWithLoRA always using bgmv
self.punica_wrapper.add_lora_logits(logits, hidden_states,
self.lora_a_stacked,
self.lora_b_stacked, 1.0)
# Remove paddings in vocab (if any).
logits = logits[:, :self.base_layer.vocab_size]
return logits
def forward(self, *args, **kwargs):
return type(self.base_layer).forward(self, *args, **kwargs)
@classmethod
def can_replace_layer(cls, source_layer: nn.Module,
lora_config: LoRAConfig, packed_modules_list: List,
model_config: Optional[PretrainedConfig]) -> bool:
def can_replace_layer(
cls,
source_layer: nn.Module,
lora_config: LoRAConfig,
packed_modules_list: List,
model_config: Optional[PretrainedConfig],
) -> bool:
# Special handling for the LogitsProcessor.
return False
@ -1259,9 +1135,6 @@ class LinearScalingRotaryEmbeddingWithLora(BaseLayerWithLoRA):
def __init__(self, base_layer: RotaryEmbedding) -> None:
super().__init__()
self.base_layer = base_layer
# Lazily initialized
self.long_lora_indices: torch.Tensor
self.indices_len: List[int]
@property
def scaling_factors(self):
@ -1277,9 +1150,8 @@ class LinearScalingRotaryEmbeddingWithLora(BaseLayerWithLoRA):
lora_config: LoRAConfig,
model_config: Optional[PretrainedConfig] = None,
) -> None:
scaling_factors = list(
lora_config.long_lora_scaling_factors
) if lora_config.long_lora_scaling_factors else []
scaling_factors = (list(lora_config.long_lora_scaling_factors)
if lora_config.long_lora_scaling_factors else [])
base_scaling_factor = (self.base_layer.scaling_factor if isinstance(
self.base_layer, LinearScalingRotaryEmbedding) else 1.0)
scaling_factors = sorted(
@ -1306,18 +1178,6 @@ class LinearScalingRotaryEmbeddingWithLora(BaseLayerWithLoRA):
):
...
def set_mapping(
self,
base_indices: torch.Tensor,
sampler_indices: torch.Tensor,
sampler_indices_padded: torch.Tensor,
embeddings_indices: torch.Tensor,
long_lora_indices: torch.Tensor,
indices_len: List[int],
):
self.long_lora_indices = long_lora_indices
self.indices_len = indices_len
def forward(
self,
positions: torch.Tensor,
@ -1328,19 +1188,24 @@ class LinearScalingRotaryEmbeddingWithLora(BaseLayerWithLoRA):
positions,
query,
key,
offsets=self.long_lora_indices[:self.indices_len[4]])
offsets=self.punica_wrapper.long_lora_indices,
)
@property
def scaling_factor_to_offset(self) -> Dict[float, int]:
return self.base_layer.scaling_factor_to_offset
@classmethod
def can_replace_layer(cls, source_layer: nn.Module,
lora_config: LoRAConfig, packed_modules_list: List,
model_config: Optional[PretrainedConfig]) -> bool:
def can_replace_layer(
cls,
source_layer: nn.Module,
lora_config: LoRAConfig,
packed_modules_list: List,
model_config: Optional[PretrainedConfig],
) -> bool:
"""Returns True if the layer can be replaced by this LoRA layer."""
return type(source_layer) is LinearScalingRotaryEmbedding or type(
source_layer) is RotaryEmbedding
return (type(source_layer) is LinearScalingRotaryEmbedding
or type(source_layer) is RotaryEmbedding)
def extra_repr(self) -> str:
return self.base_layer.extra_repr()

View File

@ -4,7 +4,7 @@ import math
import os
import re
from dataclasses import dataclass, field
from typing import Any, Callable, Dict, List, Optional, Tuple, Type, Union
from typing import Any, Callable, Dict, List, Optional, Type
import safetensors.torch
import torch
@ -21,6 +21,7 @@ from vllm.lora.layers import (BaseLayerWithLoRA,
LinearScalingRotaryEmbeddingWithLora,
LoRAMapping)
from vllm.lora.lora import LoRALayerWeights, PackedLoRALayerWeights
from vllm.lora.punica import PunicaWrapper
from vllm.lora.utils import (from_layer, from_layer_logits_processor,
parse_fine_tuned_lora_name, replace_submodule)
from vllm.model_executor.models.interfaces import SupportsLoRA
@ -43,115 +44,6 @@ class LongContextLoRAContext:
offsets_by_lora_id: Dict[int, int] = field(default_factory=dict)
def convert_mapping(
mapping: LoRAMapping,
lora_index_to_id: List[Optional[int]],
max_loras: int,
vocab_size: int,
extra_vocab_size: int,
long_lora_context: Optional[LongContextLoRAContext] = None,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor,
Optional[torch.Tensor], List[int]]:
"""Converts LoRAMapping to index tensors.
Args:
mapping: LoRAMapping mapping rows in a batch to LoRA ids.
lora_index_to_id: List mapping LoRA ids to LoRA indices.
max_loras: Maximum number of LoRAs.
vocab_size: Model vocab size.
extra_vocab_size: Extra vocab size each LoRA can have.
long_lora_context: Passed if there are long context lora in a batch.
Returns:
A tuple of tensors:
base_indices: Tensor of shape [batch_size] mapping batch rows to
LoRA indices.
sampler_indices: Tensor of shape [batch_size] mapping requests to
LoRA indices for sampler. For generation, this will be the
same as base_indicies. For prefill, this will map requests
to LoRA indices.
sampler_indices_padded: Tensor of shape [batch_size] mapping
requests to LoRA indices for sampler with padding.
Same as sampler_indicies, but -1 is replaced with
max_loras.
embeddings_indices: Tensor of shape [2, batch_size] mapping
requests to embedding indices. First row is for embeddings
added by the LoRAs, second row is for the LoRA.lora_a
embeddings.
long_lora_indices: Tensor of shape [batch_size] mapping
requests to RoPE offsets and rot dims for long LoRAs.
None if long context lora doesn't exist.
indices_len: List of lengths of the above tensors.
Used to index into each tensor. It contains length for
(base_indices, sampler_indices, sampler_indices_padded,
embeddings_indices, long_lora_indices). If long_lora doesn't
exist, it only contains first 4 entries.
"""
index_mapping_indices: List[int] = list(mapping.index_mapping).copy()
embedding_indices = index_mapping_indices.copy()
lora_indices = index_mapping_indices.copy()
long_lora_offsets: Optional[torch.Tensor] = None
if long_lora_context:
long_lora_offsets = torch.zeros(len(index_mapping_indices),
device="cuda",
dtype=torch.long)
prompt_mapping: List[int] = [
lora_index_to_id.index(x) if x > 0 else -1
for x in mapping.prompt_mapping
]
lora_idx = None
for i in range(len(index_mapping_indices)):
# TODO index can be slow. optimize
lora_idx = (lora_index_to_id.index(index_mapping_indices[i])
if index_mapping_indices[i] > 0 else -1)
embedding_indices[i] = lora_idx if index_mapping_indices[i] > 0 else 0
lora_indices[i] = lora_idx
if long_lora_context:
assert long_lora_offsets is not None
lora_offset: int = long_lora_context.offsets_by_lora_id.get(
index_mapping_indices[i], 0)
long_lora_offsets[i] = lora_offset
indices_list: List[Union[List[int], torch.Tensor]] = [
index_mapping_indices, lora_indices, embedding_indices
]
if long_lora_context:
assert long_lora_offsets is not None
indices_list.append(long_lora_offsets)
indices = torch.tensor(indices_list, dtype=torch.long, device="cuda")
prompt_mapping_tensor = torch.tensor(prompt_mapping,
device="cuda",
dtype=torch.long)
embeddings_indices = torch.stack([
indices[2] * extra_vocab_size,
indices[2] * (vocab_size + extra_vocab_size)
])
embeddings_indices[embeddings_indices == -1] = max_loras - 1
base_indices = indices[1]
sampler_indices = prompt_mapping_tensor
sampler_indices_padded = sampler_indices.clone()
sampler_indices_padded[sampler_indices_padded == -1] = max_loras - 1
sampler_indices_padded = (
torch.arange(
0, len(sampler_indices_padded), device="cuda", dtype=torch.long) +
(sampler_indices_padded * len(sampler_indices_padded)))
long_lora_indices = None
long_lora_indices_len: Optional[int] = None
if long_lora_context:
long_lora_indices = indices[3]
long_lora_indices_len = long_lora_indices.shape[-1]
# Contain length of indices tensors. Used to index into each tensor.
indices_len = [
base_indices.shape[-1], sampler_indices.shape[-1],
sampler_indices_padded.shape[-1], embeddings_indices.shape[-1]
]
if long_lora_indices_len is not None:
indices_len.append(long_lora_indices_len)
return (base_indices, sampler_indices, sampler_indices_padded,
embeddings_indices, long_lora_indices, indices_len)
def get_lora_id():
global _GLOBAL_LORA_ID
_GLOBAL_LORA_ID += 1
@ -422,29 +314,12 @@ class LoRAModelManager(AdapterModelManager):
self.lora_index_to_id: List[Optional[int]] = [None] * self.lora_slots
self.vocab_size = vocab_size
self.long_lora_context: Optional[LongContextLoRAContext] = None
self.base_indices = torch.empty(self.max_num_batched_tokens,
dtype=torch.long,
device="cuda")
self.sampler_indices = torch.empty(self.max_num_batched_tokens,
dtype=torch.long,
device="cuda")
self.sampler_indices_padded = torch.empty(self.max_num_batched_tokens,
dtype=torch.long,
device="cuda")
self.embeddings_indices = torch.empty(2,
self.max_num_batched_tokens,
dtype=torch.long,
device="cuda")
self.long_lora_indices = torch.empty(self.max_num_batched_tokens,
dtype=torch.long,
device="cuda")
self.punica_wrapper = PunicaWrapper(max_num_batched_tokens,
max_batches=self.max_num_seqs,
device="cuda")
# Scaling factor -> offset to the sin_cos_cache to it.
# Used for long context lora.
self.scaling_factor_to_offset: Dict[float, int] = {}
# 4 is the number of indicies tensors defined above
# base_indices, sampler_indices, sampler_indices_padded,
# embeddings_indices
self.indices_len: List[Optional[int]] = [None] * 4
super().__init__(model)
if hasattr(self.model, "supported_lora_modules"):
self.supported_lora_modules = copy.deepcopy(
@ -536,28 +411,16 @@ class LoRAModelManager(AdapterModelManager):
"Pinning is not supported in LoRAModelManager."
"Use LRUCacheLoRAModelManager for pinning") # type: ignore
# TODO see if this can be vectorized
def _set_adapter_mapping(self, mapping: LoRAMapping) -> None:
(base_indices, sampler_indices, sampler_indices_padded,
embeddings_indices, long_lora_offsets_tensor,
indices_len) = convert_mapping(mapping, self.lora_index_to_id,
self.lora_slots + 1, self.vocab_size,
self.lora_config.lora_extra_vocab_size,
self.long_lora_context)
self.base_indices[:base_indices.shape[0]].copy_(base_indices)
self.sampler_indices[:sampler_indices.shape[0]].copy_(sampler_indices)
self.sampler_indices_padded[:sampler_indices_padded.shape[0]].copy_(
sampler_indices_padded)
self.embeddings_indices[:embeddings_indices.
shape[0], :embeddings_indices.shape[1]].copy_(
embeddings_indices)
if long_lora_offsets_tensor is not None:
self.long_lora_indices[:long_lora_offsets_tensor.shape[0]].copy_(
long_lora_offsets_tensor)
else:
self.long_lora_indices.zero_()
# Maintain the reference
self.indices_len[:] = indices_len
# update lora states
self.punica_wrapper.update_metadata(
mapping,
self.lora_index_to_id,
self.lora_slots + 1,
self.vocab_size,
self.lora_config.lora_extra_vocab_size,
self.long_lora_context,
)
def remove_all_adapters(self):
"""Remove all LoRAModels from the manager."""
@ -595,10 +458,8 @@ class LoRAModelManager(AdapterModelManager):
self.model.config))
self.register_module(module_name, new_module)
self._register_packed_modules(module_name)
new_module.set_mapping(self.base_indices, self.sampler_indices,
self.sampler_indices_padded,
self.embeddings_indices,
self.long_lora_indices, self.indices_len)
# All lora layers share the same punica_wrapper based on reference.
new_module.set_mapping(self.punica_wrapper)
def register_module(self, module_name: str, module: "BaseLayerWithLoRA"):
assert isinstance(module, BaseLayerWithLoRA)

