mirror of https://github.com/vllm-project/vllm
[ROCm] add support to ROCm 6.0 and MI300 (#2274)
This commit is contained in:
parent
5265631d15
commit
6b7de1a030
|
@ -1,4 +1,24 @@
|
|||
FROM rocm/pytorch:rocm5.7_ubuntu22.04_py3.10_pytorch_2.0.1
|
||||
# default base image
|
||||
ARG BASE_IMAGE="rocm/pytorch:rocm6.0_ubuntu20.04_py3.9_pytorch_2.1.1"
|
||||
|
||||
FROM $BASE_IMAGE
|
||||
|
||||
ARG BASE_IMAGE="rocm/pytorch:rocm6.0_ubuntu20.04_py3.9_pytorch_2.1.1"
|
||||
|
||||
RUN echo "Base image is $BASE_IMAGE"
|
||||
|
||||
# BASE_IMAGE for ROCm_5.7: "rocm/pytorch:rocm5.7_ubuntu22.04_py3.10_pytorch_2.0.1"
|
||||
# BASE_IMAGE for ROCm_6.0: "rocm/pytorch:rocm6.0_ubuntu20.04_py3.9_pytorch_2.1.1"
|
||||
|
||||
# this does not always work for all rocm versions
|
||||
RUN LLVM_GFX_ARCH=$(/opt/rocm/llvm/bin/amdgpu-offload-arch) && \
|
||||
echo "LLVM_GFX_ARCH is $LLVM_GFX_ARCH"
|
||||
|
||||
ARG FA_GFX_ARCHS="gfx90a;gfx942"
|
||||
RUN echo "FA_GFX_ARCHS is $FA_GFX_ARCHS"
|
||||
|
||||
ARG FA_BRANCH="3d2b6f5"
|
||||
RUN echo "FA_BRANCH is $FA_BRANCH"
|
||||
|
||||
# Install some basic utilities
|
||||
RUN apt-get update && apt-get install python3 python3-pip -y
|
||||
|
@ -37,17 +57,23 @@ RUN mkdir libs \
|
|||
&& cd libs \
|
||||
&& git clone https://github.com/ROCmSoftwarePlatform/flash-attention.git \
|
||||
&& cd flash-attention \
|
||||
&& git checkout 3d2b6f5 \
|
||||
&& git checkout ${FA_BRANCH} \
|
||||
&& git submodule update --init \
|
||||
&& export GPU_ARCHS=$(/opt/rocm/llvm/bin/amdgpu-offload-arch) \
|
||||
&& patch /opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/utils/hipify/hipify_python.py hipify_patch.patch \
|
||||
&& export GPU_ARCHS=${FA_GFX_ARCHS} \
|
||||
&& if [ "$BASE_IMAGE" = "rocm/pytorch:rocm5.7_ubuntu22.04_py3.10_pytorch_2.0.1" ]; then \
|
||||
patch /opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/utils/hipify/hipify_python.py hipify_patch.patch; fi \
|
||||
&& python3 setup.py install \
|
||||
&& cd ..
|
||||
|
||||
COPY ./ /app/vllm
|
||||
|
||||
RUN python3 -m pip install --upgrade pip
|
||||
RUN pip install xformers==0.0.23 --no-deps
|
||||
RUN python3 -m pip install xformers==0.0.23 --no-deps
|
||||
|
||||
# Error related to odd state for numpy 1.20.3 where there is no METADATA etc, but an extra LICENSES_bundled.txt.
|
||||
# Manually removed it so that later steps of numpy upgrade can continue
|
||||
RUN if [ "$BASE_IMAGE" = "rocm/pytorch:rocm6.0_ubuntu20.04_py3.9_pytorch_2.1.1" ]; then \
|
||||
rm -rf /opt/conda/envs/py_3.9/lib/python3.9/site-packages/numpy-1.20.3.dist-info/; fi
|
||||
|
||||
RUN cd /app \
|
||||
&& cd vllm \
|
||||
|
|
|
@ -26,7 +26,8 @@ Please register [here](https://lu.ma/ygxbpzhl) and join us!
|
|||
---
|
||||
|
||||
*Latest News* 🔥
|
||||
- [2023/12] Added ROCm support to vLLM.
|
||||
- [2024/01] Added ROCm 6.0 support to vLLM.
|
||||
- [2023/12] Added ROCm 5.7 support to vLLM.
|
||||
- [2023/10] We hosted [the first vLLM meetup](https://lu.ma/first-vllm-meetup) in SF! Please find the meetup slides [here](https://docs.google.com/presentation/d/1QL-XPFXiFpDBh86DbEegFXBXFXjix4v032GhShbKf3s/edit?usp=sharing).
|
||||
- [2023/09] We created our [Discord server](https://discord.gg/jz7wjKhh6g)! Join us to discuss vLLM and LLM serving! We will also post the latest announcements and updates there.
|
||||
- [2023/09] We released our [PagedAttention paper](https://arxiv.org/abs/2309.06180) on arXiv!
|
||||
|
|
|
@ -5,3 +5,6 @@
|
|||
int get_device_attribute(
|
||||
int attribute,
|
||||
int device_id);
|
||||
|
||||
int get_max_shared_memory_per_block_device_attribute(
|
||||
int device_id);
|
||||
|
|
|
@ -1,5 +1,6 @@
|
|||
#ifdef USE_ROCM
|
||||
#include <hip/hip_runtime.h>
|
||||
#include <hip/hip_runtime_api.h>
|
||||
#endif
|
||||
int get_device_attribute(
|
||||
int attribute,
|
||||
|
@ -15,3 +16,20 @@ int get_device_attribute(
|
|||
cudaDeviceGetAttribute(&value, static_cast<cudaDeviceAttr>(attribute), device);
|
||||
return value;
|
||||
}
|
||||
|
||||
|
||||
int get_max_shared_memory_per_block_device_attribute(
|
||||
int device_id)
|
||||
{
|
||||
int attribute;
|
||||
// https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__TYPES.html
|
||||
// cudaDevAttrMaxSharedMemoryPerBlockOptin = 97 if not is_hip() else 74
|
||||
|
||||
#ifdef USE_ROCM
|
||||
attribute = hipDeviceAttributeMaxSharedMemoryPerBlock;
|
||||
#else
|
||||
attribute = cudaDevAttrMaxSharedMemoryPerBlockOptin;
|
||||
#endif
|
||||
|
||||
return get_device_attribute(attribute, device_id);
|
||||
}
|
||||
|
|
|
@ -81,4 +81,10 @@ PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
|
|||
"get_device_attribute",
|
||||
&get_device_attribute,
|
||||
"Gets the specified device attribute.");
|
||||
|
||||
cuda_utils.def(
|
||||
"get_max_shared_memory_per_block_device_attribute",
|
||||
&get_max_shared_memory_per_block_device_attribute,
|
||||
"Gets the maximum shared memory per block device attribute.");
|
||||
|
||||
}
|
||||
|
|
|
@ -11,10 +11,10 @@ Requirements
|
|||
------------
|
||||
|
||||
* OS: Linux
|
||||
* Python: 3.8 -- 3.11 (Verified on 3.10)
|
||||
* GPU: MI200s
|
||||
* Python: 3.8 -- 3.11
|
||||
* GPU: MI200s (gfx90a), MI300 (gfx942)
|
||||
* Pytorch 2.0.1/2.1.1/2.2
|
||||
* ROCm 5.7
|
||||
* ROCm 5.7 (Verified on python 3.10) or ROCm 6.0 (Verified on python 3.9)
|
||||
|
||||
Installation options:
|
||||
|
||||
|
@ -27,6 +27,8 @@ Installation options:
|
|||
(Recommended) Option 1: Quick start with vLLM pre-installed in Docker Image
|
||||
---------------------------------------------------------------------------
|
||||
|
||||
This option is for ROCm 5.7 only:
|
||||
|
||||
.. code-block:: console
|
||||
|
||||
$ docker pull embeddedllminfo/vllm-rocm:vllm-v0.2.4
|
||||
|
@ -50,6 +52,9 @@ Option 2: Build from source
|
|||
|
||||
You can build and install vLLM from source:
|
||||
|
||||
Below instruction is for ROCm 5.7 only.
|
||||
At the time of this documentation update, PyTorch on ROCm 6.0 wheel is not yet available on the PyTorch website.
|
||||
|
||||
0. Install prerequisites (skip if you are already in an environment/docker with the following installed):
|
||||
|
||||
- `ROCm <https://rocm.docs.amd.com/en/latest/deploy/linux/index.html>`_
|
||||
|
@ -95,6 +100,23 @@ You can build and install vLLM from source:
|
|||
|
||||
Build a docker image from `Dockerfile.rocm`, and launch a docker container.
|
||||
|
||||
The `Dokerfile.rocm` is designed to support both ROCm 5.7 and ROCm 6.0 and later versions. It provides flexibility to customize the build of docker image using the following arguments:
|
||||
|
||||
* `BASE_IMAGE`: specifies the base image used when running ``docker build``, specifically the PyTorch on ROCm base image. We have tested ROCm 5.7 and ROCm 6.0. The default is `rocm/pytorch:rocm6.0_ubuntu20.04_py3.9_pytorch_2.1.1`
|
||||
* `FX_GFX_ARCHS`: specifies the GFX architecture that is used to build flash-attention, for example, `gfx90a;gfx942` for MI200 and MI300. The default is `gfx90a;gfx942`
|
||||
* `FA_BRANCH`: specifies the branch used to build the flash-attention in `ROCmSoftwarePlatform's flash-attention repo <https://github.com/ROCmSoftwarePlatform/flash-attention>`_. The default is `3d2b6f5`
|
||||
|
||||
Their values can be passed in when running ``docker build`` with ``--build-arg`` options.
|
||||
|
||||
For example, to build docker image for vllm on ROCm 5.7, you can run:
|
||||
|
||||
.. code-block:: console
|
||||
|
||||
$ docker build --build-arg BASE_IMAGE="rocm/pytorch:rocm5.7_ubuntu22.04_py3.10_pytorch_2.0.1" \
|
||||
-f Dockerfile.rocm -t vllm-rocm .
|
||||
|
||||
To build vllm on ROCm 6.0, you can use the default:
|
||||
|
||||
.. code-block:: console
|
||||
|
||||
$ docker build -f Dockerfile.rocm -t vllm-rocm .
|
||||
|
@ -142,3 +164,8 @@ Alternatively, if you plan to install vLLM-ROCm on a local machine or start from
|
|||
$ cd vllm
|
||||
$ pip install -U -r requirements-rocm.txt
|
||||
$ python setup.py install # This may take 5-10 minutes.
|
||||
|
||||
.. note::
|
||||
|
||||
- You may need to turn on the ``--enforce-eager`` flag if you experience process hang when running the `benchmark_thoughput.py` script to test your installation.
|
||||
|
||||
|
|
2
setup.py
2
setup.py
|
@ -51,6 +51,8 @@ if _is_hip():
|
|||
"Cannot find ROCM_HOME. ROCm must be available to build the package."
|
||||
)
|
||||
NVCC_FLAGS += ["-DUSE_ROCM"]
|
||||
NVCC_FLAGS += [f"-U__HIP_NO_HALF_CONVERSIONS__"]
|
||||
NVCC_FLAGS += [f"-U__HIP_NO_HALF_OPERATORS__"]
|
||||
|
||||
if _is_cuda() and CUDA_HOME is None:
|
||||
raise RuntimeError(
|
||||
|
|
|
@ -112,10 +112,10 @@ def get_max_shared_memory_bytes(gpu: int = 0) -> int:
|
|||
# the Neuron-X backend does not have the `cuda_utils` module.
|
||||
from vllm._C import cuda_utils
|
||||
|
||||
# https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__TYPES.html
|
||||
cudaDevAttrMaxSharedMemoryPerBlockOptin = 97 if not is_hip() else 74
|
||||
max_shared_mem = cuda_utils.get_device_attribute(
|
||||
cudaDevAttrMaxSharedMemoryPerBlockOptin, gpu)
|
||||
max_shared_mem = cuda_utils.get_max_shared_memory_per_block_device_attribute(
|
||||
gpu)
|
||||
# value 0 will cause MAX_SEQ_LEN become negative and test_attention.py will fail
|
||||
assert max_shared_mem > 0, "max_shared_mem can not be zero"
|
||||
return int(max_shared_mem)
|
||||
|
||||
|
||||
|
|
Loading…
Reference in New Issue