diff --git a/.github/PULL_REQUEST_TEMPLATE.md b/.github/PULL_REQUEST_TEMPLATE.md index 262ce8e153..be0afc6305 100644 --- a/.github/PULL_REQUEST_TEMPLATE.md +++ b/.github/PULL_REQUEST_TEMPLATE.md @@ -39,6 +39,16 @@ FIX #xxxx (*link existing issues this PR will resolve*)
  • Please add documentation to docs/source/ if the PR modifies the user-facing behaviors of vLLM. It helps vLLM user understand and utilize the new features or changes.
  • +

    Adding or changing kernels

    +

    Each custom kernel needs a schema and one or more implementations to be registered with PyTorch.

    + +

    Notes for Large Changes

    Please keep the changes as concise as possible. For major architectural changes (>500 LOC excluding kernel/data/config/test), we would expect a GitHub issue (RFC) discussing the technical design and justification. Otherwise, we will tag it with rfc-required and might not go through the PR.

    diff --git a/cmake/utils.cmake b/cmake/utils.cmake index 69998b45be..1ea6d2b0f0 100644 --- a/cmake/utils.cmake +++ b/cmake/utils.cmake @@ -350,6 +350,7 @@ function (define_gpu_extension_target GPU_MOD_NAME) target_include_directories(${GPU_MOD_NAME} PRIVATE csrc ${GPU_INCLUDE_DIRECTORIES}) + # TODO: is torch_python_LIBRARY needed? target_link_libraries(${GPU_MOD_NAME} PRIVATE torch ${torch_python_LIBRARY} ${GPU_LIBRARIES}) diff --git a/csrc/cpu/torch_bindings.cpp b/csrc/cpu/torch_bindings.cpp index 9d6b1962b8..b45da1b386 100644 --- a/csrc/cpu/torch_bindings.cpp +++ b/csrc/cpu/torch_bindings.cpp @@ -32,8 +32,8 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) { // PagedAttention V2. ops.def( "paged_attention_v2(" - " Tensor! out, Tensor exp_sums, Tensor max_logits," - " Tensor tmp_out, Tensor query, Tensor key_cache," + " Tensor! out, Tensor! exp_sums, Tensor! max_logits," + " Tensor! tmp_out, Tensor query, Tensor key_cache," " Tensor value_cache, int num_kv_heads, float scale," " Tensor block_tables, Tensor seq_lens, int block_size," " int max_seq_len, Tensor? alibi_slopes," @@ -122,8 +122,8 @@ TORCH_LIBRARY_EXPAND(CONCAT(TORCH_EXTENSION_NAME, _cache_ops), cache_ops) { // Copy the cache blocks from src to dst. cache_ops.def( - "copy_blocks(Tensor[]! key_caches, Tensor[]! value_caches, Tensor " - "block_mapping) -> ()"); + "copy_blocks(Tensor(a!)[] key_caches, Tensor[](b!) value_caches, " + "Tensor block_mapping) -> ()"); cache_ops.impl("copy_blocks", torch::kCPU, ©_blocks); // Reshape the key and value tensors and cache them. diff --git a/csrc/ops.h b/csrc/ops.h index 45a3868395..05b89e183c 100644 --- a/csrc/ops.h +++ b/csrc/ops.h @@ -123,9 +123,17 @@ torch::Tensor gptq_marlin_repack(torch::Tensor& b_q_weight, torch::Tensor& perm, int64_t size_k, int64_t size_n, int64_t num_bits); +torch::Tensor gptq_marlin_repack_meta(torch::Tensor& b_q_weight, + torch::Tensor& perm, c10::SymInt size_k, + c10::SymInt size_n, int64_t num_bits); + torch::Tensor awq_marlin_repack(torch::Tensor& b_q_weight, int64_t size_k, int64_t size_n, int64_t num_bits); +torch::Tensor awq_marlin_repack_meta(torch::Tensor& b_q_weight, + c10::SymInt size_k, c10::SymInt size_n, + int64_t num_bits); + torch::Tensor ggml_dequantize(torch::Tensor W, int64_t type, int64_t m, int64_t n); diff --git a/csrc/quantization/gptq_marlin/awq_marlin_repack.cu b/csrc/quantization/gptq_marlin/awq_marlin_repack.cu index c58216d8e0..de8d9ef2ee 100644 --- a/csrc/quantization/gptq_marlin/awq_marlin_repack.cu +++ b/csrc/quantization/gptq_marlin/awq_marlin_repack.cu @@ -267,3 +267,15 @@ torch::Tensor awq_marlin_repack(torch::Tensor& b_q_weight, int64_t size_k, } #endif + +torch::Tensor awq_marlin_repack_meta(torch::Tensor& b_q_weight, + c10::SymInt size_k, c10::SymInt size_n, + int64_t num_bits) { + int const pack_factor = 32 / num_bits; + auto options = torch::TensorOptions() + .dtype(b_q_weight.dtype()) + .device(b_q_weight.device()); + return torch::empty_symint( + {size_k / marlin::tile_size, size_n * marlin::tile_size / pack_factor}, + options); +} diff --git a/csrc/quantization/gptq_marlin/gptq_marlin_repack.cu b/csrc/quantization/gptq_marlin/gptq_marlin_repack.cu index c71b1bf573..70d48de12a 100644 --- a/csrc/quantization/gptq_marlin/gptq_marlin_repack.cu +++ b/csrc/quantization/gptq_marlin/gptq_marlin_repack.cu @@ -342,3 +342,15 @@ torch::Tensor gptq_marlin_repack(torch::Tensor& b_q_weight, torch::Tensor& perm, } #endif + +torch::Tensor gptq_marlin_repack_meta(torch::Tensor& b_q_weight, + torch::Tensor& perm, c10::SymInt size_k, + c10::SymInt size_n, int64_t num_bits) { + int const pack_factor = 32 / num_bits; + auto options = torch::TensorOptions() + .dtype(b_q_weight.dtype()) + .device(b_q_weight.device()); + return torch::empty_symint( + {size_k / marlin::tile_size, size_n * marlin::tile_size / pack_factor}, + options); +} diff --git a/csrc/torch_bindings.cpp b/csrc/torch_bindings.cpp index 07b14e7a6f..57103c0936 100644 --- a/csrc/torch_bindings.cpp +++ b/csrc/torch_bindings.cpp @@ -36,8 +36,8 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) { // PagedAttention V2. ops.def( "paged_attention_v2(" - " Tensor! out, Tensor exp_sums, Tensor max_logits," - " Tensor tmp_out, Tensor query, Tensor key_cache," + " Tensor! out, Tensor! exp_sums, Tensor! max_logits," + " Tensor! tmp_out, Tensor query, Tensor key_cache," " Tensor value_cache, int num_kv_heads, float scale," " Tensor block_tables, Tensor seq_lens, int block_size," " int max_seq_len, Tensor? alibi_slopes," @@ -73,7 +73,11 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) { ops.impl("gelu_quick", torch::kCUDA, &gelu_quick); // prepare_inputs advance_step - ops.def("advance_step", &advance_step); + ops.def( + "advance_step(int num_seqs, int num_queries, int block_size, " + "Tensor! input_tokens, Tensor