View File

View File

@ -0,0 +1,169 @@
"""
Based on:
Chen, L., Ye, Z., Wu, Y., Zhuo, D., Ceze, L., & Krishnamurthy, A. (2023).
Punica: Multi-Tenant LoRA Serving.
https://arxiv.org/abs/2310.18547
"""
from typing import Dict, Optional
import torch
import triton
import triton.language as tl
from .utils import get_lora_op_configs
@triton.jit
def _bgmv_expand_kernel(
input_ptr,
lora_ptr,
out_ptr,
N,
K,
lora_indices,
xm_stride,
xk_stride,
l0_stride,
lora_k_stride,
lora_n_stride,
cm_stride,
cn_stride,
BLOCK_N: tl.constexpr,
BLOCK_K: tl.constexpr,
SPLIT_N: tl.constexpr,
EVEN_K: tl.constexpr,
ADD_INPUTS: tl.constexpr,
CAST_TYPE: tl.constexpr,
):
"""
GroupGEMV, additionally, introducing SPLIT_N can improve large hidden_size's
performance
"""
pid_sn = tl.program_id(axis=0)
cur_batch = tl.program_id(axis=1)
lora_index = tl.load(lora_indices + cur_batch)
if lora_index == -1:
return
offset_k = tl.arange(0, BLOCK_K)
offset_n = tl.arange(0, BLOCK_N)
if EVEN_K:
tiled_a = tl.load(input_ptr + cur_batch * xm_stride +
offset_k * xk_stride, ) # [BLOCK_K]
else:
tiled_a = tl.load(
input_ptr + cur_batch * xm_stride + offset_k * xk_stride,
mask=offset_k < K,
other=0,
) # [BLOCK_K]
# N must be divisible by SPLIT_N
split_n_length = tl.cdiv(N, SPLIT_N)
if CAST_TYPE:
tiled_a = tiled_a.to(lora_ptr.dtype.element_ty)
# sliding to next row-block
b_ptr = (lora_ptr + l0_stride * lora_index +
pid_sn * split_n_length * lora_k_stride)
c_ptr = out_ptr + cur_batch * cm_stride + pid_sn * split_n_length
for n in range(0, split_n_length, BLOCK_N):
current_n = n + offset_n
current_n_c = tl.max_contiguous(current_n, BLOCK_N)
b_ptr_mask = (current_n[:, None] < split_n_length) & (offset_k[None, :]
< K)
c_mask = current_n < split_n_length
tiled_b = tl.load(
b_ptr + current_n_c[:, None] * lora_k_stride +
offset_k[None, :] * lora_n_stride,
mask=b_ptr_mask,
other=0.0,
) # [BLOCK_N,BLOCK_K]
if ADD_INPUTS:
tiled_out = tl.load(c_ptr + current_n * cn_stride, mask=c_mask)
accumulator = tl.sum(tiled_a * tiled_b, 1) + tiled_out
else:
accumulator = tl.sum(tiled_a * tiled_b, 1)
tl.store(c_ptr + current_n * cn_stride, accumulator, mask=c_mask)
@torch.inference_mode()
def bgmv_expand(
inputs: torch.Tensor,
lora_b_weights: torch.Tensor,
output_tensor: torch.Tensor,
lora_indices_tensor: torch.Tensor,
add_inputs: bool = True,
override_config: Optional[Dict[str, int]] = None,
):
"""
Args:
inputs (torch.Tensor): input tensor
lora_b_weights (torch.Tensor): lora'a weight
output_tensor (torch.Tensor): output tensor
lora_indices_tensor (torch.Tensor): (batch_size,). The LoRA index
corresponding to each batch, An index of -1 means no lora should be
applied.
batches (int): batch size
add_inputs (bool, optional): Defaults to False. adds the final lora
results to the output.
override_config (Optional[Dict[str, int]], optional): Defaults to None.
Triton grid config
"""
assert inputs.dtype in [torch.float16, torch.bfloat16, torch.float32]
assert lora_b_weights.dtype in [
torch.float16,
torch.bfloat16,
]
assert inputs.size(1) == lora_b_weights.size(-1)
assert inputs.is_contiguous()
assert output_tensor.is_contiguous()
if lora_b_weights.ndim == 4: # shape:(lora_num,1,size,rank)
assert lora_b_weights.size(1) == 1
lora_b_weights = lora_b_weights.squeeze(dim=1)
else:
assert lora_b_weights.ndim == 3 # shape:(lora_num,size,rank)
assert lora_b_weights.is_contiguous()
# TODO tuning this config
N, K = lora_b_weights.shape[-2:] # K= rank,N=hidden_size
BLOCK_K = triton.next_power_of_2(K)
EVEN_K = K % BLOCK_K == 0
ADD_INPUTS = add_inputs
CAST_TYPE = False
if inputs.dtype == torch.float32 and lora_b_weights.dtype in [
torch.float16,
torch.bfloat16,
]:
CAST_TYPE = True
batches = lora_indices_tensor.size(0)
if override_config:
config = override_config
else:
config = get_lora_op_configs("expand", batches, N)
grid = lambda META: (
META["SPLIT_N"],
batches,
)
_bgmv_expand_kernel[grid](
inputs,
lora_b_weights,
output_tensor,
N,
K,
lora_indices_tensor,
inputs.stride(0),
inputs.stride(1),
lora_b_weights.stride(0),
lora_b_weights.stride(1),
lora_b_weights.stride(2),
output_tensor.stride(0),
output_tensor.stride(1),
BLOCK_K=BLOCK_K,
EVEN_K=EVEN_K,
ADD_INPUTS=ADD_INPUTS,
CAST_TYPE=CAST_TYPE,
**config,
)
return

View File

@ -0,0 +1,182 @@
"""
Based on:
Chen, L., Ye, Z., Wu, Y., Zhuo, D., Ceze, L., & Krishnamurthy, A. (2023).
Punica: Multi-Tenant LoRA Serving.
https://arxiv.org/abs/2310.18547
"""
from typing import Dict, Optional
import torch
import triton
import triton.language as tl
from .utils import get_lora_op_configs
@triton.jit
def _bgmv_expand_slice_kernel(
input_ptr,
lora_ptr,
out_ptr,
N,
K,
lora_indices,
xm_stride,
xk_stride,
l0_stride,
lora_k_stride,
lora_n_stride,
cm_stride,
cn_stride,
slice_offset,
BLOCK_N: tl.constexpr,
BLOCK_K: tl.constexpr,
SPLIT_N: tl.constexpr,
EVEN_K: tl.constexpr,
ADD_INPUTS: tl.constexpr,
CAST_TYPE: tl.constexpr,
):
"""
GroupGEMV, additionally, introducing SPLIT_N can improve large hidden_size's
performance
"""
pid_sn = tl.program_id(axis=0)
cur_batch = tl.program_id(axis=1)
lora_index = tl.load(lora_indices + cur_batch)
if lora_index == -1:
return
offset_k = tl.arange(0, BLOCK_K)
offset_n = tl.arange(0, BLOCK_N)
if EVEN_K:
tiled_a = tl.load(input_ptr + cur_batch * xm_stride +
offset_k * xk_stride, ) # [BLOCK_K]
else:
tiled_a = tl.load(
input_ptr + cur_batch * xm_stride + offset_k * xk_stride,
mask=offset_k < K,
other=0,
) # [BLOCK_K]
# N must be divisible by SPLIT_N
split_n_length = tl.cdiv(N, SPLIT_N)
if CAST_TYPE:
tiled_a = tiled_a.to(lora_ptr.dtype.element_ty)
# sliding to next row-block
b_ptr = (lora_ptr + l0_stride * lora_index +
pid_sn * split_n_length * lora_k_stride)
c_ptr = (out_ptr + cur_batch * cm_stride + pid_sn * split_n_length +
slice_offset * cn_stride)
for n in range(0, split_n_length, BLOCK_N):
current_n = n + offset_n
b_ptr_mask = (current_n[:, None] < split_n_length) & (offset_k[None, :]
< K)
c_mask = current_n < split_n_length
tiled_b = tl.load(
b_ptr + current_n[:, None] * lora_k_stride +
offset_k[None, :] * lora_n_stride,
mask=b_ptr_mask,
other=0.0,
) # [BLOCK_N,BLOCK_K]
if ADD_INPUTS:
tiled_out = tl.load(c_ptr + current_n * cn_stride, mask=c_mask)
accumulator = tl.sum(tiled_a * tiled_b, 1) + tiled_out
else:
accumulator = tl.sum(tiled_a * tiled_b, 1)
tl.store(c_ptr + current_n * cn_stride, accumulator, mask=c_mask)
@torch.inference_mode()
def bgmv_expand_slice(
inputs: torch.Tensor,
lora_b_weights: torch.Tensor,
output_tensor: torch.Tensor,
lora_indices_tensor: torch.Tensor,
slice_offset: int,
slice_size: int,
add_inputs: bool = True,
override_config: Optional[Dict[str, int]] = None,
):
"""
Args:
inputs (torch.Tensor): input tensor
lora_b_weights (torch.Tensor): lora'b weight
output_tensor (torch.Tensor): output tensor
lora_indices_tensor (torch.Tensor): (batch_size,). The LoRA index
corresponding to each batch, An index of -1 means no lora should be
applied.
slice_offst (int): output_tensor's offst
slice_size (int): current output_tensor's size
batches (int): batch size
add_inputs (bool, optional): Defaults to False.
override_config (Optional[Dict[str, int]], optional): Defaults to None.
Triton grid config
"""
assert inputs.dtype in [torch.float16, torch.bfloat16, torch.float32]
assert lora_b_weights.dtype in [
torch.float16,
torch.bfloat16,
]
assert inputs.size(1) == lora_b_weights.size(-1)
assert slice_size == lora_b_weights.size(-2)
assert inputs.is_contiguous()
assert output_tensor.is_contiguous()
if lora_b_weights.ndim == 4: # shape:(lora_num,1,size,rank)
assert lora_b_weights.size(1) == 1
lora_b_weights = lora_b_weights.squeeze(dim=1)
else:
assert lora_b_weights.ndim == 3 # shape:(lora_num,size,rank)
assert lora_b_weights.is_contiguous()
# TODO tuning this config
N, K = lora_b_weights.shape[-2:] # K= rank,N=hidden_size
BLOCK_K = triton.next_power_of_2(K)
EVEN_K = K % BLOCK_K == 0
ADD_INPUTS = add_inputs
CAST_TYPE = False
if inputs.dtype == torch.float32 and lora_b_weights.dtype in [
torch.float16,
torch.bfloat16,
]:
CAST_TYPE = True
batches = lora_indices_tensor.size(0)
if override_config:
config = override_config
else:
config = get_lora_op_configs("expand", batches, N)
grid = lambda META: (
META["SPLIT_N"],
batches,
)
_bgmv_expand_slice_kernel[grid](
inputs,
lora_b_weights,
output_tensor,
N,
K,
lora_indices_tensor,
inputs.stride(0),
inputs.stride(1),
lora_b_weights.stride(0),
lora_b_weights.stride(1),
lora_b_weights.stride(2),
output_tensor.stride(0),
output_tensor.stride(1),
slice_offset,
BLOCK_K=BLOCK_K,
EVEN_K=EVEN_K,
ADD_INPUTS=ADD_INPUTS,
CAST_TYPE=CAST_TYPE,
**config,
)
return

View File

@ -0,0 +1,150 @@
"""
Based on:
Chen, L., Ye, Z., Wu, Y., Zhuo, D., Ceze, L., & Krishnamurthy, A. (2023).
Punica: Multi-Tenant LoRA Serving.
https://arxiv.org/abs/2310.18547
"""
from typing import Dict, Optional
import torch
import triton
import triton.language as tl
from .utils import get_lora_op_configs
@triton.jit
def _bgmv_shrink_kernel(
input_ptr,
lora_ptr,
out_ptr,
N,
K,
lora_indices,
scaling,
xm_stride,
xk_stride,
l0_stride,
lora_k_stride,
lora_n_stride,
cm_stride,
cn_stride,
BLOCK_N: tl.constexpr,
BLOCK_K: tl.constexpr,
SPLIT_K: tl.constexpr,
):
"""
GroupGEMV, additionally, introducing SPLIT-K can improve large hidden_size's
performance
"""
pid_sk = tl.program_id(axis=0)
cur_batch = tl.program_id(axis=1)
lora_index = tl.load(lora_indices + cur_batch)
if lora_index == -1:
return
offset_n = tl.arange(0, BLOCK_N)
offset_k = tl.arange(0, BLOCK_K) + pid_sk * BLOCK_K
a_ptr = input_ptr + cur_batch * xm_stride
b_ptr = lora_ptr + l0_stride * lora_index
accumulator = tl.zeros((BLOCK_N, ), dtype=tl.float32)
for k in range(0, K, BLOCK_K * SPLIT_K):
current_k = k + offset_k
current_k_c = tl.max_contiguous(current_k, BLOCK_K)
tiled_a = tl.load(
a_ptr + current_k_c,
mask=current_k < K,
other=0.0,
) # [BLOCK_K]
b_ptr_mask = (offset_n[:, None] < N) & (current_k[None, :] < K)
tiled_b = tl.load(
b_ptr + offset_n[:, None] * lora_k_stride +
current_k[None, :] * lora_n_stride,
mask=b_ptr_mask,
other=0.0,
) # [BLOCK_N,BLOCK_K]
accumulator += tl.sum(tiled_a * tiled_b, 1)
accumulator *= scaling
offset_cn = tl.arange(0, BLOCK_N)
c_ptr = out_ptr + cur_batch * cm_stride + offset_cn * cn_stride
c_mask = offset_cn < N
if SPLIT_K == 1:
tl.store(c_ptr, accumulator, mask=c_mask)
else:
tl.atomic_add(c_ptr, accumulator, mask=c_mask)
@torch.inference_mode()
def bgmv_shrink(
inputs: torch.Tensor,
lora_a_weights: torch.Tensor,
output_tensor: torch.Tensor,
lora_indices_tensor: torch.Tensor,
scaling: float = 1.0,
override_config: Optional[Dict[str, int]] = None,
):
"""
Args:
inputs (torch.Tensor): input tensor
lora_a_weights (torch.Tensor): lora'a weight
output_tensor (torch.Tensor): output tensor
lora_indices_tensor (torch.Tensor): (batch_size,). The LoRA index
corresponding to each batch. An index of -1 means no lora should be
applied.
batches (int): batch size
scaling (float): Scaling factor.
override_config (Optional[Dict[str, int]], optional): Defaults to None.
Triton grid config
"""
assert inputs.dtype == lora_a_weights.dtype
assert inputs.dtype in [torch.float16, torch.bfloat16]
assert lora_a_weights.dtype in [
torch.float16,
torch.bfloat16,
]
assert inputs.size(1) == lora_a_weights.size(-1)
assert inputs.is_contiguous()
if lora_a_weights.ndim == 4: # shape:(lora_num,1,rank, size)
assert lora_a_weights.size(1) == 1
lora_a_weights = lora_a_weights.squeeze(dim=1)
else:
assert lora_a_weights.ndim == 3 # shape:(lora_num,rank, size)
assert lora_a_weights.is_contiguous()
assert output_tensor.is_contiguous()
# TODO tuning this config
batches = lora_indices_tensor.size(0)
N, K = lora_a_weights.shape[-2:] # K=hidden_size,N=rank
BLOCK_N = triton.next_power_of_2(N)
if override_config:
config = override_config
else:
# First try to load optimal config from the file
config = get_lora_op_configs("bgmv_shrink", batches, K)
grid = lambda META: (
META["SPLIT_K"],
batches,
)
_bgmv_shrink_kernel[grid](
inputs,
lora_a_weights,
output_tensor,
N,
K,
lora_indices_tensor,
scaling,
inputs.stride(0),
inputs.stride(1),
lora_a_weights.stride(0),
lora_a_weights.stride(1),
lora_a_weights.stride(2),
output_tensor.stride(0),
output_tensor.stride(1),
BLOCK_N=BLOCK_N,
**config,
)
return

View File

@ -0,0 +1,192 @@
"""
Based on:
Chen, L., Ye, Z., Wu, Y., Zhuo, D., Ceze, L., & Krishnamurthy, A. (2023).
Punica: Multi-Tenant LoRA Serving.
https://arxiv.org/abs/2310.18547
"""
import torch
import triton
import triton.language as tl
from vllm.triton_utils import libentry
@libentry()
@triton.jit
def _sgmv_expand_kernel(
input_ptr,
lora_ptr,
out_ptr,
N,
K,
b_seq_start_loc,
seq_lens,
lora_indices,
xm_stride,
xk_stride, # 1
l0_stride, # hidden_size*max_rank
lora_k_stride,
lora_n_stride,
cm_stride,
cn_stride,
BLOCK_M: tl.constexpr,
BLOCK_N: tl.constexpr,
BLOCK_K: tl.constexpr,
EVEN_K: tl.constexpr,
ADD_INPUTS: tl.constexpr,
CAST_TYPE: tl.constexpr,
):
"""
The sgmv's expand triton kernel is based on GroupGEMM.
"""
pid = tl.program_id(axis=0)
cur_batch = tl.program_id(axis=1)
cta_n_num = tl.cdiv(N, BLOCK_N)
pid_m = pid // cta_n_num
pid_n = pid % cta_n_num
M = tl.load(seq_lens + cur_batch)
if pid_m * BLOCK_M > M:
return
lora_index = tl.load(lora_indices + cur_batch)
if lora_index == -1:
return
cur_seq_start = tl.load(b_seq_start_loc + cur_batch)
offset_m = tl.arange(0, BLOCK_M) + pid_m * BLOCK_M
offset_n = tl.arange(0, BLOCK_N) + pid_n * BLOCK_N
offset_k = tl.arange(0, BLOCK_K)
ram = tl.max_contiguous(tl.multiple_of(offset_m % M, BLOCK_M), BLOCK_M)
rbn = tl.max_contiguous(tl.multiple_of(offset_n % N, BLOCK_N), BLOCK_N)
a_ptr = (input_ptr + cur_seq_start * xm_stride + ram[:, None] * xm_stride +
offset_k[None, :] * xk_stride, )
b_ptr = (lora_ptr + l0_stride * lora_index +
offset_k[:, None] * lora_n_stride + rbn[None, :] * lora_k_stride)
accumulator = tl.zeros((BLOCK_M, BLOCK_N), dtype=tl.float32)
for k in range(tl.cdiv(K, BLOCK_K)):
if EVEN_K:
tiled_a = tl.load(a_ptr)
tiled_b = tl.load(b_ptr)
else:
tiled_a = tl.load(a_ptr,
mask=offset_k[None, :] < K - k * BLOCK_K,
other=0)
tiled_b = tl.load(b_ptr,
mask=offset_k[:, None] < K - k * BLOCK_K,
other=0)
if CAST_TYPE:
tiled_a = tiled_a.to(lora_ptr.dtype.element_ty)
accumulator += tl.dot(
tiled_a,
tiled_b,
)
a_ptr += BLOCK_K * xk_stride
b_ptr += BLOCK_K * lora_n_stride
tiled_c = accumulator.to(lora_ptr.dtype.element_ty)
offset_cm = cur_seq_start + tl.arange(0, BLOCK_M) + pid_m * BLOCK_M
offset_cn = tl.arange(0, BLOCK_N) + pid_n * BLOCK_N
c_ptr = (out_ptr + offset_cm[:, None] * cm_stride +
offset_cn[None, :] * cn_stride)
M = tl.load(seq_lens + cur_batch)
c_mask = (offset_cm[:, None] <
(cur_seq_start + M)) & (offset_cn[None, :] < N)
if ADD_INPUTS:
tiled_out = tl.load(c_ptr, mask=c_mask)
tiled_c += tiled_out
tl.store(c_ptr, tiled_c, mask=c_mask)
@torch.inference_mode()
def sgmv_expand(
inputs: torch.Tensor,
lora_b_weights: torch.Tensor,
output_tensor: torch.Tensor,
b_seq_start_loc: torch.Tensor,
seq_len_tensor: torch.Tensor,
lora_indices_tensor: torch.Tensor,
batches: int,
max_seq_length: int,
add_inputs: bool = False,
):
"""
Args:
inputs (torch.Tensor): input tensor
lora_b_weights (torch.Tensor): lora'a weight
output_tensor (torch.Tensor): output tensor
b_seq_start_loc (torch.Tensor): (batch_size,). The cumulative
sequence lengths of the sequences in the batch, used to index
into sequence. E.g.,if the sequence length is [4, 6], it is
[0, 4, 10].
seq_len_tensor (torch.Tensor): (batch_size,). record the sequence
length of the sequences in the batch
lora_indices_tensor (torch.Tensor): (batch_size,). The LoRA index
corresponding to each batch. An index of -1 means no lora should be
applied.
batches (int): batch size
max_seq_length (int): The max sequence lengths of the sequences
in the batch
add_inputs (bool, optional): Defaults to False. adds the final lora
results to the output.
"""
assert inputs.dtype in [torch.float16, torch.bfloat16, torch.float32]
assert lora_b_weights.dtype in [
torch.float16,
torch.bfloat16,
]
assert inputs.size(1) == lora_b_weights.size(-1)
assert b_seq_start_loc.size(0) == batches
assert lora_indices_tensor.size(0) == batches
assert inputs.is_contiguous()
assert output_tensor.is_contiguous()
if lora_b_weights.ndim == 4: # shape:(lora_num,1,size,rank)
assert lora_b_weights.size(1) == 1
lora_b_weights = lora_b_weights.squeeze(dim=1)
else:
assert lora_b_weights.ndim == 3 # shape:(lora_num,size,rank)
assert lora_b_weights.is_contiguous()
# TODO tuning this config
N, K = lora_b_weights.shape[-2:] # K= rank,N=hidden_size
BLOCK_M = 32
BLOCK_N = 32
BLOCK_K = 16
EVEN_K = K % BLOCK_K == 0
ADD_INPUTS = add_inputs
CAST_TYPE = False
if inputs.dtype == torch.float32 and lora_b_weights.dtype in [
torch.float16,
torch.bfloat16,
]:
CAST_TYPE = True
grid = (
triton.cdiv(max_seq_length, BLOCK_M) * triton.cdiv(N, BLOCK_N),
batches,
)
_sgmv_expand_kernel[grid](
inputs,
lora_b_weights,
output_tensor,
N,
K,
b_seq_start_loc,
seq_len_tensor,
lora_indices_tensor,
inputs.stride(0),
inputs.stride(1),
lora_b_weights.stride(0),
lora_b_weights.stride(1),
lora_b_weights.stride(2),
output_tensor.stride(0),
output_tensor.stride(1),
BLOCK_M,
BLOCK_N,
BLOCK_K,
EVEN_K,
ADD_INPUTS,
CAST_TYPE,
)
return

View File

@ -0,0 +1,205 @@
"""
Based on:
Chen, L., Ye, Z., Wu, Y., Zhuo, D., Ceze, L., & Krishnamurthy, A. (2023).
Punica: Multi-Tenant LoRA Serving.
https://arxiv.org/abs/2310.18547
"""
import torch
import triton
import triton.language as tl
from vllm.triton_utils import libentry
@libentry()
@triton.jit
def _sgmv_expand_slice_kernel(
input_ptr,
lora_ptr,
out_ptr,
N,
K,
b_seq_start_loc,
seq_lens,
lora_indices,
xm_stride,
xk_stride, # 1
l0_stride, # hidden_size*max_rank
lora_k_stride,
lora_n_stride,
cm_stride,
cn_stride,
slice_offset,
BLOCK_M: tl.constexpr,
BLOCK_N: tl.constexpr,
BLOCK_K: tl.constexpr,
EVEN_K: tl.constexpr,
ADD_INPUTS: tl.constexpr,
CAST_TYPE: tl.constexpr,
):
"""
Similar to the 'sgmv_expand' operator, but with an added parameter
'slice_offset'. The reason for not reusing the 'sgmv_expand' operator
might be that in the future, we could implement a fusion operator to
achieve the current functionality instead of having to call it multiple
times.
"""
pid = tl.program_id(axis=0)
cur_batch = tl.program_id(axis=1)
cta_n_num = tl.cdiv(N, BLOCK_N)
pid_m = pid // cta_n_num
pid_n = pid % cta_n_num
M = tl.load(seq_lens + cur_batch)
if pid_m * BLOCK_M > M:
return
lora_index = tl.load(lora_indices + cur_batch)
if lora_index == -1:
return
cur_seq_start = tl.load(b_seq_start_loc + cur_batch)
offset_m = tl.arange(0, BLOCK_M) + pid_m * BLOCK_M
offset_n = tl.arange(0, BLOCK_N) + pid_n * BLOCK_N
offset_k = tl.arange(0, BLOCK_K)
ram = tl.max_contiguous(tl.multiple_of(offset_m % M, BLOCK_M), BLOCK_M)
rbn = tl.max_contiguous(tl.multiple_of(offset_n % N, BLOCK_N), BLOCK_N)
a_ptr = (input_ptr + cur_seq_start * xm_stride + ram[:, None] * xm_stride +
offset_k[None, :] * xk_stride, )
b_ptr = (lora_ptr + l0_stride * lora_index +
offset_k[:, None] * lora_n_stride + rbn[None, :] * lora_k_stride)
accumulator = tl.zeros((BLOCK_M, BLOCK_N), dtype=tl.float32)
for k in range(tl.cdiv(K, BLOCK_K)):
if EVEN_K:
tiled_a = tl.load(a_ptr)
tiled_b = tl.load(b_ptr)
else:
tiled_a = tl.load(a_ptr,
mask=offset_k[None, :] < K - k * BLOCK_K,
other=0)
tiled_b = tl.load(b_ptr,
mask=offset_k[:, None] < K - k * BLOCK_K,
other=0)
if CAST_TYPE:
tiled_a = tiled_a.to(lora_ptr.dtype.element_ty)
accumulator += tl.dot(
tiled_a,
tiled_b,
)
a_ptr += BLOCK_K * xk_stride
b_ptr += BLOCK_K * lora_n_stride
tiled_c = accumulator.to(lora_ptr.dtype.element_ty)
offset_cm = cur_seq_start + tl.arange(0, BLOCK_M) + pid_m * BLOCK_M
offset_cn = tl.arange(0, BLOCK_N) + pid_n * BLOCK_N + slice_offset
c_ptr = (out_ptr + offset_cm[:, None] * cm_stride +
offset_cn[None, :] * cn_stride)
M = tl.load(seq_lens + cur_batch)
c_mask = (offset_cm[:, None] < (cur_seq_start + M)) & (offset_cn[None, :] <
(slice_offset + N))
if ADD_INPUTS:
tiled_out = tl.load(c_ptr, mask=c_mask)
tiled_c += tiled_out
tl.store(c_ptr, tiled_c, mask=c_mask)
@torch.inference_mode()
def sgmv_expand_slice(
inputs: torch.Tensor,
lora_b_weights: torch.Tensor,
output_tensor: torch.Tensor,
b_seq_start_loc: torch.Tensor,
seq_len_tensor: torch.Tensor,
lora_indices_tensor: torch.Tensor,
batches: int,
max_seq_length: int,
slice_offset: int,
slice_size: int,
add_inputs: bool = False,
):
"""_summary_
Args:
inputs (torch.Tensor): input tensor
lora_b_weights (torch.Tensor): lora'a weight
output_tensor (torch.Tensor): output tensor
b_seq_start_loc (torch.Tensor): (batch_size,). The cumulative
sequence lengths of the sequences in the batch, used to index
into sequence. E.g.,if the sequence length is [4, 6], it is
[0, 4, 10].
seq_len_tensor (torch.Tensor): (batch_size,). record the sequence
length of the sequences in the batch
lora_indices_tensor (torch.Tensor): (batch_size,). The LoRA index
corresponding to each batch. An index of -1 means no lora should be
applied.
batches (int): batch size
max_seq_length (int): The max sequence lengths of the sequences
in the batch
slice_offst (int): output_tensor's offst
slice_size (int): current output_tensor's size
add_inputs (bool, optional): Defaults to False. adds the final lora
results to the output..
"""
assert inputs.dtype in [torch.float16, torch.bfloat16, torch.float32]
assert lora_b_weights.dtype in [
torch.float16,
torch.bfloat16,
]
assert inputs.size(1) == lora_b_weights.size(-1)
assert b_seq_start_loc.size(0) == batches
assert lora_indices_tensor.size(0) == batches
assert slice_size == lora_b_weights.size(-2)
assert inputs.is_contiguous()
assert output_tensor.is_contiguous()
if lora_b_weights.ndim == 4: # shape:(lora_num,1,size,rank)
assert lora_b_weights.size(1) == 1
lora_b_weights = lora_b_weights.squeeze(dim=1)
else:
assert lora_b_weights.ndim == 3 # shape:(lora_num,size,rank)
assert lora_b_weights.is_contiguous()
# TODO tuning this config
N, K = lora_b_weights.shape[-2:] # K= rank,N=hidden_size
BLOCK_M = 32
BLOCK_N = 32
BLOCK_K = 16
EVEN_K = K % BLOCK_K == 0
ADD_INPUTS = add_inputs
CAST_TYPE = False
if inputs.dtype == torch.float32 and lora_b_weights.dtype in [
torch.float16,
torch.bfloat16,
]:
CAST_TYPE = True
grid = (
triton.cdiv(max_seq_length, BLOCK_M) * triton.cdiv(N, BLOCK_N),
batches,
)
_sgmv_expand_slice_kernel[grid](
inputs,
lora_b_weights,
output_tensor,
N,
K,
b_seq_start_loc,
seq_len_tensor,
lora_indices_tensor,
inputs.stride(0),
inputs.stride(1),
lora_b_weights.stride(0),
lora_b_weights.stride(1),
lora_b_weights.stride(2),
output_tensor.stride(0),
output_tensor.stride(1),
slice_offset,
BLOCK_M,
BLOCK_N,
BLOCK_K,
EVEN_K,
ADD_INPUTS,
CAST_TYPE,
)
return

View File

@ -0,0 +1,189 @@
"""
Based on:
Chen, L., Ye, Z., Wu, Y., Zhuo, D., Ceze, L., & Krishnamurthy, A. (2023).
Punica: Multi-Tenant LoRA Serving.
https://arxiv.org/abs/2310.18547
"""
import torch
import triton
import triton.language as tl
from vllm.triton_utils import libentry
@libentry()
@triton.jit
def _sgmv_shrink_kernel(
input_ptr,
lora_ptr,
out_ptr,
N,
K,
b_seq_start_loc,
seq_lens,
lora_indices,
scaling,
xm_stride, # hidden_size
xk_stride, # 1
l0_stride, # hidden_size*max_rank
lora_k_stride,
lora_n_stride,
cm_stride,
cn_stride,
BLOCK_M: tl.constexpr,
BLOCK_N: tl.constexpr,
BLOCK_K: tl.constexpr,
EVEN_K: tl.constexpr,
SPLIT_K: tl.constexpr,
):
"""
The sgmv's shrink triton kernel is based on GroupGEMM+SPLIT-K.
The GEMM of Multi-LoRA can be considered as GroupGEMM. Additionally,
introducing SPLIT-K can improve performance
"""
pid = tl.program_id(axis=0)
pid_sk = tl.program_id(axis=1)
cur_batch = tl.program_id(axis=2)
cta_n_num = tl.cdiv(N, BLOCK_N)
pid_m = pid // cta_n_num
pid_n = pid % cta_n_num
M = tl.load(seq_lens + cur_batch)
if pid_m * BLOCK_M > M:
return
lora_index = tl.load(lora_indices + cur_batch)
if lora_index == -1:
return
cur_seq_start = tl.load(b_seq_start_loc + cur_batch)
offset_m = tl.arange(0, BLOCK_M) + pid_m * BLOCK_M
offset_n = tl.arange(0, BLOCK_N) + pid_n * BLOCK_N
offset_k = pid_sk * BLOCK_K + tl.arange(0, BLOCK_K)
ram = tl.max_contiguous(tl.multiple_of(offset_m % M, BLOCK_M), BLOCK_M)
rbn = tl.max_contiguous(tl.multiple_of(offset_n % N, BLOCK_N), BLOCK_N)
a_ptr = (input_ptr + cur_seq_start * xm_stride + ram[:, None] * xm_stride +
offset_k[None, :] * xk_stride)
b_ptr = (lora_ptr + l0_stride * lora_index + rbn[None, :] * lora_k_stride +
offset_k[:, None] * lora_n_stride)
accumulator = tl.zeros((BLOCK_M, BLOCK_N), dtype=tl.float32)
for k in range(0, tl.cdiv(K, BLOCK_K * SPLIT_K)):
if EVEN_K:
tiled_a = tl.load(a_ptr)
tiled_b = tl.load(b_ptr)
else:
k_remaining = K - k * (BLOCK_K * SPLIT_K)
tiled_a = tl.load(a_ptr,
mask=offset_k[None, :] < k_remaining,
other=0.0)
tiled_b = tl.load(b_ptr,
mask=offset_k[:, None] < k_remaining,
other=0.0)
accumulator += tl.dot(tiled_a, tiled_b)
a_ptr += BLOCK_K * SPLIT_K * xk_stride
b_ptr += BLOCK_K * SPLIT_K * lora_n_stride
offset_cm = cur_seq_start + tl.arange(0, BLOCK_M) + pid_m * BLOCK_M
offset_cn = tl.arange(0, BLOCK_N) + pid_n * BLOCK_N
c_ptr = (out_ptr + offset_cm[:, None] * cm_stride +
offset_cn[None, :] * cn_stride)
c_mask = (offset_cm[:, None] <
(cur_seq_start + M)) & (offset_cn[None, :] < N)
accumulator *= scaling
# handles write-back with reduction-splitting
if SPLIT_K == 1:
tl.store(c_ptr, accumulator, mask=c_mask)
else:
tl.atomic_add(c_ptr, accumulator, mask=c_mask)
@torch.inference_mode()
def sgmv_shrink(
inputs: torch.Tensor,
lora_a_weights: torch.Tensor,
output_tensor: torch.Tensor,
b_seq_start_loc: torch.Tensor,
seq_len_tensor: torch.Tensor,
lora_indices_tensor: torch.Tensor,
batches: int,
max_seq_length: int,
scaling: float,
):
"""
Args:
inputs (torch.Tensor): input tensor
lora_a_weights (torch.Tensor): lora'a weight
output_tensor (torch.Tensor): output tensor
b_seq_start_loc (torch.Tensor): (batch_size,). The cumulative
sequence lengths of the sequences in the batch, used to index
into sequence. E.g.,if the sequence length is [4, 6], it is
[0, 4].
seq_len_tensor (torch.Tensor): (batch_size,). record the sequence
length of the sequences in the batch
lora_indices_tensor (torch.Tensor): (batch_size,). The LoRA index
corresponding to each batch. An index of -1 means no lora should be
applied.
batches (int): batch size
max_seq_length (int): The max sequence lengths of the sequences
in the batch
scaling (float): Scaling factor.
"""
assert inputs.dtype == lora_a_weights.dtype
assert inputs.dtype in [torch.float16, torch.bfloat16]
assert lora_a_weights.dtype in [
torch.float16,
torch.bfloat16,
]
assert inputs.size(1) == lora_a_weights.size(-1)
assert b_seq_start_loc.size(0) == batches
assert lora_indices_tensor.size(0) == batches
assert inputs.is_contiguous()
if lora_a_weights.ndim == 4: # shape:(lora_num,1,rank, size)
assert lora_a_weights.size(1) == 1
lora_a_weights = lora_a_weights.squeeze(dim=1)
else:
assert lora_a_weights.ndim == 3 # shape:(lora_num,rank, size)
assert lora_a_weights.is_contiguous()
assert output_tensor.is_contiguous()
# TODO tuning this config
N, K = lora_a_weights.shape[-2:] # K=hidden_size,N=rank
BLOCK_M = 32
BLOCK_N = 16
BLOCK_K = 32
SPLIT_K = 8
EVEN_K = K % (BLOCK_K * SPLIT_K) == 0
grid = (
triton.cdiv(max_seq_length, BLOCK_M) * triton.cdiv(N, BLOCK_N),
SPLIT_K,
batches,
)
_sgmv_shrink_kernel[grid](
inputs,
lora_a_weights,
output_tensor,
N,
K,
b_seq_start_loc,
seq_len_tensor,
lora_indices_tensor,
scaling,
inputs.stride(0),
inputs.stride(1),
lora_a_weights.stride(0),
lora_a_weights.stride(1),
lora_a_weights.stride(2),
output_tensor.stride(0),
output_tensor.stride(1),
BLOCK_M,
BLOCK_N,
BLOCK_K,
EVEN_K,
SPLIT_K,
)
return

46
vllm/lora/ops/utils.py Normal file
View File

@ -0,0 +1,46 @@
import functools
from typing import Dict
@functools.lru_cache
def _get_op_configs(op_type: str, batch: int, hidden_size: int):
# TODO: add optimal configurations
return None
def _check_divisibility(hidden_size: int):
# The bgmv_expand kernel requires that the hidden_size be divisible by
# the number below.
divisibility = [2, 4, 8, 16, 32, 64]
divisibility.sort(reverse=True)
for div in divisibility:
if hidden_size % div == 0:
return div
# hidden_size is an odd number
return 1
def _get_default_config(op_type: str, batch: int, hidden_size: int):
if op_type == "expand":
return {
"BLOCK_N": 256,
"SPLIT_N": _check_divisibility(hidden_size),
"num_warps": 8
}
else:
return {"BLOCK_K": 256, "SPLIT_K": 64, "num_warps": 8}
def get_lora_op_configs(op_type: str, batch: int,
hidden_size: int) -> Dict[str, int]:
"""Inspired by `fused_moe_kernel`
The return value will be a dictionary mapping an irregular grid of batch
sizes and hidden_size to configurations of the bgmv-related kernel.
NOTE: It currently only supports the default configuration. We plan to
generate optimal configurations for different hardware in the future using
scripts similar to `benchmark_moe.py`.
"""
config = _get_op_configs(op_type, batch, hidden_size)
if not config:
config = _get_default_config(op_type, batch, hidden_size)
return config

View File

@ -1,207 +1,604 @@
# Based on code from https://github.com/punica-ai/punica
"""
Based on:
Chen, L., Ye, Z., Wu, Y., Zhuo, D., Ceze, L., & Krishnamurthy, A. (2023).
Punica: Multi-Tenant LoRA Serving.
https://arxiv.org/abs/2310.18547
"""
from typing import Optional
from typing import TYPE_CHECKING, Callable, List, Optional, Tuple, Union
import torch
from vllm import _custom_ops as ops
from vllm.platforms import current_platform
from vllm.triton_utils import HAS_TRITON
if HAS_TRITON:
from vllm.lora.ops.bgmv_expand import bgmv_expand
from vllm.lora.ops.bgmv_expand_slice import bgmv_expand_slice
from vllm.lora.ops.bgmv_shrink import bgmv_shrink
from vllm.lora.ops.sgmv_expand import sgmv_expand
from vllm.lora.ops.sgmv_expand_slice import sgmv_expand_slice
from vllm.lora.ops.sgmv_shrink import sgmv_shrink
if TYPE_CHECKING:
# avoid circuit import
from vllm.lora.layers import LoRAMapping
from vllm.lora.models import LongContextLoRAContext
def _check_punica_support():
if ops.is_custom_op_supported("_punica_C::dispatch_bgmv"):
return
def compute_meta(
token_lora_tensor: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, int, int, bool]:
"""
Get the information required for the sgmv kernel. With the features:
1. If consecutive requests in the batch use the same LoRA, this function
will combine them into a single request, improving sgmv kernel inference
performance.
2. At the beginning of each prefill stage inference, recalculations are
needed based on the input, but only once.
"""
if current_platform.get_device_capability() < (8, 0):
raise ImportError(
"punica LoRA kernels require compute capability >= 8.0")
lora_indices_tensor, seq_length_tensor = torch.unique_consecutive(
token_lora_tensor, return_counts=True)
cum_result = torch.cumsum(seq_length_tensor, dim=0)
b_seq_start_tensor = torch.zeros_like(seq_length_tensor)
b_seq_start_tensor[1:].copy_(cum_result[:-1])
max_length = seq_length_tensor.max().item()
batch_size = lora_indices_tensor.size(0)
no_lora = False
# -1 means no lora should be applied. Use `no_lora` to determine whether
# the current step requires LoRA. If LoRA is not needed, the prefill stage
# does not need to launch the triton kernel, which can improve performance
if batch_size == 1 and lora_indices_tensor == -1:
no_lora = True
return (b_seq_start_tensor, seq_length_tensor, lora_indices_tensor,
batch_size, max_length, no_lora)
# TODO see if this can be vectorized
def convert_mapping(
mapping: "LoRAMapping",
lora_index_to_id: List[Optional[int]],
max_loras: int,
vocab_size: int,
extra_vocab_size: int,
long_lora_context: Optional["LongContextLoRAContext"] = None,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor,
Optional[torch.Tensor], List[int]]:
"""Converts LoRAMapping to index tensors.
Args:
mapping: LoRAMapping mapping rows in a batch to LoRA ids.
lora_index_to_id: List mapping LoRA ids to LoRA indices.
max_loras: Maximum number of LoRAs.
vocab_size: Model vocab size.
extra_vocab_size: Extra vocab size each LoRA can have.
long_lora_context: Passed if there are long context lora in a batch.
Returns:
A tuple of tensors:
base_indices: Tensor of shape [batch_size] mapping batch rows to
LoRA indices.
sampler_indices: Tensor of shape [batch_size] mapping requests to
LoRA indices for sampler. For generation, this will be the
same as base_indicies. For prefill, this will map requests
to LoRA indices.
sampler_indices_padded: Tensor of shape [batch_size] mapping
requests to LoRA indices for sampler with padding.
Same as sampler_indicies, but -1 is replaced with
max_loras.
embeddings_indices: Tensor of shape [2, batch_size] mapping
requests to embedding indices. First row is for embeddings
added by the LoRAs, second row is for the LoRA.lora_a
embeddings.
long_lora_indices: Tensor of shape [batch_size] mapping
requests to RoPE offsets and rot dims for long LoRAs.
None if long context lora doesn't exist.
indices_len: List of lengths of the above tensors. It contains
(base_indices, sampler_indices, sampler_indices_padded,
embeddings_indices, long_lora_indices).
"""
index_mapping_indices: List[int] = list(mapping.index_mapping).copy()
embedding_indices = index_mapping_indices.copy()
lora_indices = index_mapping_indices.copy()
long_lora_offsets: Optional[torch.Tensor] = None
if long_lora_context:
long_lora_offsets = torch.zeros(len(index_mapping_indices),
device="cuda",
dtype=torch.long)
prompt_mapping: List[int] = [
lora_index_to_id.index(x) if x > 0 else -1
for x in mapping.prompt_mapping
]
lora_idx = None
for i in range(len(index_mapping_indices)):
# TODO index can be slow. optimize
lora_idx = (lora_index_to_id.index(index_mapping_indices[i])
if index_mapping_indices[i] > 0 else -1)
embedding_indices[i] = lora_idx if index_mapping_indices[i] > 0 else 0
lora_indices[i] = lora_idx
if long_lora_context:
assert long_lora_offsets is not None
lora_offset: int = long_lora_context.offsets_by_lora_id.get(
index_mapping_indices[i], 0)
long_lora_offsets[i] = lora_offset
indices_list: List[Union[List[int], torch.Tensor]] = [
index_mapping_indices,
lora_indices,
embedding_indices,
]
if long_lora_context:
assert long_lora_offsets is not None
indices_list.append(long_lora_offsets)
indices = torch.tensor(indices_list, dtype=torch.long, device="cuda")
prompt_mapping_tensor = torch.tensor(prompt_mapping,
device="cuda",
dtype=torch.long)
embeddings_indices = torch.stack([
indices[2] * extra_vocab_size,
indices[2] * (vocab_size + extra_vocab_size),
])
embeddings_indices[embeddings_indices == -1] = max_loras - 1
base_indices = indices[1]
sampler_indices = prompt_mapping_tensor
sampler_indices_padded = sampler_indices.clone()
sampler_indices_padded[sampler_indices_padded == -1] = max_loras - 1
sampler_indices_padded = torch.arange(
0, len(sampler_indices_padded), device="cuda", dtype=torch.long) + (
sampler_indices_padded * len(sampler_indices_padded))
long_lora_indices = None
long_lora_indices_len: Optional[int] = None
if long_lora_context:
long_lora_indices = indices[3]
long_lora_indices_len = long_lora_indices.shape[-1]
# Contain length of indices tensors. Used to index into each tensor.
indices_len = [
base_indices.shape[-1],
sampler_indices.shape[-1],
sampler_indices_padded.shape[-1],
embeddings_indices.shape[-1],
]
if long_lora_indices_len is not None:
indices_len.append(long_lora_indices_len)
else:
raise ImportError(
"punica LoRA kernels could not be imported. If you built vLLM "
"from source, make sure VLLM_INSTALL_PUNICA_KERNELS=1 env var "
"was set.")
# If long_lora doesn't exist,append None
indices_len.append(None)
def bgmv(
y: torch.Tensor,
x: torch.Tensor,
w_t_all: torch.Tensor,
indicies: torch.LongTensor,
layer_idx: int,
scale: float,
):
"""
Semantics:
y[i] += (
x[i].unsqueeze(0)
@ w_t_all[indices[i], layer_idx, :, :].transpose(-1, -2)
* scale
).squeeze(0)
Args:
y: Shape: `[B, H2]`. Output vectors. Will be changed in-place.
x: Shape: `[B, H1]`. Input vectors.
w_t_all: Shape: `[None, L, H2, H1]`. All of the transposed weight
matrices.
indicies: Shape: `[B]`. Indices of the weight matrices.
layer_idx: Layer index of the weight matrices.
scale: Scaling factor.
"""
_check_punica_support()
ops.dispatch_bgmv(y, x, w_t_all, indicies, layer_idx, scale)
def dispatch_bgmv_low_level(y: torch.Tensor, x: torch.Tensor,
w_t_all: torch.Tensor, indicies: torch.LongTensor,
layer_idx: int, scale: float, y_offset: int,
y_slice_size: int):
"""
Same as `bgmv` but you can operate on slices of y.
Pass whole y, define y_offset and y_slice_size.
Semantics:
y[i] += (
x[i].unsqueeze(0)
@ w_t_all[indices[i], layer_idx, :, :].transpose(-1, -2)
* scale
).squeeze(0)
Args:
y: Shape: `[B, H2]`. Output vectors. Will be changed in-place.
x: Shape: `[B, H1]`. Input vectors.
w_t_all: Shape: `[None, L, y_slice_size, H1]`. Column partition of
all of the transposed LoRA matrices.
indicies: Shape: `[B]`. Indices of the LoRA weights.
layer_idx: Layer index of LoRA weights.
scale: Scaling factor.
y_offset: Offset to apply to the starting column of y.
y_slice_size: Size of the y column slice.
"""
_check_punica_support()
ops.dispatch_bgmv_low_level(
y,
x,
w_t_all,
indicies,
layer_idx,
scale,
x.size(1),
y_slice_size,
y_offset,
return (
base_indices,
sampler_indices,
sampler_indices_padded,
embeddings_indices,
long_lora_indices,
indices_len,
)
def add_lora(y: torch.Tensor,
x: torch.Tensor,
wa_t_all: torch.Tensor,
wb_t_all: torch.Tensor,
indicies: torch.LongTensor,
layer_idx: int,
scale: float,
*,
buffer: Optional[torch.Tensor] = None):
class PunicaWrapper:
"""
Semantics:
y[i] += (
x[i].unsqueeze(0)
@ wa_t_all[indices[i], layer_idx, :, :].transpose(-1, -2)
@ wb_t_all[indices[i], layer_idx, :, :].transpose(-1, -2)
* scale
).squeeze(0)
Args:
y: Shape: `[B, H2]`. Output vectors. Will be changed in-place.
x: Shape: `[B, H1]`. Input vectors.
wa_t_all: Shape: `[None, L, R, H1]`. All of the transposed
LoRA A matrices.
wb_t_all: Shape: `[None, L, H2, R]`. All of the transposed
LoRA B matrices.
indicies: Shape: `[B]`. Indices of the LoRA weights.
layer_idx: Layer index of LoRA weights.
scale: Scaling factor.
buffer: Optional. Shape: `[B, R]`. Temporary buffer.
PunicaWrapper is designed to manage and provide metadata for the punica
kernel. The main function is to maintain the state information for
Multi-LoRA, and to provide the interface for the punica kernel.
"""
_check_punica_support()
r = wb_t_all.size(-1)
if buffer is None:
# We set the buffer to be float32 by default to avoid
# numerical inaccuracies that would otherwise happen
# due to downcasting.
buffer = torch.zeros((x.size(0), r),
dtype=torch.float32,
device=x.device)
ops.dispatch_bgmv(buffer, x, wa_t_all, indicies, layer_idx, 1.0)
ops.dispatch_bgmv(y, buffer, wb_t_all, indicies, layer_idx, scale)
def __init__(self, max_num_batched_tokens: int, max_batches: int,
device: str):
self._token_lora_indices = torch.empty(max_num_batched_tokens,
dtype=torch.long,
device=device)
self._sampler_indices = torch.empty(max_num_batched_tokens,
dtype=torch.long,
device=device)
self._sampler_indices_padded = torch.empty(max_num_batched_tokens,
dtype=torch.long,
device=device)
self._embeddings_indices = torch.empty(2,
max_num_batched_tokens,
dtype=torch.long,
device=device)
self._long_lora_indices = torch.empty(max_num_batched_tokens,
dtype=torch.long,
device=device)
# 5 is the number of indicies tensors.
# base_indices, sampler_indices, sampler_indices_padded,
# embeddings_indices,long_lora_indices
self.indices_len: List[Optional[int]] = [None] * 5
# these attributes are the information required for sgmv kernel
self._seq_start_locs = torch.empty(max_batches,
dtype=torch.long,
device=device)
self._seq_lengths = torch.empty(max_batches,
dtype=torch.long,
device=device)
self._lora_indices_per_batch = torch.empty(max_batches,
dtype=torch.long,
device=device)
self.max_length: int = 0
self.batch_size: int = -1
self.is_prefill = False
self.no_lora = False
def add_lora_slice(y: torch.Tensor,
x: torch.Tensor,
wa_t_all: torch.Tensor,
wb_t_all: torch.Tensor,
indicies: torch.LongTensor,
layer_idx: int,
scale: float,
y_offset: int,
y_slice_size: int,
*,
buffer: Optional[torch.Tensor] = None):
"""
Same as `add_lora` but you can operate on slices of y.
Pass whole y, define y_offset and y_slice_size.
def update_metadata(
self,
mapping: "LoRAMapping",
lora_index_to_id: List[Optional[int]],
max_loras: int,
vocab_size: int,
extra_vocab_size: int,
long_lora_context: Optional["LongContextLoRAContext"] = None,
):
Semantics:
y[i] += (
x[i].unsqueeze(0)
@ wa_t_all[indices[i], layer_idx, :, :].transpose(-1, -2)
@ wb_t_all[indices[i], layer_idx, :, :].transpose(-1, -2)
* scale
).squeeze(0)
self._update_base_metadata(mapping, lora_index_to_id, max_loras,
vocab_size, extra_vocab_size,
long_lora_context)
if mapping.is_prefill:
# Update metadata required for prefill-related operators.
self._update_prefill_metada(self.token_lora_indices)
self.is_prefill = True
else:
self.is_prefill = False
Args:
y: Shape: `[B, H2]`. Output vectors. Will be changed in-place.
x: Shape: `[B, H1]`. Input vectors.
wa_t_all: Shape: `[None, L, R, H1]`. All of the transposed
LoRA A matrices.
wb_t_all: Shape: `[None, L, H2, R]`. All of the transposed
LoRA B matrices.
indicies: Shape: `[B]`. Indices of the LoRA weights.
layer_idx: Layer index of LoRA weights.
scale: Scaling factor.
y_offset: Offset to apply to the starting column of y.
y_slice_size: Size of the y column slice.
"""
_check_punica_support()
def _update_base_metadata(
self,
mapping: "LoRAMapping",
lora_index_to_id: List[Optional[int]],
max_loras: int,
vocab_size: int,
extra_vocab_size: int,
long_lora_context: Optional["LongContextLoRAContext"] = None,
):
(
base_indices,
sampler_indices,
sampler_indices_padded,
embeddings_indices,
long_lora_offsets_tensor,
indices_len,
) = convert_mapping(
mapping,
lora_index_to_id,
max_loras,
vocab_size,
extra_vocab_size,
long_lora_context,
)
self._token_lora_indices[:base_indices.shape[0]].copy_(base_indices)
self._sampler_indices[:sampler_indices.shape[0]].copy_(sampler_indices)
self._sampler_indices_padded[:sampler_indices_padded.shape[0]].copy_(
sampler_indices_padded)
self._embeddings_indices[:embeddings_indices.
shape[0], :embeddings_indices.shape[1]].copy_(
embeddings_indices)
if long_lora_offsets_tensor is not None:
self._long_lora_indices[:long_lora_offsets_tensor.shape[0]].copy_(
long_lora_offsets_tensor)
else:
self._long_lora_indices.zero_()
r = wb_t_all.size(-1)
if buffer is None:
# We set the buffer to be float32 by default to avoid
# numerical inaccuracies that would otherwise happen
# due to downcasting.
buffer = torch.zeros((x.size(0), r),
dtype=torch.float32,
device=x.device)
ops.dispatch_bgmv_low_level(
buffer,
x,
wa_t_all,
indicies,
layer_idx,
1.0,
x.size(1),
buffer.size(1),
0,
)
ops.dispatch_bgmv_low_level(
y,
buffer,
wb_t_all,
indicies,
layer_idx,
scale,
buffer.size(1),
y_slice_size,
y_offset,
)
self.indices_len[:] = indices_len
def _update_prefill_metada(self, token_lora_tensor: torch.Tensor) -> None:
(b_seq_start_tensor, seq_length_tensor, lora_indices_tensor,
batch_size, max_length, no_lora) = compute_meta(token_lora_tensor)
self._seq_start_locs[:b_seq_start_tensor.shape[0]].copy_(
b_seq_start_tensor)
self._seq_lengths[:seq_length_tensor.shape[0]].copy_(seq_length_tensor)
self._lora_indices_per_batch[:lora_indices_tensor.shape[0]].copy_(
lora_indices_tensor)
self.batch_size = batch_size
self.max_length = max_length
self.no_lora = no_lora
@property
def prefill_metadata(
self) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, int, int]:
"""
This property provides a convenient way to access the necessary
metadata for prefill-related kernel computations.
1. seq_start_locs: Tensor of sequence start positions
2. seq_lengths: Tensor of sequence lengths
3. lora_indices_per_batch: Tensor of lora indices, and an index of
-1 means no lora should be applied.
4. batch_size: batch size after clustering identical lora indices
5. max_length: The maximum sequence length in the batch
"""
return (self._seq_start_locs[:self.batch_size],
self._seq_lengths[:self.batch_size],
self._lora_indices_per_batch[:self.batch_size],
self.batch_size, self.max_length)
@property
def token_lora_indices(self) -> torch.Tensor:
"""
This property provides the lora indices corresponding to each token
in the batch. An index of -1 means no lora should be applied.
"""
token_lora_len = self.indices_len[0]
return self._token_lora_indices[:token_lora_len]
@property
def sampler_indices(self) -> torch.Tensor:
"""
This property is used to access the lora indices specifically for
LogitsProcessorWithLoRA
"""
sampler_indices_len = self.indices_len[1]
return self._sampler_indices[:sampler_indices_len]
@property
def sampler_indices_padded(self) -> torch.Tensor:
"""
This property provides access to padded sampler indices
"""
indices_padded_len = self.indices_len[2]
return self._sampler_indices_padded[:indices_padded_len]
@property
def embeddings_indices(self) -> torch.Tensor:
"""
This property provides access to the indices used for lora embeddings,
specifically for VocabParallelEmbeddingWithLoRA
"""
embeddings_indices_len = self.indices_len[3]
return self._embeddings_indices[:, :embeddings_indices_len]
@property
def long_lora_indices(self) -> torch.Tensor:
"""
This property provides access to the indices used for long context
lora, specifically for LinearScalingRotaryEmbeddingWithLora
"""
long_lora_len = self.indices_len[4]
return self._long_lora_indices[:long_lora_len]
def shrink_prefill(
self,
y: torch.Tensor,
x: torch.Tensor,
w_t_all: torch.Tensor,
scale: float,
):
#No LoRA request, so return directly
if self.no_lora:
return
sgmv_shrink(
x,
w_t_all,
y,
*self.prefill_metadata,
scale,
)
def shrink_decode(
self,
y: torch.Tensor,
x: torch.Tensor,
w_t_all: torch.Tensor,
scale: float,
):
bgmv_shrink(x, w_t_all, y, self.token_lora_indices, scale)
def expand_prefill(
self,
y: torch.Tensor,
x: torch.Tensor,
w_t_all: torch.Tensor,
add_input: bool,
):
#No LoRA request, so return directly
if self.no_lora:
return
sgmv_expand(
x,
w_t_all,
y,
*self.prefill_metadata,
add_input,
)
def expand_decode(
self,
y: torch.Tensor,
x: torch.Tensor,
w_t_all: torch.Tensor,
add_input: bool,
):
bgmv_expand(x, w_t_all, y, self.token_lora_indices, add_input)
def expand_slice_prefill(
self,
y: torch.Tensor,
x: torch.Tensor,
w_t_all: torch.Tensor,
y_offset: Optional[int],
y_slice_size: Optional[int],
add_input: bool,
):
#No LoRA request, so return directly
if self.no_lora:
return
sgmv_expand_slice(
x,
w_t_all,
y,
*self.prefill_metadata,
y_offset,
y_slice_size,
add_input,
)
def expand_slice_decode(
self,
y: torch.Tensor,
x: torch.Tensor,
w_t_all: torch.Tensor,
y_offset: Optional[int],
y_slice_size: Optional[int],
add_input: bool,
):
bgmv_expand_slice(x, w_t_all, y, self.token_lora_indices, y_offset,
y_slice_size, add_input)
def add_shrink(
self,
y: torch.Tensor,
x: torch.Tensor,
w_t_all: torch.Tensor,
scale: float,
):
"""
Perform the ` y+=x@w_t_all` computation, which is suitable for the
GEMM of lora'a.
When `is_prefill is` true, it indicates that it is currently the
prefill stage, and the `shrink_prefill` function should be called.
Otherwise, it is the decode stage, and the shrink_decode function
should be called.
"""
shrink_fun: Callable = (self.shrink_prefill
if self.is_prefill else self.shrink_decode)
shrink_fun(y, x, w_t_all, scale)
def add_expand(
self,
y: torch.Tensor,
x: torch.Tensor,
w_t_all: torch.Tensor,
add_input: bool = True,
):
"""
Perform the ` y+=x@w_t_all` computation, which is suitable for the
GEMM of lora'b.
When `is_prefill` is true, it indicates that it is currently the
prefill stage, and the `expand_prefill` function should be called.
Otherwise, it is the decode stage, and the expand_decode function
should be called.
"""
expand_fun: Callable = (self.expand_prefill
if self.is_prefill else self.expand_decode)
expand_fun(y, x, w_t_all, add_input)
def add_expand_slice(self,
y: torch.Tensor,
x: torch.Tensor,
w_t_all: torch.Tensor,
y_offset: Optional[int],
y_slice_size: Optional[int],
add_input: bool = True):
"""
Similar to `add_expand`
"""
expand_slice_fun: Callable = (self.expand_slice_prefill
if self.is_prefill else
self.expand_slice_decode)
expand_slice_fun(y, x, w_t_all, y_offset, y_slice_size, add_input)
def add_lora(self,
y: torch.Tensor,
x: torch.Tensor,
wa_t_all: torch.Tensor,
wb_t_all: torch.Tensor,
scale: float,
y_offset: Optional[int] = None,
y_slice_size: Optional[int] = None,
*,
buffer: Optional[torch.Tensor] = None) -> None:
"""
Semantics:
y[i] += (
x[i].unsqueeze(0)
@ wa_t_all[indices[i], layer_idx, :, :].transpose(-1, -2)
@ wb_t_all[indices[i], layer_idx, :, :].transpose(-1, -2)
* scale
).squeeze(0)
Args:
y (torch.Tensor): Output tensor. Will be changed in-place.
x (torch.Tensor): Input tensor
wa_t_all (torch.Tensor): lora_a's weight
wb_t_all (torch.Tensor): lora_b's weight
scale (float): Scaling factor.
y_offset (Optional[int], optional): Offset to apply to the starting
column of y.
y_slice_size (Optional[int], optional): Size of the y column slice..
buffer (Optional[torch.Tensor], optional): Defaults to None.
"""
y_org = y
y = y.view(-1, y.shape[-1])
x = x.view(-1, x.shape[-1])
r = wb_t_all.size(-1)
if buffer is None:
# We set the buffer to be float32 by default ,refer to:
# https://github.com/triton-lang/triton/issues/1387
buffer = torch.zeros((x.size(0), r),
dtype=torch.float32,
device=x.device)
self.add_shrink(buffer, x, wa_t_all, scale)
if y_offset is None and y_slice_size is None:
self.add_expand(y, buffer, wb_t_all, add_input=True)
else:
self.add_expand_slice(y,
buffer,
wb_t_all,
y_offset,
y_slice_size,
add_input=True)
y = y.view_as(y_org)
def add_lora_packed_nslice(self, y: torch.Tensor, x: torch.Tensor,
lora_a_stacked: Tuple[torch.Tensor,
torch.Tensor,
torch.Tensor],
lora_b_stacked: Tuple[torch.Tensor,
torch.Tensor,
torch.Tensor],
scale: float,
output_slices: Tuple[int, ...]) -> None:
"""
Applies lora to each input. Similar to add_lora, This method is
used for layers that are composed of multiple sublayers
(slices) packed together.
"""
y_org = y
x = x.view(-1, x.shape[-1])
y = y.view(-1, y.shape[-1])
offset_left = 0
# TODO fuse these kernels
for slice_idx in range(len(output_slices)):
self.add_lora(y, x, lora_a_stacked[slice_idx],
lora_b_stacked[slice_idx], scale, offset_left,
output_slices[slice_idx])
offset_left += output_slices[slice_idx]
y = y.view_as(y_org)
def add_lora_logits(self,
y: torch.Tensor,
x: torch.Tensor,
wa_t_all: torch.Tensor,
wb_t_all: torch.Tensor,
scale,
*,
buffer: Optional[torch.Tensor] = None) -> None:
"""
LogitsProcessorWithLoRA always using bgmv
"""
y_org = y
y = y.view(-1, y.shape[-1])
x = x.view(-1, x.shape[-1])
r = wb_t_all.size(-1)
if buffer is None:
# We set the buffer to be float32 by default ,refer to:
# https://github.com/triton-lang/triton/issues/1387
buffer = torch.zeros((x.size(0), r),
dtype=torch.float32,
device=x.device)
bgmv_shrink(x, wa_t_all, buffer, self.sampler_indices, scale)
bgmv_expand(buffer, wb_t_all, y, self.sampler_indices, add_inputs=True)
y = y.view_as(y_org)

View File

@ -6,5 +6,6 @@ if HAS_TRITON:
from vllm.triton_utils.custom_cache_manager import (
maybe_set_triton_cache_manager)
from vllm.triton_utils.libentry import libentry
__all__ += ["maybe_set_triton_cache_manager"]
__all__ += ["maybe_set_triton_cache_manager", "libentry"]

View File

@ -0,0 +1,167 @@
# Copied From https://github.com/FlagOpen/FlagGems
import inspect
import triton
class LibEntry(triton.KernelInterface):
def __init__(
self,
fn,
):
self.fn = fn
self.arg_names = fn.arg_names
self.divisibility = 16
self.kernel_cache = dict()
fn = self.fn
while not isinstance(fn, triton.runtime.JITFunction):
fn = fn.fn
self.jit_function: triton.runtime.JITFunction = fn
self.specialize_indices = [
p.num for p in self.jit_function.params
if not p.is_constexpr and not p.do_not_specialize
]
self.do_not_specialize_indices = [
p.num for p in self.jit_function.params
if not p.is_constexpr and p.do_not_specialize
]
def key(self, spec_args, dns_args, const_args):
spec_key = [(arg.dtype, arg.data_ptr() %
self.divisibility == 0) if hasattr(arg, "data_ptr") else
(type(arg), arg) for arg in spec_args]
dns_key = [
arg.dtype if hasattr(
arg, "data_ptr") else type(arg) if not isinstance(arg, int)
else "i32" if -(2**31) <= arg and arg <= 2**31 -
1 else "u64" if 2**63 <= arg and arg <= 2**64 - 1 else "i64"
for arg in dns_args
]
# const args passed by position
return tuple(spec_key + dns_key + const_args)
def run(self, *args, **kwargs):
grid = kwargs["grid"]
# collect all the arguments
spec_args = [] # specialize arguments
dns_args = [] # do not specialize arguments
const_args = [] # constexpr arguments
k_args = [] # kernel arguments
for i, arg in enumerate(args):
if i in self.specialize_indices:
k_args.append(arg)
spec_args.append(arg)
elif i in self.do_not_specialize_indices:
k_args.append(arg)
dns_args.append(arg)
else:
const_args.append(arg)
for p in self.jit_function.params[len(args):]:
if p.name in kwargs:
val = kwargs[p.name]
elif p.default is inspect._empty:
continue
else:
val = p.default
if p.is_constexpr:
const_args.append(val)
elif p.do_not_specialize:
dns_args.append(val)
k_args.append(val)
else:
spec_args.append(val)
k_args.append(val)
entry_key = self.key(spec_args, dns_args, const_args)
if entry_key not in self.kernel_cache:
# compile the kernel also completes the related computations
kernel = self.fn.run(*args, **kwargs)
fn = self.fn
# collect constexpr arguments for grid computation
constexprs = {}
while not isinstance(fn, triton.runtime.JITFunction):
if isinstance(fn, triton.runtime.Autotuner):
config = fn.best_config
constexprs["num_warps"] = config.num_warps
constexprs["num_stages"] = config.num_stages
constexprs["num_ctas"] = config.num_ctas
constexprs = {**constexprs, **config.kwargs}
elif isinstance(fn, triton.runtime.Heuristics):
for v, heur in fn.values.items():
constexprs[v] = heur({
**dict(zip(fn.arg_names, args)),
**kwargs,
**constexprs,
})
else:
raise RuntimeError("Invalid Runtime Function")
fn = fn.fn
# In vLLM, certain kernels like fused_moe_kernel get the
# best_config(as kwargs) from a configuration json file, rather
# than using Autotuner & Heuristics. Therefore, all their constexprs
# (tl.constexpr) are assigned values through the following loop.
for p in self.jit_function.params:
if p.is_constexpr and p.name not in constexprs:
constexprs[p.name] = p.default #default=inspect._empty
self.kernel_cache[entry_key] = (kernel, constexprs)
else:
# load kernel from cache directly
kernel, constexprs = self.kernel_cache[entry_key]
if callable(grid):
# collect all arguments to the grid fnie:
# 1. args,
# 2. kwargs,
# 3. all all other captured arguments in CompiledKernel from
# Autotunner & Heuristics when kwargs & captured args conflict,
# captured args have higher priority
# 4. We must filter out captured args with default value firstly
constexprs = {
k: v
for k, v in constexprs.items() if v is not inspect._empty
}
meta = {
**dict(zip(self.arg_names, args)),
**kwargs,
**constexprs,
}
grid = grid(meta)
if isinstance(grid, tuple):
grid = grid + (1, 1)
elif isinstance(grid, list):
grid = grid + [1, 1]
kernel[grid[0:3]](*k_args)
# maintaining the same return type as the JITFunction.run
return kernel
def libentry():
"""
Decorator for triton library entries.
Motivation:
The runtime overhead of Triton kernels is the reason for the lower
performance of small kernels, particularly evident with smaller models.
Using this decorator can reduce Triton runtime overhead.
How:
The `run` function of JITFunction needs to accomplish:
- Parameter binding using inspect
- KernelArg type wrapping
- Cache key calculation
When dealing with small size, these steps can become bottlenecks in
Triton runtime. Libentry simplifies these steps to reduce runtime
overhead, thereby improving the runtime expenses of small kernels.
NOTE:
When Triton is upgraded to version 3.0.0, libentry can be removed,
see: https://github.com/vllm-project/vllm/pull/5036#issuecomment-2243396245
"""
def decorator(fn):
return LibEntry(fn)
return decorator

View File

@ -578,9 +578,9 @@ class ModelInputForGPUBuilder(ModelRunnerInputBuilderBase[ModelInputForGPU]):
for inter_data in self.inter_data_list
])
lora_mapping = LoRAMapping(
lora_index_mapping,
lora_prompt_mapping,
)
**dict(index_mapping=lora_index_mapping,
prompt_mapping=lora_prompt_mapping,
is_prefill=not self.decode_only))
# Prompt adapter data.
prompt_adapter_requests: Set[PromptAdapterRequest] = set()
@ -1152,9 +1152,9 @@ class GPUModelRunnerBase(ModelRunnerBase[TModelInputForGPU]):
if self.lora_config:
lora_mapping = LoRAMapping(
[0] * batch_size,
[0] * batch_size,
)
**dict(index_mapping=[0] * batch_size,
prompt_mapping=[0] * batch_size,
is_prefill=False))
self.set_active_loras(set(), lora_mapping)
if self.prompt_adapter_config: