Address Phi modeling update 2 (#2428)

This commit is contained in:
Gary Hui 2024-01-13 04:16:49 +08:00 committed by GitHub
parent ce036244c9
commit 7878958c0d
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 61 additions and 63 deletions

View File

@ -33,7 +33,7 @@ _MODELS = {
"MptForCausalLM": ("mpt", "MPTForCausalLM"),
"MPTForCausalLM": ("mpt", "MPTForCausalLM"),
"OPTForCausalLM": ("opt", "OPTForCausalLM"),
"PhiForCausalLM": ("phi_1_5", "PhiForCausalLM"),
"PhiForCausalLM": ("phi", "PhiForCausalLM"),
"QWenLMHeadModel": ("qwen", "QWenLMHeadModel"),
"RWForCausalLM": ("falcon", "FalconForCausalLM"),
"YiForCausalLM": ("yi", "YiForCausalLM"),

View File

@ -62,20 +62,6 @@ from vllm.sequence import SamplerOutput
KVCache = Tuple[torch.Tensor, torch.Tensor]
class PhiEmbedding(nn.Module):
def __init__(self, config: PretrainedConfig):
super().__init__()
self.wte = VocabParallelEmbedding(
config.vocab_size,
config.hidden_size,
)
def forward(self, input_ids: torch.LongTensor):
return self.wte(input_ids)
class PhiAttention(nn.Module):
def __init__(self,
@ -93,27 +79,22 @@ class PhiAttention(nn.Module):
tensor_model_parallel_world_size)
# pylint: disable=C0103
self.Wqkv = QKVParallelLinear(
self.qkv_proj = QKVParallelLinear(
self.hidden_size,
self.head_size,
self.total_num_heads,
bias=True,
linear_method=linear_method,
)
self.qkv_proj = QKVParallelLinear(
config.hidden_size,
self.head_size,
self.total_num_heads,
bias=False,
linear_method=linear_method,
)
self.out_proj = RowParallelLinear(
self.dense = RowParallelLinear(
self.hidden_size,
self.hidden_size,
linear_method=linear_method,
)
scaling = self.head_size**-0.5
rotary_dim = config.rotary_dim
rotary_dim = int(config.partial_rotary_factor *
(config.hidden_size // config.num_attention_heads))
assert rotary_dim % 2 == 0
# pylint: disable=C0301
@ -136,12 +117,12 @@ class PhiAttention(nn.Module):
kv_cache: KVCache,
input_metadata: InputMetadata,
) -> torch.Tensor:
qkv, _ = self.Wqkv(hidden_states)
qkv, _ = self.qkv_proj(hidden_states)
q, k, v = qkv.chunk(chunks=3, dim=-1)
q, k = self.rotary_emb(position_ids, q, k)
k_cache, v_cache = kv_cache
attn_output = self.attn(q, k, v, k_cache, v_cache, input_metadata)
output, _ = self.out_proj(attn_output)
output, _ = self.dense(attn_output)
return output
@ -166,8 +147,7 @@ class PhiMLP(nn.Module):
linear_method=linear_method,
)
quant_config = getattr(linear_method, "quant_config", None)
self.act = get_act_fn(config.activation_function, quant_config,
n_inner)
self.act = get_act_fn(config.hidden_act, quant_config, n_inner)
def forward(self, hidden_states):
hidden_states, _ = self.fc1(hidden_states)
@ -182,9 +162,9 @@ class PhiLayer(nn.Module):
config: PretrainedConfig,
linear_method: Optional[LinearMethodBase] = None):
super().__init__()
self.ln = nn.LayerNorm(config.hidden_size,
eps=config.layer_norm_epsilon)
self.mixer = PhiAttention(config, linear_method)
self.input_layernorm = nn.LayerNorm(config.hidden_size,
eps=config.layer_norm_eps)
self.self_attn = PhiAttention(config, linear_method)
self.mlp = PhiMLP(config, linear_method)
def forward(
@ -195,8 +175,8 @@ class PhiLayer(nn.Module):
input_metadata: InputMetadata,
) -> torch.Tensor:
residual = hidden_states
hidden_states = self.ln(hidden_states)
attn_outputs = self.mixer(
hidden_states = self.input_layernorm(hidden_states)
attn_outputs = self.self_attn(
position_ids=position_ids,
hidden_states=hidden_states,
kv_cache=kv_cache,
@ -215,11 +195,14 @@ class PhiModel(nn.Module):
super().__init__()
self.config = config
self.linear_method = linear_method
self.embd = PhiEmbedding(config)
self.h = nn.ModuleList([
self.embed_tokens = VocabParallelEmbedding(config.vocab_size,
config.hidden_size)
self.layers = nn.ModuleList([
PhiLayer(config, linear_method)
for _ in range(config.num_hidden_layers)
])
self.final_layernorm = nn.LayerNorm(config.hidden_size,
eps=config.layer_norm_eps)
def forward(
self,
@ -228,29 +211,21 @@ class PhiModel(nn.Module):
kv_caches: List[KVCache],
input_metadata: InputMetadata,
) -> torch.Tensor:
hidden_states = self.embd(input_ids)
hidden_states = self.embed_tokens(input_ids)
for i in range(self.config.num_hidden_layers):
layer = self.h[i]
layer = self.layers[i]
hidden_states = layer(
positions,
hidden_states,
kv_caches[i],
input_metadata,
)
hidden_states = self.final_layernorm(hidden_states)
return hidden_states
class PhiCausalLMHead(nn.Module):
def __init__(self, config: PretrainedConfig):
super().__init__()
self.ln = nn.LayerNorm(config.hidden_size,
eps=config.layer_norm_epsilon)
self.linear = ParallelLMHead(config.vocab_size,
config.hidden_size,
bias=True)
class PhiForCausalLM(nn.Module):
def __init__(self,
@ -260,8 +235,11 @@ class PhiForCausalLM(nn.Module):
self.config = config
self.linear_method = linear_method
self.transformer = PhiModel(config, linear_method)
self.lm_head = PhiCausalLMHead(config)
self.model = PhiModel(config, linear_method)
self.lm_head = ParallelLMHead(config.vocab_size,
config.hidden_size,
bias=True)
self.sampler = Sampler(config.vocab_size)
def forward(
@ -271,9 +249,9 @@ class PhiForCausalLM(nn.Module):
kv_caches: List[KVCache],
input_metadata: InputMetadata,
) -> torch.Tensor:
hidden_states = self.transformer(input_ids, positions, kv_caches,
input_metadata)
hidden_states = self.lm_head.ln(hidden_states)
hidden_states = self.model(input_ids, positions, kv_caches,
input_metadata)
return hidden_states
def sample(
@ -281,7 +259,7 @@ class PhiForCausalLM(nn.Module):
hidden_states: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> Optional[SamplerOutput]:
head = self.lm_head.linear
head = self.lm_head
next_tokens = self.sampler(head.weight, hidden_states,
sampling_metadata, head.bias)
return next_tokens
@ -291,17 +269,37 @@ class PhiForCausalLM(nn.Module):
cache_dir: Optional[str] = None,
load_format: str = "auto",
revision: Optional[str] = None):
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
("qkv_proj", "q_proj", "q"),
("qkv_proj", "k_proj", "k"),
("qkv_proj", "v_proj", "v")
]
params_dict = dict(self.named_parameters())
for name, loaded_weight in hf_model_weights_iterator(
model_name_or_path, cache_dir, load_format, revision):
if "rotary_emb.inv_freq" in name:
continue
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
# pylint: disable=E1136
param = params_dict[name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader(param, loaded_weight)
for (param_name, weight_name, shard_id) in stacked_params_mapping:
if weight_name not in name:
continue
name = name.replace(weight_name, param_name)
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
# pylint: disable=E1136
param = params_dict[name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader(param, loaded_weight)