sampled_token_ids, " + "Tensor! input_positions, Tensor! seq_lens, Tensor! slot_mapping, " + "Tensor block_tables) -> ()"); ops.impl("advance_step", torch::kCUDA, &advance_step); // Layernorm @@ -110,27 +114,56 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) { // Quantization ops #ifndef USE_ROCM // Quantized GEMM for AQLM. - ops.def("aqlm_gemm", &aqlm_gemm); + ops.def( + "aqlm_gemm(Tensor input, Tensor codes, Tensor codebooks, " + "Tensor scales, int[] codebook_partition_sizes, Tensor? bias) " + "-> Tensor"); ops.impl("aqlm_gemm", torch::kCUDA, &aqlm_gemm); // Decompression method for AQLM. - ops.def("aqlm_dequant", &aqlm_dequant); + ops.def( + "aqlm_dequant(Tensor codes, Tensor codebooks, " + "int[] codebook_partition_sizes) -> Tensor"); ops.impl("aqlm_dequant", torch::kCUDA, &aqlm_dequant); // Quantized GEMM for AWQ. - ops.def("awq_gemm", &awq_gemm); + ops.def( + "awq_gemm(Tensor _in_feats, Tensor _kernel, Tensor _scaling_factors, " + "Tensor _zeros, int split_k_iters) -> Tensor"); ops.impl("awq_gemm", torch::kCUDA, &awq_gemm); // Dequantization for AWQ. - ops.def("awq_dequantize", &awq_dequantize); + ops.def( + "awq_dequantize(Tensor _kernel, Tensor _scaling_factors, " + "Tensor _zeros, int split_k_iters, int thx, int thy) -> Tensor"); ops.impl("awq_dequantize", torch::kCUDA, &awq_dequantize); + // Note about marlin kernel 'workspace' arguments: + // Technically these should be mutable since they are modified by the kernel. + // But since they are set back to zero once the kernel is finished we can + // hand wave and say that they have no net effect. + // + // The reason to mark 'workspace' as immutable is so that they don't interfere + // with using ScalarType arguments in the ops. If they are marked as mutable, + // pytorch throws an assert in + // 'torch._higher_order_ops._register_effectful_op' that prevents these + // kernels from being torch.compile'd. + // See the following document for more info on custom types and ops that use + // custom types: + // https://docs.google.com/document/d/18fBMPuOJ0fY5ZQ6YyrHUppw9FA332CpNtgB6SOIgyuA + // Marlin (Dense) Optimized Quantized GEMM for GPTQ. - ops.def("marlin_gemm", &marlin_gemm); + ops.def( + "marlin_gemm(Tensor a, Tensor b_q_weight, Tensor b_scales, " + "Tensor! workspace, int size_m, int size_n, int size_k) -> Tensor"); ops.impl("marlin_gemm", torch::kCUDA, &marlin_gemm); // Marlin_24 (Sparse) Optimized Quantized GEMM for GPTQ. - ops.def("gptq_marlin_24_gemm", &gptq_marlin_24_gemm); + ops.def( + "gptq_marlin_24_gemm(Tensor a, Tensor b_q_weight, Tensor b_meta, " + "Tensor b_scales, Tensor workspace, " + "__torch__.torch.classes._core_C.ScalarType b_q_type, " + "int size_m, int size_n, int size_k) -> Tensor"); ops.impl("gptq_marlin_24_gemm", torch::kCUDA, &gptq_marlin_24_gemm); // Machete (Dense) Optimized Mixed Precision GEMM for Hopper. @@ -149,35 +182,55 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) { ops.impl("machete_prepack_B", torch::kCUDA, &machete::prepack_B); // gptq_marlin Optimized Quantized GEMM for GPTQ. - ops.def("gptq_marlin_gemm", &gptq_marlin_gemm); + ops.def( + "gptq_marlin_gemm(Tensor a, Tensor b_q_weight, Tensor b_scales, " + "Tensor b_zeros, Tensor g_idx, Tensor perm, Tensor workspace, " + "__torch__.torch.classes._core_C.ScalarType b_q_type, " + "int size_m, int size_n, int size_k, bool is_k_full, " + "bool has_zp, bool use_fp32_reduce) -> Tensor"); ops.impl("gptq_marlin_gemm", torch::kCUDA, &gptq_marlin_gemm); // gptq_marlin repack from GPTQ. - ops.def("gptq_marlin_repack", &gptq_marlin_repack); + ops.def( + "gptq_marlin_repack(Tensor b_q_weight, Tensor perm, " + "SymInt size_k, SymInt size_n, int num_bits) -> Tensor"); ops.impl("gptq_marlin_repack", torch::kCUDA, &gptq_marlin_repack); + ops.impl("gptq_marlin_repack", torch::kMeta, &gptq_marlin_repack_meta); // awq_marlin repack from AWQ. - ops.def("awq_marlin_repack", &awq_marlin_repack); + ops.def( + "awq_marlin_repack(Tensor b_q_weight, SymInt size_k, " + "SymInt size_n, int num_bits) -> Tensor"); ops.impl("awq_marlin_repack", torch::kCUDA, &awq_marlin_repack); + ops.impl("awq_marlin_repack", torch::kMeta, &awq_marlin_repack_meta); // Dequantization for GGML. - ops.def("ggml_dequantize", &ggml_dequantize); + ops.def("ggml_dequantize(Tensor W, int type, int m, int n) -> Tensor"); ops.impl("ggml_dequantize", torch::kCUDA, &ggml_dequantize); // mmvq kernel for GGML. - ops.def("ggml_mul_mat_vec_a8", &ggml_mul_mat_vec_a8); + ops.def( + "ggml_mul_mat_vec_a8(Tensor W, Tensor X, int type, int row) " + "-> Tensor"); ops.impl("ggml_mul_mat_vec_a8", torch::kCUDA, &ggml_mul_mat_vec_a8); // mmq kernel for GGML. - ops.def("ggml_mul_mat_a8", &ggml_mul_mat_a8); + ops.def("ggml_mul_mat_a8(Tensor W, Tensor X, int type, int row) -> Tensor"); ops.impl("ggml_mul_mat_a8", torch::kCUDA, &ggml_mul_mat_a8); // fp8_marlin Optimized Quantized GEMM for FP8 weight-only. - ops.def("fp8_marlin_gemm", &fp8_marlin_gemm); + ops.def( + "fp8_marlin_gemm(Tensor a, Tensor b_q_weight, Tensor b_scales, " + "Tensor! workspace, int num_bits, int size_m, int size_n, " + "int size_k) -> Tensor"); ops.impl("fp8_marlin_gemm", torch::kCUDA, &fp8_marlin_gemm); // marlin_qqq_gemm for QQQ. - ops.def("marlin_qqq_gemm", &marlin_qqq_gemm); + ops.def( + "marlin_qqq_gemm(Tensor a, Tensor b_q_weight, " + "Tensor s_tok, Tensor s_ch, Tensor s_group, " + "Tensor! workspace, int size_m, int size_n, " + "int size_k) -> Tensor"); ops.impl("marlin_qqq_gemm", torch::kCUDA, &marlin_qqq_gemm); // CUTLASS w8a8 GEMM, supporting symmetric per-tensor or per-row/column @@ -199,16 +252,16 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) { // Check if cutlass scaled_mm is supported for CUDA devices of the given // capability - ops.def("cutlass_scaled_mm_supports_fp8", &cutlass_scaled_mm_supports_fp8); - ops.impl("cutlass_scaled_mm_supports_fp8", torch::kCUDA, - &cutlass_scaled_mm_supports_fp8); + ops.def("cutlass_scaled_mm_supports_fp8(int cuda_device_capability) -> bool"); + ops.impl("cutlass_scaled_mm_supports_fp8", &cutlass_scaled_mm_supports_fp8); + // Mamba selective scan kernel ops.def( "selective_scan_fwd(Tensor! u, Tensor! delta," "Tensor! A, Tensor! B, Tensor! C," "Tensor? D_, Tensor? z_, Tensor? delta_bias_," "bool delta_softplus," - "Tensor? index_, Tensor? x) -> Tensor[]"); + "Tensor? index_, Tensor(a! -> *)? x) -> Tensor(a)[]"); ops.impl("selective_scan_fwd", torch::kCUDA, &selective_scan_fwd); ops.def( @@ -230,7 +283,12 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) { #endif // Quantized GEMM for GPTQ. - ops.def("gptq_gemm", &gptq_gemm); + // Note: even though the C++ inferred schema is correct for this op, it seems + // to prevent the meta function registry. + ops.def( + "gptq_gemm(Tensor a, Tensor b_q_weight, Tensor b_gptq_qzeros, " + "Tensor b_gptq_scales, Tensor b_g_idx, bool use_exllama, int bit) " + "-> Tensor"); ops.impl("gptq_gemm", torch::kCUDA, &gptq_gemm); // Post processing for GPTQ. @@ -250,8 +308,8 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) { // Compute dynamic-per-token FP8 quantized tensor and scaling factor. ops.def( - "dynamic_per_token_scaled_fp8_quant(Tensor! out, Tensor input, Tensor! " - "scale, Tensor? scale_ub) -> " + "dynamic_per_token_scaled_fp8_quant(Tensor! out, Tensor input, " + "Tensor! scale, Tensor? scale_ub) -> " "()"); ops.impl("dynamic_per_token_scaled_fp8_quant", torch::kCUDA, &dynamic_per_token_scaled_fp8_quant); @@ -288,8 +346,8 @@ TORCH_LIBRARY_EXPAND(CONCAT(TORCH_EXTENSION_NAME, _cache_ops), cache_ops) { // Copy the cache blocks from src to dst. cache_ops.def( - "copy_blocks(Tensor[]! key_caches, Tensor[]! value_caches, Tensor " - "block_mapping) -> ()"); + "copy_blocks(Tensor(a!)[] key_caches, Tensor[](b!) value_caches, " + "Tensor block_mapping) -> ()"); cache_ops.impl("copy_blocks", torch::kCUDA, ©_blocks); // Reshape the key and value tensors and cache them. @@ -314,8 +372,8 @@ TORCH_LIBRARY_EXPAND(CONCAT(TORCH_EXTENSION_NAME, _cache_ops), cache_ops) { // Convert the key and value cache to fp8 data type. cache_ops.def( - "convert_fp8(Tensor! dst_cache, Tensor src_cache, float scale, str " - "kv_cache_dtype) -> ()"); + "convert_fp8(Tensor! dst_cache, Tensor src_cache, float scale, " + "str kv_cache_dtype) -> ()"); cache_ops.impl("convert_fp8", torch::kCUDA, &convert_fp8); } @@ -323,24 +381,28 @@ TORCH_LIBRARY_EXPAND(CONCAT(TORCH_EXTENSION_NAME, _cuda_utils), cuda_utils) { // Cuda utils // Gets the specified device attribute. - cuda_utils.def("get_device_attribute", &get_device_attribute); - cuda_utils.impl("get_device_attribute", torch::kCUDA, &get_device_attribute); + cuda_utils.def("get_device_attribute(int attribute, int device_id) -> int"); + cuda_utils.impl("get_device_attribute", &get_device_attribute); // Gets the maximum shared memory per block device attribute. - cuda_utils.def("get_max_shared_memory_per_block_device_attribute", - &get_max_shared_memory_per_block_device_attribute); + cuda_utils.def( + "get_max_shared_memory_per_block_device_attribute(int device_id) -> int"); cuda_utils.impl("get_max_shared_memory_per_block_device_attribute", - torch::kCUDA, &get_max_shared_memory_per_block_device_attribute); } #ifndef USE_ROCM TORCH_LIBRARY_EXPAND(CONCAT(TORCH_EXTENSION_NAME, _custom_ar), custom_ar) { // Custom all-reduce kernels - custom_ar.def("init_custom_ar", &init_custom_ar); + custom_ar.def( + "init_custom_ar(Tensor meta, Tensor rank_data, " + "str[] handles, int[] offsets, int rank, " + "bool full_nvlink) -> int"); custom_ar.impl("init_custom_ar", torch::kCUDA, &init_custom_ar); - custom_ar.def("should_custom_ar", &should_custom_ar); + custom_ar.def( + "should_custom_ar(Tensor inp, int max_size, int world_size, " + "bool full_nvlink) -> bool"); custom_ar.impl("should_custom_ar", torch::kCUDA, &should_custom_ar); custom_ar.def("all_reduce_reg(int fa, Tensor inp, Tensor! out) -> ()"); @@ -352,21 +414,15 @@ TORCH_LIBRARY_EXPAND(CONCAT(TORCH_EXTENSION_NAME, _custom_ar), custom_ar) { custom_ar.impl("all_reduce_unreg", torch::kCUDA, &all_reduce_unreg); custom_ar.def("dispose", &dispose); - custom_ar.impl("dispose", torch::kCPU, &dispose); - custom_ar.def("meta_size", &meta_size); - custom_ar.impl("meta_size", torch::kCPU, &meta_size); - custom_ar.def("register_buffer", ®ister_buffer); + custom_ar.def( + "register_buffer(int fa, Tensor t, str[] handles, " + "int[] offsets) -> ()"); custom_ar.impl("register_buffer", torch::kCUDA, ®ister_buffer); custom_ar.def("get_graph_buffer_ipc_meta", &get_graph_buffer_ipc_meta); - custom_ar.impl("get_graph_buffer_ipc_meta", torch::kCPU, - &get_graph_buffer_ipc_meta); - custom_ar.def("register_graph_buffers", ®ister_graph_buffers); - custom_ar.impl("register_graph_buffers", torch::kCPU, - ®ister_graph_buffers); } #endif diff --git a/tests/kernels/test_activation.py b/tests/kernels/test_activation.py index 38b0477063..ed050ce851 100644 --- a/tests/kernels/test_activation.py +++ b/tests/kernels/test_activation.py @@ -3,8 +3,10 @@ from typing import Type import pytest import torch +from tests.kernels.utils import opcheck from vllm.model_executor.layers.activation import (FastGELU, GeluAndMul, - NewGELU, SiluAndMul) + NewGELU, QuickGELU, + SiluAndMul) from .allclose_default import get_default_atol, get_default_rtol @@ -39,18 +41,28 @@ def test_act_and_mul( x = torch.randn(num_tokens, 2 * d, dtype=dtype) if activation == "silu": layer = SiluAndMul() + fn = torch.ops._C.silu_and_mul elif activation == "gelu": layer = GeluAndMul(approximate="none") + fn = torch.ops._C.gelu_and_mul elif activation == "gelu_tanh": layer = GeluAndMul(approximate="tanh") + fn = torch.ops._C.gelu_tanh_and_mul out = layer(x) ref_out = layer.forward_native(x) # The SiLU and GELU implementations are equivalent to the native PyTorch # implementations, so we can do exact comparison. torch.testing.assert_close(out, ref_out, atol=0.0, rtol=0.0) + d = x.shape[-1] // 2 + output_shape = (x.shape[:-1] + (d, )) + out = torch.empty(output_shape, dtype=x.dtype, device=x.device) + opcheck(fn, (out, x)) -@pytest.mark.parametrize("activation", [FastGELU, NewGELU]) + +@pytest.mark.parametrize("activation", [(FastGELU, torch.ops._C.gelu_fast), + (NewGELU, torch.ops._C.gelu_new), + (QuickGELU, torch.ops._C.gelu_quick)]) @pytest.mark.parametrize("num_tokens", NUM_TOKENS) @pytest.mark.parametrize("d", D) @pytest.mark.parametrize("dtype", DTYPES) @@ -70,10 +82,14 @@ def test_activation( torch.cuda.manual_seed(seed) torch.set_default_device(device) x = torch.randn(num_tokens, d, dtype=dtype) - layer = activation() + layer = activation[0]() + fn = activation[1] out = layer(x) ref_out = layer.forward_native(x) torch.testing.assert_close(out, ref_out, atol=get_default_atol(out), rtol=get_default_rtol(out)) + + out = torch.empty_like(x) + opcheck(fn, (out, x)) diff --git a/tests/kernels/test_attention.py b/tests/kernels/test_attention.py index 8aa2d4a53a..7995f11f19 100644 --- a/tests/kernels/test_attention.py +++ b/tests/kernels/test_attention.py @@ -6,6 +6,7 @@ import torch from xformers import ops as xops from xformers.ops.fmha.attn_bias import BlockDiagonalCausalMask +from tests.kernels.utils import opcheck from vllm import _custom_ops as ops from vllm.utils import get_max_shared_memory_bytes, is_hip @@ -198,6 +199,13 @@ def test_paged_attention( k_scale, v_scale, ) + + opcheck(torch.ops._C.paged_attention_v1, + (output, query, key_cache, value_cache, num_kv_heads, scale, + block_tables, seq_lens, block_size, max_seq_len, alibi_slopes, + kv_cache_dtype, k_scale, v_scale, 0, 0, 0, 64, 0), + cond=(head_size == HEAD_SIZES[0])) + elif version == "v2": num_partitions = ((max_seq_len + PARTITION_SIZE - 1) // PARTITION_SIZE) assert PARTITION_SIZE % block_size == 0 @@ -230,6 +238,14 @@ def test_paged_attention( k_scale, v_scale, ) + + opcheck(torch.ops._C.paged_attention_v2, + (output, exp_sums, max_logits, tmp_output, query, key_cache, + value_cache, num_kv_heads, scale, block_tables, seq_lens, + block_size, max_seq_len, alibi_slopes, kv_cache_dtype, + k_scale, v_scale, 0, 0, 0, 64, 0), + cond=(head_size == HEAD_SIZES[0])) + else: raise AssertionError(f"Unknown version: {version}") diff --git a/tests/kernels/test_cache.py b/tests/kernels/test_cache.py index 71d1835916..19402a337b 100644 --- a/tests/kernels/test_cache.py +++ b/tests/kernels/test_cache.py @@ -4,6 +4,7 @@ from typing import List, Tuple import pytest import torch +from tests.kernels.utils import DEFAULT_OPCHECK_TEST_UTILS, opcheck from vllm import _custom_ops as ops COPYING_DIRECTION = [('cuda', 'cpu'), ('cuda', 'cuda'), ('cpu', 'cuda')] @@ -87,6 +88,11 @@ def test_copy_blocks( block_mapping_tensor = torch.tensor(block_mapping, dtype=torch.int64, device=device).view(-1, 2) + + opcheck(torch.ops._C_cache_ops.copy_blocks, + (key_caches, value_caches, block_mapping_tensor), + test_utils=DEFAULT_OPCHECK_TEST_UTILS, + cond=(head_size == HEAD_SIZES[0])) ops.copy_blocks(key_caches, value_caches, block_mapping_tensor) # Run the reference implementation. @@ -162,6 +168,10 @@ def test_reshape_and_cache( k_scale = v_scale = 1.0 # Call the reshape_and_cache kernel. + opcheck(torch.ops._C_cache_ops.reshape_and_cache, + (key, value, key_cache, value_cache, slot_mapping, kv_cache_dtype, + k_scale, v_scale), + cond=(head_size == HEAD_SIZES[0])) ops.reshape_and_cache(key, value, key_cache, value_cache, slot_mapping, kv_cache_dtype, k_scale, v_scale) @@ -269,6 +279,10 @@ def test_reshape_and_cache_flash( k_scale = v_scale = 1.0 # Call the reshape_and_cache kernel. + opcheck(torch.ops._C_cache_ops.reshape_and_cache_flash, + (key, value, key_cache, value_cache, slot_mapping, kv_cache_dtype, + k_scale, v_scale), + cond=(head_size == HEAD_SIZES[0])) ops.reshape_and_cache_flash(key, value, key_cache, value_cache, slot_mapping, kv_cache_dtype, k_scale, v_scale) @@ -366,6 +380,14 @@ def test_swap_blocks( src_value_caches_clone = src_value_caches[0].clone() # Call the swap_blocks kernel. + do_opcheck = (head_size == HEAD_SIZES[0]) + opcheck(torch.ops._C_cache_ops.swap_blocks, + (src_key_caches[0], dist_key_caches[0], block_mapping_tensor), + cond=do_opcheck) + opcheck(torch.ops._C_cache_ops.swap_blocks, + (src_value_caches[0], dist_value_caches[0], block_mapping_tensor), + cond=do_opcheck) + ops.swap_blocks(src_key_caches[0], dist_key_caches[0], block_mapping_tensor) ops.swap_blocks(src_value_caches[0], dist_value_caches[0], diff --git a/tests/kernels/test_cutlass.py b/tests/kernels/test_cutlass.py index e818651fe9..d1f0524f83 100644 --- a/tests/kernels/test_cutlass.py +++ b/tests/kernels/test_cutlass.py @@ -7,6 +7,7 @@ from typing import Optional, Type import pytest import torch +from tests.kernels.utils import opcheck from vllm import _custom_ops as ops from vllm.platforms import current_platform @@ -108,6 +109,9 @@ def cutlass_int8_gemm_helper(m: int, torch.testing.assert_close(out, baseline, rtol=1e-1, atol=1e0) + opcheck(torch.ops._C.cutlass_scaled_mm, + (out, a, b, scale_a, scale_b, bias)) + @pytest.mark.parametrize("m", [1, 16, 32, 64, 128, 256, 512, 222, 100, 33]) @pytest.mark.parametrize("n", [2048, 4096, 8192, 16384, 24576, 256, 1024]) @@ -341,6 +345,15 @@ def test_cutlass_int8_azp(m: int, n: int, k: int, out_dtype: torch.dtype, torch.testing.assert_close(out, baseline_dq, rtol=rtol, atol=atol) torch.testing.assert_close(out, baseline_q, rtol=rtol, atol=atol) + if azp_per_token: + opcheck(torch.ops._C.cutlass_scaled_mm_azp, + (out, aq_i8, bq_i8, scale_a, scale_b, azp_adj_i32, azp_i32, + func_bias)) + else: + opcheck(torch.ops._C.cutlass_scaled_mm_azp, + (out, aq_i8, bq_i8, scale_a, scale_b, azp_with_adj_i32, None, + func_bias)) + # Test working with a subset of A and B def test_cutlass_subset(): diff --git a/tests/kernels/test_int8_quant.py b/tests/kernels/test_int8_quant.py index 7376dcaf60..a82ecb0264 100644 --- a/tests/kernels/test_int8_quant.py +++ b/tests/kernels/test_int8_quant.py @@ -2,6 +2,7 @@ import pytest import torch from tests.kernels.quant_utils import ref_dynamic_per_token_quant +from tests.kernels.utils import opcheck from vllm._custom_ops import scaled_int8_quant DTYPES = [torch.half, torch.bfloat16, torch.float] @@ -12,6 +13,16 @@ SEEDS = [0] SCALE = [0.1, 0.5, 0.8, 1.2, 2.1] +def opcheck_int8_quant(output, input, scale=None): + if scale is not None: + opcheck(torch.ops._C.static_scaled_int8_quant, (output, input, scale)) + else: + scale = torch.empty((input.numel() // input.shape[-1], 1), + device=input.device, + dtype=torch.float32) + opcheck(torch.ops._C.dynamic_scaled_int8_quant, (output, input, scale)) + + @pytest.mark.parametrize("num_tokens", NUM_TOKENS) @pytest.mark.parametrize("hidden_size", HIDDEN_SIZES) @pytest.mark.parametrize("dtype", DTYPES) @@ -34,6 +45,8 @@ def test_dynamic_scaled_int8_quant(num_tokens: int, hidden_size: int, ops_out, ref_out, atol=1, rtol=0.0) # big atol to account for rounding errors + opcheck_int8_quant(ops_out, x) + @pytest.mark.parametrize("num_tokens", NUM_TOKENS) @pytest.mark.parametrize("hidden_size", HIDDEN_SIZES) @@ -58,3 +71,5 @@ def test_static_scaled_int8_quant(num_tokens: int, hidden_size: int, torch.testing.assert_close( out1, out2, atol=1, rtol=0.0) # big atol to account for rounding errors + + opcheck_int8_quant(out2, x, scale) diff --git a/tests/kernels/test_layernorm.py b/tests/kernels/test_layernorm.py index 21bc38d67b..6eaf67ec75 100644 --- a/tests/kernels/test_layernorm.py +++ b/tests/kernels/test_layernorm.py @@ -1,6 +1,7 @@ import pytest import torch +from tests.kernels.utils import opcheck from vllm.model_executor.layers.layernorm import RMSNorm DTYPES = [torch.half, torch.bfloat16, torch.float] @@ -52,3 +53,10 @@ def test_rms_norm( torch.testing.assert_close(out[1], ref_out[1], atol=1e-2, rtol=1e-2) else: torch.testing.assert_close(out, ref_out, atol=1e-2, rtol=1e-2) + + if residual is not None: + opcheck(torch.ops._C.fused_add_rms_norm, + (x, residual, layer.weight.data, layer.variance_epsilon)) + else: + opcheck(torch.ops._C.rms_norm, + (out, x, layer.weight.data, layer.variance_epsilon)) diff --git a/tests/kernels/test_machete_gemm.py b/tests/kernels/test_machete_gemm.py index dadf594409..ce65aaef60 100644 --- a/tests/kernels/test_machete_gemm.py +++ b/tests/kernels/test_machete_gemm.py @@ -9,6 +9,7 @@ from typing import Optional, Tuple import pytest import torch +from tests.kernels.utils import opcheck from vllm import _custom_ops as ops from vllm.model_executor.layers.quantization.utils.quant_utils import ( pack_rows, quantize_weights) @@ -76,6 +77,8 @@ def machete_quantize_and_pack(w: torch.Tensor, w_q = w_q.t().contiguous().t() # convert to col major w_q_machete = ops.machete_prepack_B(w_q, wtype) + opcheck(torch.ops._C.machete_prepack_B, (w_q, wtype)) + return w_ref, w_q_machete, w_s, w_zp @@ -146,6 +149,10 @@ def test_machete_all_schedules(shape, atype: torch.dtype, schedule=schedule, ) + opcheck(torch.ops._C.machete_gemm, + (a, w_q_machete, wtype, w_s, maybe_convert_zeropoints( + w_zp, w_s), group_size, None, None, None, schedule)) + # Relax atol as our reduction dim becomes larger (more rounding error) # Relax atol when we have zeropoints since the way machete applies # zeropoints (after scales) causes noise around 0 diff --git a/tests/kernels/test_marlin_gemm.py b/tests/kernels/test_marlin_gemm.py index 18b66abe7b..721d3a6a81 100644 --- a/tests/kernels/test_marlin_gemm.py +++ b/tests/kernels/test_marlin_gemm.py @@ -5,6 +5,7 @@ Run `pytest tests/kernels/marlin/test_marlin_gemm.py`. import pytest import torch +from tests.kernels.utils import DEFAULT_OPCHECK_TEST_UTILS, opcheck from tests.quantization.utils import is_quant_method_supported from vllm import _custom_ops as ops from vllm.model_executor.layers.quantization.gptq_marlin_24 import ( @@ -73,12 +74,9 @@ def test_gptq_marlin_repack(k_chunk, n_chunk, quant_type, group_size, act_order, mnk_factors): m_factor, n_factor, k_factor = mnk_factors - size_m = m_factor size_k = k_chunk * k_factor size_n = n_chunk * n_factor - print(f"MNK = {size_m} {size_n} {size_k}") - # Filter act_order if act_order: if group_size == -1: @@ -112,6 +110,9 @@ def test_gptq_marlin_repack(k_chunk, n_chunk, quant_type, group_size, marlin_q_w_1 = marlin_weights(q_w, size_k, size_n, quant_type.size_bits, weight_perm) + opcheck(torch.ops._C.gptq_marlin_repack, + (q_w_gptq, sort_indices, size_k, size_n, quant_type.size_bits)) + # Run Marlin repack GPU kernel marlin_q_w_2 = ops.gptq_marlin_repack( q_w_gptq, @@ -137,12 +138,9 @@ def test_awq_marlin_repack(k_chunk, n_chunk, quant_type, group_size, mnk_factors): m_factor, n_factor, k_factor = mnk_factors - size_m = m_factor size_k = k_chunk * k_factor size_n = n_chunk * n_factor - print(f"MNK = {size_m} {size_n} {size_k}") - # Normalize group_size if group_size == -1: group_size = size_k @@ -165,6 +163,9 @@ def test_awq_marlin_repack(k_chunk, n_chunk, quant_type, group_size, marlin_q_w_1 = marlin_weights(q_w, size_k, size_n, quant_type.size_bits, weight_perm) + opcheck(torch.ops._C.awq_marlin_repack, + (q_w_awq, size_k, size_n, quant_type.size_bits)) + # Run Marlin repack GPU kernel marlin_q_w_2 = ops.awq_marlin_repack( q_w_awq, @@ -204,9 +205,6 @@ def test_gptq_marlin_gemm( size_k = k_chunk * k_factor size_n = n_chunk * n_factor - print(f"MNK = {size_m} {size_n} {size_k}") - print(f"groupsize = {group_size}") - if act_order: if group_size == -1: return @@ -224,6 +222,13 @@ def test_gptq_marlin_gemm( workspace = MarlinWorkspace(size_n, GPTQ_MARLIN_MIN_THREAD_N, GPTQ_MARLIN_MAX_PARALLEL) + opcheck( + torch.ops._C.gptq_marlin_gemm, + (a_input, marlin_q_w, marlin_s, marlin_zp, g_idx, sort_indices, + workspace.scratch, quant_type, a_input.shape[0], b_weight.shape[1], + a_input.shape[1], is_k_full, False, use_fp32_reduce), + test_utils=DEFAULT_OPCHECK_TEST_UTILS) + output = ops.gptq_marlin_gemm( a_input, marlin_q_w, @@ -245,7 +250,6 @@ def test_gptq_marlin_gemm( torch.cuda.synchronize() max_diff = compute_max_diff(output, output_ref) - print("max_diff = {}".format(max_diff)) assert max_diff < 0.04 @@ -265,9 +269,6 @@ def test_gptq_marlin_24_gemm(k_chunk, n_chunk, quant_type, group_size, size_k = k_chunk * k_factor size_n = n_chunk * n_factor - print(f"MNK = {size_m} {size_n} {size_k}") - print(f"groupsize = {group_size}") - a_input = rand_data((size_m, size_k)) b_weight = rand_data((size_k, size_n)) @@ -279,6 +280,12 @@ def test_gptq_marlin_24_gemm(k_chunk, n_chunk, quant_type, group_size, output_ref = torch.matmul(a_input, w_24_ref) + opcheck(torch.ops._C.gptq_marlin_24_gemm, + (a_input, marlin_24_q_w_comp, marlin_24_meta, marlin_24_s, + workspace_24.scratch, quant_type, a_input.shape[0], + b_weight.shape[1], a_input.shape[1]), + test_utils=DEFAULT_OPCHECK_TEST_UTILS) + output = ops.gptq_marlin_24_gemm( a_input, marlin_24_q_w_comp, @@ -294,7 +301,6 @@ def test_gptq_marlin_24_gemm(k_chunk, n_chunk, quant_type, group_size, torch.cuda.synchronize() max_diff = compute_max_diff(output, output_ref) - print("max_diff = {}".format(max_diff)) assert max_diff < 0.04 @@ -321,9 +327,6 @@ def test_fp8_marlin_gemm( size_k = k_chunk * k_factor size_n = n_chunk * n_factor - print(f"MNK = {size_m} {size_n} {size_k}") - print(f"groupsize = {group_size}") - a_input = rand_data((size_m, size_k), dtype=dtype) b_weight = rand_data((size_k, size_n), dtype=dtype) @@ -353,6 +356,10 @@ def test_fp8_marlin_gemm( workspace = MarlinWorkspace(size_n, GPTQ_MARLIN_MIN_THREAD_N, GPTQ_MARLIN_MAX_PARALLEL) + opcheck(torch.ops._C.fp8_marlin_gemm, + (a_input, marlin_qweight, marlin_scales, workspace.scratch, + num_bits, a_input.shape[0], b_weight.shape[1], a_input.shape[1])) + output = ops.fp8_marlin_gemm( a=a_input, b_q_weight=marlin_qweight, @@ -368,7 +375,6 @@ def test_fp8_marlin_gemm( torch.cuda.synchronize() max_diff = compute_max_diff(output, output_ref) - print("max_diff = {}".format(max_diff)) assert max_diff < 0.04 @@ -396,9 +402,6 @@ def test_awq_marlin_gemm( size_k = k_chunk * k_factor size_n = n_chunk * n_factor - print(f"MNK = {size_m} {size_n} {size_k}") - print(f"groupsize = {group_size}") - a_input = rand_data((size_m, size_k)) b_weight = rand_data((size_k, size_n)) @@ -434,7 +437,6 @@ def test_awq_marlin_gemm( torch.cuda.synchronize() max_diff = compute_max_diff(output, output_ref) - print("max_diff = {}".format(max_diff)) assert max_diff < 0.04 @@ -460,9 +462,6 @@ def test_marlin_qqq_gemm( size_k = k_chunk * k_factor size_n = n_chunk * n_factor - print(f"MNK = {size_m} {size_n} {size_k}") - print(f"groupsize = {group_size}") - a_input = rand_data((size_m, size_k)) b_weight = rand_data((size_k, size_n)) @@ -479,6 +478,11 @@ def test_marlin_qqq_gemm( workspace = MarlinWorkspace(size_n, MARLIN_QQQ_MIN_THREAD_N, MARLIN_QQQ_MAX_PARALLEL) + opcheck(torch.ops._C.marlin_qqq_gemm, + (q_a, marlin_qqq_q_w, s_a, marlin_qqq_s_channel, + marlin_qqq_s_group, workspace.scratch, a_input.shape[0], + b_weight.shape[1], a_input.shape[1])) + output = ops.marlin_qqq_gemm( q_a, marlin_qqq_q_w, @@ -495,6 +499,5 @@ def test_marlin_qqq_gemm( torch.cuda.synchronize() max_diff = compute_max_diff(output, output_ref) - print("max_diff = {}".format(max_diff)) assert max_diff < 0.04 diff --git a/tests/kernels/utils.py b/tests/kernels/utils.py index 3f8f650203..dbddd69c07 100644 --- a/tests/kernels/utils.py +++ b/tests/kernels/utils.py @@ -3,7 +3,8 @@ import itertools import random from numbers import Number -from typing import Any, List, NamedTuple, Optional, Tuple, Union +from typing import (Any, Dict, List, NamedTuple, Optional, Sequence, Tuple, + Union) import pytest import torch @@ -13,6 +14,21 @@ from vllm.attention.backends.xformers import XFormersBackend from vllm.utils import (STR_BACKEND_ENV_VAR, STR_XFORMERS_ATTN_VAL, make_tensor_with_pad) +# For now, disable "test_aot_dispatch_dynamic" since there are some +# bugs related to this test in PyTorch 2.4. +DEFAULT_OPCHECK_TEST_UTILS: Tuple[str, ...] = ( + "test_schema", + "test_autograd_registration", + "test_faketensor", +) + +ALL_OPCHECK_TEST_UTILS: Tuple[str, ...] = ( + "test_schema", + "test_autograd_registration", + "test_faketensor", + "test_aot_dispatch_dynamic", +) + class QKVInputs(NamedTuple): ''' @@ -926,3 +942,19 @@ def assert_actual_matches_ideal(test_params: PhaseTestParameters, ideal_output = test_params.packed_qkvo.ideal_output torch.testing.assert_close(ideal_output, output_under_test.view_as(ideal_output)) + + +def opcheck(op: Union[torch._ops.OpOverload, torch._ops.OpOverloadPacket, + torch._library.custom_ops.CustomOpDef], + args: Tuple[Any, ...], + kwargs: Optional[Dict[str, Any]] = None, + *, + test_utils: Union[str, Sequence[str]] = ALL_OPCHECK_TEST_UTILS, + raise_exception: bool = True, + cond: bool = True) -> Dict[str, str]: + return torch.library.opcheck( + op, + args, + kwargs, + test_utils=test_utils, + raise_exception=raise_exception) if cond else {} diff --git a/tests/models/test_aqlm.py b/tests/models/test_aqlm.py index 80034a5118..de46032113 100644 --- a/tests/models/test_aqlm.py +++ b/tests/models/test_aqlm.py @@ -7,26 +7,6 @@ import pytest from tests.quantization.utils import is_quant_method_supported -# In this test we hardcode prompts and generations for the model so we don't -# need to require the AQLM package as a dependency -example_prompts = [ - 'vLLM is a high-throughput and memory-efficient inference and serving ' - 'engine for LLMs.\n', - 'Briefly describe the major milestones in the development of artificial ' - 'intelligence from 1950 to 2020.\n', - 'Compare and contrast artificial intelligence with human intelligence in ' - 'terms of processing information.\n', - 'Describe the basic components of a neural network and how it can be ' - 'trained.\n', - 'Write a short story about a robot that dreams for the first time.\n', - 'Analyze the impact of the COVID-19 pandemic on global economic structures ' - 'and future business models.\n', - 'Explain the cultural significance of the Mona Lisa painting, and how its ' - 'perception might vary in Western versus Eastern societies.\n', - "Translate the following English sentence into Japanese, French, and " - "Swahili: 'The early bird catches the worm.'\n" -] - # These ground truth generations were generated using `transformers==4.38.1 # aqlm==1.1.0 torch==2.2.0` # and the below code: diff --git a/vllm/_custom_ops.py b/vllm/_custom_ops.py index 151cdbee8e..7a9061526e 100644 --- a/vllm/_custom_ops.py +++ b/vllm/_custom_ops.py @@ -204,6 +204,22 @@ def gptq_gemm(a: torch.Tensor, b_q_weight: torch.Tensor, b_g_idx, use_exllama, bit) +# TODO: has to be a better way to do this +try: + torch.ops._C.gptq_gemm # noqa B018 + + @torch.library.register_fake("_C::gptq_gemm") + def _gptq_gemm_fake(a: torch.Tensor, b_q_weight: torch.Tensor, + b_gptq_qzeros: torch.Tensor, + b_gptq_scales: torch.Tensor, b_g_idx: torch.Tensor, + use_exllama: bool, bit: int) -> torch.Tensor: + return torch.empty((a.size(0), b_q_weight.size(1)), + dtype=a.dtype, + device=a.device) +except Exception: + pass + + def gptq_shuffle(q_weight: torch.Tensor, q_perm: torch.Tensor, bit: int) -> None: torch.ops._C.gptq_shuffle(q_weight, q_perm, bit) @@ -227,6 +243,194 @@ def gptq_marlin_24_gemm(a: torch.Tensor, b_q_weight: torch.Tensor, size_n, size_k) +# TODO: has to be a better way to do this +try: + torch.ops._C.gptq_marlin_24_gemm # noqa B018 + + @torch.library.register_fake("_C::gptq_marlin_24_gemm") + def _gptq_marlin_24_gemm_fake(a: torch.Tensor, b_q_weight: torch.Tensor, + b_meta: torch.Tensor, b_scales: torch.Tensor, + workspace: torch.Tensor, + b_q_type: ScalarType, size_m: int, + size_n: int, size_k: int) -> torch.Tensor: + return torch.empty((size_m, size_n), device=a.device, dtype=a.dtype) + + @torch.library.register_fake("_C::gptq_marlin_gemm") + def _gptq_marlin_gemm_fake(a: torch.Tensor, + b_q_weight: torch.Tensor, + b_scales: torch.Tensor, + b_zeros: torch.Tensor, + g_idx: torch.Tensor, + perm: torch.Tensor, + workspace: torch.Tensor, + b_q_type: ScalarType, + size_m: int, + size_n: int, + size_k: int, + is_k_full: bool, + has_zp: bool = False, + use_fp32_reduce: bool = False) -> torch.Tensor: + return torch.empty((size_m, size_n), device=a.device, dtype=a.dtype) + + @torch.library.register_fake("_C::ggml_dequantize") + def _ggml_dequantize_fake(W: torch.Tensor, quant_type: int, m: int, + n: int) -> torch.Tensor: + return torch.empty((m, n), dtype=torch.float16, device=W.device) + + @torch.library.register_fake("_C::ggml_mul_mat_vec_a8") + def _ggml_mul_mat_vec_a8_fake( + W: torch.Tensor, + X: torch.Tensor, + quant_type: int, + row: int, + ) -> torch.Tensor: + return torch.empty((1, row), dtype=torch.float16, device=W.device) + + @torch.library.register_fake("_C::ggml_mul_mat_a8") + def _ggml_mul_mat_a8_fake( + W: torch.Tensor, + X: torch.Tensor, + quant_type: int, + row: int, + ) -> torch.Tensor: + batch = X.size(0) + return torch.empty((batch, row), dtype=torch.float16, device=W.device) + + @torch.library.register_fake("_C::marlin_qqq_gemm") + def _marlin_qqq_gemm_fake(a: torch.Tensor, b_q_weight: torch.Tensor, + s_tok: torch.Tensor, s_ch: torch.Tensor, + s_group: torch.Tensor, workspace: torch.Tensor, + size_m: int, size_n: int, + size_k: int) -> torch.Tensor: + return torch.empty((size_m, size_n), + dtype=torch.float16, + device=a.device) + + @torch.library.register_fake("_C::marlin_gemm") + def _marlin_gemm_fake(a: torch.Tensor, b_q_weight: torch.Tensor, + b_scales: torch.Tensor, workspace: torch.Tensor, + size_m: int, size_n: int, + size_k: int) -> torch.Tensor: + return torch.empty((size_m, size_n), + dtype=torch.float16, + device=a.device) + + @torch.library.register_fake("_C::awq_dequantize") + def _awq_dequantize_fake(qweight: torch.Tensor, scales: torch.Tensor, + zeros: torch.Tensor, split_k_iters: int, thx: int, + thy: int) -> torch.Tensor: + in_c = qweight.size(0) + qout_c = qweight.size(1) + out_c = qout_c * 8 + return torch.empty((in_c, out_c), + dtype=scales.dtype, + device=scales.device) + + @torch.library.register_fake("_C::awq_gemm") + def _awq_gemm_fake(input: torch.Tensor, qweight: torch.Tensor, + qzeros: torch.Tensor, scales: torch.Tensor, + split_k_iters: int) -> torch.Tensor: + num_in_feats = input.size(0) + return torch.empty((split_k_iters, num_in_feats, qweight.size(1) * 8), + dtype=input.dtype, + device=input.device).sum(0) + + @torch.library.register_fake("_C::aqlm_gemm") + def _aqlm_gemm_fake(input: torch.Tensor, codes: torch.Tensor, + codebooks: torch.Tensor, scales: torch.Tensor, + codebook_partition_sizes: List[int], + bias: Optional[torch.Tensor]) -> torch.Tensor: + out_features = codes.size(0) * codebooks.size(2) + flat_input = input.reshape((-1, input.size(-1))) + flat_output = torch.empty((flat_input.size(0), out_features), + dtype=input.dtype, + device=input.device) + + output_sizes = list(input.shape) + output_sizes.pop() + output_sizes.append(-1) + return flat_output.reshape(tuple(output_sizes)) + + @torch.library.register_fake("_C::aqlm_dequant") + def _aqlm_dequant_fake( + codes: torch.Tensor, codebooks: torch.Tensor, + codebook_partition_sizes: List[int]) -> torch.Tensor: + in_features = codes.size(1) * 8 + out_features = codes.size(0) + return torch.empty((out_features, in_features), + dtype=codebooks.dtype, + device=codebooks.device) + + @torch.library.register_fake("_C::fp8_marlin_gemm") + def _fp8_marlin_gemm_fake(a: torch.Tensor, b_q_weight: torch.Tensor, + b_scales: torch.Tensor, workspace: torch.Tensor, + num_bits: int, size_m: int, size_n: int, + size_k: int) -> torch.Tensor: + return torch.empty((size_m, size_n), dtype=a.dtype, device=a.device) + + @torch.library.register_fake("_C::machete_gemm") + def machete_gemm_fake( + a: torch.Tensor, + b_q: torch. + Tensor, # Should be the tensor returned by machete_prepack_B + b_type: ScalarType, + b_scales: Optional[torch.Tensor] = None, + b_zeros: Optional[torch.Tensor] = None, + b_group_size: Optional[int] = None, + c: Optional[torch.Tensor] = None, + alpha: Optional[float] = None, + beta: Optional[float] = None, + schedule: Optional[str] = None, + ) -> torch.Tensor: + m = a.size(0) + n = b_q.size(1) + return torch.empty((m, n), device=a.device, dtype=a.dtype) + + @torch.library.register_fake("_C::machete_prepack_B") + def machete_prepack_B_fake(b_q_weight: torch.Tensor, + b_type: ScalarType) -> torch.Tensor: + return torch.empty_like(b_q_weight) + + @torch.library.register_fake("_C::causal_conv1d_fwd") + def causal_conv1d_fwd_fake(x: torch.Tensor, weight: torch.Tensor, + bias_: Optional[torch.Tensor], + seq_idx_: Optional[torch.Tensor], + initial_states_: Optional[torch.Tensor], + final_states_out_: Optional[torch.Tensor], + silu_activation: bool) -> torch.Tensor: + return torch.empty_like(x) + + @torch.library.register_fake("_C::causal_conv1d_update") + def causal_conv1d_update_fake(x: torch.Tensor, conv_state: torch.Tensor, + weight: torch.Tensor, + bias_: Optional[torch.Tensor], + silu_activation: bool) -> torch.Tensor: + return torch.empty_like(x) + + @torch.library.register_fake("_C::selective_scan_fwd") + def selective_scan_fwd_fake( + u: torch.Tensor, delta: torch.Tensor, A: torch.Tensor, + B: torch.Tensor, C: torch.Tensor, D_: Optional[torch.Tensor], + z_: Optional[torch.Tensor], delta_bias_: Optional[torch.Tensor], + delta_softplus: bool, index_: Optional[torch.Tensor], + x: Optional[torch.Tensor]) -> List[torch.Tensor]: + a = torch.empty_like(u) + if x is not None: + b = x + else: + b = torch.empty((u.size(0), u.size(1), A.size(1)), + dtype=u.dtype, + device=u.device) + if z_ is not None: + c = torch.empty_like(z_) + return [a, b, c] + else: + return [a, b] + +except Exception: + pass + + # cutlass def cutlass_scaled_mm_supports_fp8(cuda_device_capability: int) -> bool: return torch.ops._C.cutlass_scaled_mm_supports_fp8(cuda_device_capability) diff --git a/vllm/envs.py b/vllm/envs.py index ed45047e9f..9e34b3d08b 100644 --- a/vllm/envs.py +++ b/vllm/envs.py @@ -203,6 +203,11 @@ environment_variables: Dict[str, Callable[[], Any]] = { (os.environ.get("VLLM_DYNAMO_USE_CUSTOM_DISPATCHER", "True").lower() in ("true", "1")), + # Internal flag to enable Dynamo fullgraph capture + "VLLM_TEST_DYNAMO_FULLGRAPH_CAPTURE": + lambda: bool( + os.environ.get("VLLM_TEST_DYNAMO_FULLGRAPH_CAPTURE", "1") != "0"), + # local rank of the process in the distributed setting, used to determine # the GPU device id "LOCAL_RANK": diff --git a/vllm/model_executor/models/jamba.py b/vllm/model_executor/models/jamba.py index 29dd09afac..9b7cc22869 100644 --- a/vllm/model_executor/models/jamba.py +++ b/vllm/model_executor/models/jamba.py @@ -733,7 +733,7 @@ class JambaForCausalLM(nn.Module, HasInnerState, SupportsLoRA): indices_for_current_run: List[int]): # move out all of the occupied but currently not running blocks # outside of the first n blocks - destination_indices = set([range(batch_size)]) + destination_indices = range(batch_size) max_possible_batch_size = self.mamba_cache[0].shape[1] for destination_index in destination_indices: if destination_index in self._get_all_occupied_indices() and \ diff --git a/vllm/worker/model_runner.py b/vllm/worker/model_runner.py index cf8bc3e6a1..0cfca0671b 100644 --- a/vllm/worker/model_runner.py +++ b/vllm/worker/model_runner.py @@ -75,6 +75,10 @@ _NUM_WARMUP_ITERS = 2 TModelInputForGPU = TypeVar('TModelInputForGPU', bound="ModelInputForGPU") +# For now, bump up cache limits for recompilations during CUDA graph warmups. +torch._dynamo.config.cache_size_limit = 128 +torch._dynamo.config.accumulated_cache_size_limit = 128 + @dataclass(frozen=True) class ModelInputForGPU(ModelRunnerInputBase): @@ -1060,9 +1064,10 @@ class GPUModelRunnerBase(ModelRunnerBase[TModelInputForGPU]): "This may lead to less accurate results!") if envs.VLLM_TEST_DYNAMO_GRAPH_CAPTURE and supports_dynamo(): - self.model = torch.compile(self.model, - fullgraph=True, - backend="eager") + self.model = torch.compile( + self.model, + fullgraph=envs.VLLM_TEST_DYNAMO_FULLGRAPH_CAPTURE, + backend="eager") def save_sharded_state( self, diff --git a/vllm/worker/worker.py b/vllm/worker/worker.py index 0ff559a9af..52092dc2dc 100644 --- a/vllm/worker/worker.py +++ b/vllm/worker/worker.py @@ -166,6 +166,7 @@ class Worker(LocalOrDistributedWorkerBase): torch.cuda.set_device(self.device) _check_if_gpu_supports_dtype(self.model_config.dtype) + gc.collect() torch.cuda.empty_cache() self.init_gpu_memory = torch.cuda.mem_get_info()[0] else: