[NVIDIA] Support nvfp4 quantization (#12784)

This commit is contained in:
Kaixi Hou 2025-02-12 19:51:51 -08:00 committed by GitHub
parent 9f9704dca6
commit 4fc5c23bb6
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
12 changed files with 688 additions and 13 deletions

View File

@ -264,6 +264,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
"csrc/custom_all_reduce.cu" "csrc/custom_all_reduce.cu"
"csrc/permute_cols.cu" "csrc/permute_cols.cu"
"csrc/quantization/cutlass_w8a8/scaled_mm_entry.cu" "csrc/quantization/cutlass_w8a8/scaled_mm_entry.cu"
"csrc/quantization/fp4/nvfp4_quant_entry.cu"
"csrc/sparse/cutlass/sparse_scaled_mm_entry.cu" "csrc/sparse/cutlass/sparse_scaled_mm_entry.cu"
"csrc/sparse/cutlass/sparse_compressor_entry.cu" "csrc/sparse/cutlass/sparse_compressor_entry.cu"
"csrc/cutlass_extensions/common.cpp") "csrc/cutlass_extensions/common.cpp")
@ -377,6 +378,23 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
endif() endif()
endif() endif()
# FP4 Archs and flags
cuda_archs_loose_intersection(FP4_ARCHS "10.0a" "${CUDA_ARCHS}")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.8 AND FP4_ARCHS)
set(SRCS
"csrc/quantization/fp4/nvfp4_quant_kernels.cu"
)
set_gencode_flags_for_srcs(
SRCS "${SRCS}"
CUDA_ARCHS "${FP4_ARCHS}")
list(APPEND VLLM_EXT_SRC "${SRCS}")
list(APPEND VLLM_GPU_FLAGS "-DENABLE_NVFP4=1")
message(STATUS "Building NVFP4 for archs: ${FP4_ARCHS}")
else()
message(STATUS "Not building NVFP4 as no compatible archs were found.")
# clear FP4_ARCHS
set(FP4_ARCHS)
endif()
# #
# Machete kernels # Machete kernels

View File

@ -257,9 +257,9 @@ endmacro()
# where `<=` is the version comparison operator. # where `<=` is the version comparison operator.
# In other words, for each version in `TGT_CUDA_ARCHS` find the highest version # In other words, for each version in `TGT_CUDA_ARCHS` find the highest version
# in `SRC_CUDA_ARCHS` that is less or equal to the version in `TGT_CUDA_ARCHS`. # in `SRC_CUDA_ARCHS` that is less or equal to the version in `TGT_CUDA_ARCHS`.
# We have special handling for 9.0a, if 9.0a is in `SRC_CUDA_ARCHS` and 9.0 is # We have special handling for x.0a, if x.0a is in `SRC_CUDA_ARCHS` and x.0 is
# in `TGT_CUDA_ARCHS` then we should remove 9.0a from `SRC_CUDA_ARCHS` and add # in `TGT_CUDA_ARCHS` then we should remove x.0a from `SRC_CUDA_ARCHS` and add
# 9.0a to the result (and remove 9.0 from TGT_CUDA_ARCHS). # x.0a to the result (and remove x.0 from TGT_CUDA_ARCHS).
# The result is stored in `OUT_CUDA_ARCHS`. # The result is stored in `OUT_CUDA_ARCHS`.
# #
# Example: # Example:
@ -272,8 +272,8 @@ function(cuda_archs_loose_intersection OUT_CUDA_ARCHS SRC_CUDA_ARCHS TGT_CUDA_AR
list(REMOVE_DUPLICATES SRC_CUDA_ARCHS) list(REMOVE_DUPLICATES SRC_CUDA_ARCHS)
set(TGT_CUDA_ARCHS_ ${TGT_CUDA_ARCHS}) set(TGT_CUDA_ARCHS_ ${TGT_CUDA_ARCHS})
# if 9.0a is in SRC_CUDA_ARCHS and 9.0 is in CUDA_ARCHS then we should # if x.0a is in SRC_CUDA_ARCHS and x.0 is in CUDA_ARCHS then we should
# remove 9.0a from SRC_CUDA_ARCHS and add 9.0a to _CUDA_ARCHS # remove x.0a from SRC_CUDA_ARCHS and add x.0a to _CUDA_ARCHS
set(_CUDA_ARCHS) set(_CUDA_ARCHS)
if ("9.0a" IN_LIST SRC_CUDA_ARCHS) if ("9.0a" IN_LIST SRC_CUDA_ARCHS)
list(REMOVE_ITEM SRC_CUDA_ARCHS "9.0a") list(REMOVE_ITEM SRC_CUDA_ARCHS "9.0a")
@ -283,6 +283,14 @@ function(cuda_archs_loose_intersection OUT_CUDA_ARCHS SRC_CUDA_ARCHS TGT_CUDA_AR
endif() endif()
endif() endif()
if ("10.0a" IN_LIST SRC_CUDA_ARCHS)
list(REMOVE_ITEM SRC_CUDA_ARCHS "10.0a")
if ("10.0" IN_LIST TGT_CUDA_ARCHS)
list(REMOVE_ITEM TGT_CUDA_ARCHS_ "10.0")
set(_CUDA_ARCHS "10.0a")
endif()
endif()
list(SORT SRC_CUDA_ARCHS COMPARE NATURAL ORDER ASCENDING) list(SORT SRC_CUDA_ARCHS COMPARE NATURAL ORDER ASCENDING)
# for each ARCH in TGT_CUDA_ARCHS find the highest arch in SRC_CUDA_ARCHS that # for each ARCH in TGT_CUDA_ARCHS find the highest arch in SRC_CUDA_ARCHS that

View File

@ -1,5 +1,7 @@
#pragma once #pragma once
#include <stdio.h>
#if defined(__CUDACC__) || defined(_NVHPC_CUDA) #if defined(__CUDACC__) || defined(_NVHPC_CUDA)
#define HOST_DEVICE_INLINE __forceinline__ __host__ __device__ #define HOST_DEVICE_INLINE __forceinline__ __host__ __device__
#define DEVICE_INLINE __forceinline__ __device__ #define DEVICE_INLINE __forceinline__ __device__
@ -10,6 +12,16 @@
#define HOST_INLINE inline #define HOST_INLINE inline
#endif #endif
#define CUDA_CHECK(cmd) \
do { \
cudaError_t e = cmd; \
if (e != cudaSuccess) { \
printf("Failed: Cuda error %s:%d '%s'\n", __FILE__, __LINE__, \
cudaGetErrorString(e)); \
exit(EXIT_FAILURE); \
} \
} while (0)
int64_t get_device_attribute(int64_t attribute, int64_t device_id); int64_t get_device_attribute(int64_t attribute, int64_t device_id);
int64_t get_max_shared_memory_per_block_device_attribute(int64_t device_id); int64_t get_max_shared_memory_per_block_device_attribute(int64_t device_id);

View File

@ -1,16 +1,22 @@
#include "cuda_utils.h"
#ifdef USE_ROCM #ifdef USE_ROCM
#include <hip/hip_runtime.h> #include <hip/hip_runtime.h>
#include <hip/hip_runtime_api.h> #include <hip/hip_runtime_api.h>
#endif #endif
int64_t get_device_attribute(int64_t attribute, int64_t device_id) { int64_t get_device_attribute(int64_t attribute, int64_t device_id) {
int device, value; // Return the cached value on subsequent calls
if (device_id < 0) { static int value = [=]() {
cudaGetDevice(&device); int device = static_cast<int>(device_id);
} else { if (device < 0) {
device = device_id; CUDA_CHECK(cudaGetDevice(&device));
} }
cudaDeviceGetAttribute(&value, static_cast<cudaDeviceAttr>(attribute), int value;
device); CUDA_CHECK(cudaDeviceGetAttribute(
&value, static_cast<cudaDeviceAttr>(attribute), device));
return static_cast<int>(value);
}();
return value; return value;
} }

View File

@ -195,6 +195,10 @@ torch::Tensor gptq_gemm(torch::Tensor a, torch::Tensor b_q_weight,
void gptq_shuffle(torch::Tensor q_weight, torch::Tensor q_perm, int64_t bit); void gptq_shuffle(torch::Tensor q_weight, torch::Tensor q_perm, int64_t bit);
void scaled_fp4_quant(torch::Tensor& output, torch::Tensor const& input,
torch::Tensor& output_scale,
torch::Tensor const& input_scale);
void static_scaled_fp8_quant(torch::Tensor& out, torch::Tensor const& input, void static_scaled_fp8_quant(torch::Tensor& out, torch::Tensor const& input,
torch::Tensor const& scale); torch::Tensor const& scale);

View File

@ -0,0 +1,32 @@
/*
* Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <torch/all.h>
#if defined ENABLE_NVFP4 && ENABLE_NVFP4
void scaled_fp4_quant_sm100a(torch::Tensor const& output,
torch::Tensor const& input,
torch::Tensor const& output_sf,
torch::Tensor const& input_sf);
#endif
void scaled_fp4_quant(torch::Tensor& output, torch::Tensor const& input,
torch::Tensor& output_sf, torch::Tensor const& input_sf) {
#if defined ENABLE_NVFP4 && ENABLE_NVFP4
return scaled_fp4_quant_sm100a(output, input, output_sf, input_sf);
#endif
TORCH_CHECK_NOT_IMPLEMENTED(false, "No compiled nvfp4 quantization");
}

View File

@ -0,0 +1,379 @@
/*
* Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <torch/all.h>
#include <cuda_runtime_api.h>
#include <cuda_runtime.h>
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>
#include <cuda_fp8.h>
#include "cuda_utils.h"
// Get type2 from type or vice versa (applied to half and bfloat16)
template <typename T>
struct TypeConverter {
using Type = half2;
}; // keep for generality
template <>
struct TypeConverter<half2> {
using Type = half;
};
template <>
struct TypeConverter<half> {
using Type = half2;
};
template <>
struct TypeConverter<__nv_bfloat162> {
using Type = __nv_bfloat16;
};
template <>
struct TypeConverter<__nv_bfloat16> {
using Type = __nv_bfloat162;
};
#define ELTS_PER_THREAD 8
constexpr int CVT_FP4_ELTS_PER_THREAD = 8;
constexpr int CVT_FP4_SF_VEC_SIZE = 16;
// Convert 8 float32 values into 8 e2m1 values (represented as one uint32_t).
inline __device__ uint32_t fp32_vec_to_e2m1(float (&array)[8]) {
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 1000)
uint32_t val;
asm volatile(
"{\n"
".reg .b8 byte0;\n"
".reg .b8 byte1;\n"
".reg .b8 byte2;\n"
".reg .b8 byte3;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte0, %2, %1;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte1, %4, %3;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte2, %6, %5;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte3, %8, %7;\n"
"mov.b32 %0, {byte0, byte1, byte2, byte3};\n"
"}"
: "=r"(val)
: "f"(array[0]), "f"(array[1]), "f"(array[2]), "f"(array[3]),
"f"(array[4]), "f"(array[5]), "f"(array[6]), "f"(array[7]));
return val;
#else
return 0;
#endif
}
// Convert 4 float2 values into 8 e2m1 values (represented as one uint32_t).
inline __device__ uint32_t fp32_vec_to_e2m1(float2 (&array)[4]) {
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 1000)
uint32_t val;
asm volatile(
"{\n"
".reg .b8 byte0;\n"
".reg .b8 byte1;\n"
".reg .b8 byte2;\n"
".reg .b8 byte3;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte0, %2, %1;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte1, %4, %3;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte2, %6, %5;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte3, %8, %7;\n"
"mov.b32 %0, {byte0, byte1, byte2, byte3};\n"
"}"
: "=r"(val)
: "f"(array[0].x), "f"(array[0].y), "f"(array[1].x), "f"(array[1].y),
"f"(array[2].x), "f"(array[2].y), "f"(array[3].x), "f"(array[3].y));
return val;
#else
return 0;
#endif
}
// Fast reciprocal.
inline __device__ float reciprocal_approximate_ftz(float a) {
float b;
asm volatile("rcp.approx.ftz.f32 %0, %1;\n" : "=f"(b) : "f"(a));
return b;
}
template <class SFType, int CVT_FP4_NUM_THREADS_PER_SF>
__device__ uint8_t* cvt_quant_to_fp4_get_sf_out_offset(int rowIdx, int colIdx,
int numCols,
SFType* SFout) {
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 1000)
static_assert(CVT_FP4_NUM_THREADS_PER_SF == 1 ||
CVT_FP4_NUM_THREADS_PER_SF == 2);
// One pair of threads write one SF to global memory.
// TODO: stage through smem for packed STG.32
// is it better than STG.8 from 4 threads ?
if (threadIdx.x % CVT_FP4_NUM_THREADS_PER_SF == 0) {
// SF vector index (16 elements share one SF in the K dimension).
int32_t kIdx = colIdx / CVT_FP4_NUM_THREADS_PER_SF;
int32_t mIdx = rowIdx;
// SF layout [numMTiles, numKTiles, 32 (mTile), 4 (mTile), 4(kTile)]
// --> index [mTileIdx, kTileIdx, outerMIdx, innerMIdx, innerKIdx]
int32_t mTileIdx = mIdx / (32 * 4);
// SF vector size 16.
int factor = CVT_FP4_SF_VEC_SIZE * 4;
int32_t numKTiles = (numCols + factor - 1) / factor;
int64_t mTileStride = numKTiles * 32 * 4 * 4;
int32_t kTileIdx = (kIdx / 4);
int64_t kTileStride = 32 * 4 * 4;
// M tile layout [32, 4] is column-major.
int32_t outerMIdx = (mIdx % 32);
int64_t outerMStride = 4 * 4;
int32_t innerMIdx = (mIdx % (32 * 4)) / 32;
int64_t innerMStride = 4;
int32_t innerKIdx = (kIdx % 4);
int64_t innerKStride = 1;
// Compute the global offset.
int64_t SFOffset = mTileIdx * mTileStride + kTileIdx * kTileStride +
outerMIdx * outerMStride + innerMIdx * innerMStride +
innerKIdx * innerKStride;
return reinterpret_cast<uint8_t*>(SFout) + SFOffset;
}
#endif
return nullptr;
}
// Define a 16 bytes packed data type.
template <class Type>
struct PackedVec {
typename TypeConverter<Type>::Type elts[4];
};
template <>
struct PackedVec<__nv_fp8_e4m3> {
__nv_fp8x2_e4m3 elts[8];
};
// Quantizes the provided PackedVec into the uint32_t output
template <class Type, bool UE8M0_SF = false>
__device__ uint32_t cvt_warp_fp16_to_fp4(PackedVec<Type>& vec, float SFScaleVal,
uint8_t* SFout) {
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 1000)
// Get absolute maximum values among the local 8 values.
auto localMax = __habs2(vec.elts[0]);
// Local maximum value.
#pragma unroll
for (int i = 1; i < CVT_FP4_ELTS_PER_THREAD / 2; i++) {
localMax = __hmax2(localMax, __habs2(vec.elts[i]));
}
// Get the absolute maximum among all 16 values (two threads).
localMax = __hmax2(__shfl_xor_sync(uint32_t(-1), localMax, 1), localMax);
// Get the final absolute maximum values.
float vecMax = float(__hmax(localMax.x, localMax.y));
// Get the SF (max value of the vector / max value of e2m1).
// maximum value of e2m1 = 6.0.
// TODO: use half as compute data type.
float SFValue = SFScaleVal * (vecMax * reciprocal_approximate_ftz(6.0f));
// 8 bits representation of the SF.
uint8_t fp8SFVal;
// Write the SF to global memory (STG.8).
if constexpr (UE8M0_SF) {
// Extract the 8 exponent bits from float32.
// float 32bits = 1 sign bit + 8 exponent bits + 23 mantissa bits.
uint32_t tmp = reinterpret_cast<uint32_t&>(SFValue) >> 23;
fp8SFVal = tmp & 0xff;
// Convert back to fp32.
reinterpret_cast<uint32_t&>(SFValue) = tmp << 23;
} else {
// Here SFValue is always positive, so E4M3 is the same as UE4M3.
__nv_fp8_e4m3 tmp = __nv_fp8_e4m3(SFValue);
reinterpret_cast<__nv_fp8_e4m3&>(fp8SFVal) = tmp;
// Convert back to fp32.
SFValue = float(tmp);
}
// Get the output scale.
// Recipe: final_scale = reciprocal(fp32(fp8(SFValue * SFScaleVal))) *
// reciprocal(SFScaleVal))
float outputScale =
SFValue != 0 ? reciprocal_approximate_ftz(
SFValue * reciprocal_approximate_ftz(SFScaleVal))
: 0.0f;
if (SFout) {
// Write the SF to global memory (STG.8).
*SFout = fp8SFVal;
}
// Convert the input to float.
float2 fp2Vals[CVT_FP4_ELTS_PER_THREAD / 2];
#pragma unroll
for (int i = 0; i < CVT_FP4_ELTS_PER_THREAD / 2; i++) {
if constexpr (std::is_same_v<Type, half>) {
fp2Vals[i] = __half22float2(vec.elts[i]);
} else {
fp2Vals[i] = __bfloat1622float2(vec.elts[i]);
}
fp2Vals[i].x *= outputScale;
fp2Vals[i].y *= outputScale;
}
// Convert to e2m1 values.
uint32_t e2m1Vec = fp32_vec_to_e2m1(fp2Vals);
// Write the e2m1 values to global memory.
return e2m1Vec;
#else
return 0;
#endif
}
// Use UE4M3 by default.
template <class Type, bool UE8M0_SF = false>
__global__ void
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 1000)
__launch_bounds__(512, 4) cvt_fp16_to_fp4(
#else
cvt_fp16_to_fp4(
#endif
int32_t numRows, int32_t numCols, Type const* in, float const* SFScale,
uint32_t* out, uint32_t* SFout) {
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 1000)
using PackedVec = PackedVec<Type>;
static constexpr int CVT_FP4_NUM_THREADS_PER_SF =
(CVT_FP4_SF_VEC_SIZE / CVT_FP4_ELTS_PER_THREAD);
static_assert(sizeof(PackedVec) == sizeof(Type) * CVT_FP4_ELTS_PER_THREAD,
"Vec size is not matched.");
// Get the global scaling factor, which will be applied to the SF.
// Note SFScale is the same as next GEMM's alpha, which is
// (448.f / (Alpha_A / 6.f)).
float const SFScaleVal = SFScale == nullptr ? 1.0f : SFScale[0];
// Input tensor row/col loops.
for (int rowIdx = blockIdx.x; rowIdx < numRows; rowIdx += gridDim.x) {
for (int colIdx = threadIdx.x; colIdx < numCols / CVT_FP4_ELTS_PER_THREAD;
colIdx += blockDim.x) {
int64_t inOffset = rowIdx * (numCols / CVT_FP4_ELTS_PER_THREAD) + colIdx;
PackedVec in_vec = reinterpret_cast<PackedVec const*>(in)[inOffset];
// Get the output tensor offset.
// Same as inOffset because 8 elements are packed into one uint32_t.
int64_t outOffset = inOffset;
auto& out_pos = out[outOffset];
auto sf_out =
cvt_quant_to_fp4_get_sf_out_offset<uint32_t,
CVT_FP4_NUM_THREADS_PER_SF>(
rowIdx, colIdx, numCols, SFout);
out_pos =
cvt_warp_fp16_to_fp4<Type, UE8M0_SF>(in_vec, SFScaleVal, sf_out);
}
}
#endif
}
template <typename T>
void invokeFP4Quantization(int m, int n, T const* input, float const* SFScale,
int64_t* output, int32_t* SFOuput, bool useUE8M0,
int multiProcessorCount, cudaStream_t stream) {
// Grid, Block size.
// Each thread converts 8 values.
dim3 block(std::min(int(n / ELTS_PER_THREAD), 512));
// Get number of blocks per SM (assume we can fully utilize the SM).
int const numBlocksPerSM = 2048 / block.x;
dim3 grid(std::min(int(m), multiProcessorCount * numBlocksPerSM));
// Launch the cvt kernel.
if (useUE8M0) {
cvt_fp16_to_fp4<T, true><<<grid, block, 0, stream>>>(
m, n, input, SFScale, reinterpret_cast<uint32_t*>(output),
reinterpret_cast<uint32_t*>(SFOuput));
} else {
cvt_fp16_to_fp4<T, false><<<grid, block, 0, stream>>>(
m, n, input, SFScale, reinterpret_cast<uint32_t*>(output),
reinterpret_cast<uint32_t*>(SFOuput));
}
}
// Instantiate the function.
template void invokeFP4Quantization(int m, int n, half const* input,
float const* SFScale, int64_t* output,
int32_t* SFOuput, bool useUE8M0,
int multiProcessorCount,
cudaStream_t stream);
template void invokeFP4Quantization(int m, int n, __nv_bfloat16 const* input,
float const* SFScale, int64_t* output,
int32_t* SFOuput, bool useUE8M0,
int multiProcessorCount,
cudaStream_t stream);
void scaled_fp4_quant_sm100a(torch::Tensor const& output,
torch::Tensor const& input,
torch::Tensor const& output_sf,
torch::Tensor const& input_sf) {
int32_t m = input.size(0);
int32_t n = input.size(1);
TORCH_CHECK(n % 16 == 0, "The N dimension must be multiple of 16.");
int multiProcessorCount =
get_device_attribute(cudaDevAttrMultiProcessorCount, -1);
auto input_sf_ptr = static_cast<float const*>(input_sf.data_ptr());
auto sf_out = static_cast<int32_t*>(output_sf.data_ptr());
auto output_ptr = static_cast<int64_t*>(output.data_ptr());
at::cuda::CUDAGuard device_guard{(char)input.get_device()};
auto stream = at::cuda::getStreamFromPool(false, input.get_device());
if (stream == nullptr) {
std::cerr << "Warning: Null CUDA stream" << std::endl;
}
// We don't support e8m0 scales at this moment.
bool useUE8M0 = false;
switch (input.scalar_type()) {
case torch::kHalf: {
auto input_ptr = reinterpret_cast<half const*>(input.data_ptr());
invokeFP4Quantization(m, n, input_ptr, input_sf_ptr, output_ptr, sf_out,
useUE8M0, multiProcessorCount, stream);
break;
}
case torch::kBFloat16: {
auto input_ptr = reinterpret_cast<__nv_bfloat16 const*>(input.data_ptr());
invokeFP4Quantization(m, n, input_ptr, input_sf_ptr, output_ptr, sf_out,
useUE8M0, multiProcessorCount, stream);
break;
}
default: {
std::cerr << "Observing: " << input.scalar_type()
<< " for the input datatype which is invalid";
throw std::runtime_error(
"Unsupported input data type for quantize_to_fp4.");
}
}
}

View File

@ -423,6 +423,12 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
ops.impl("dynamic_per_token_scaled_fp8_quant", torch::kCUDA, ops.impl("dynamic_per_token_scaled_fp8_quant", torch::kCUDA,
&dynamic_per_token_scaled_fp8_quant); &dynamic_per_token_scaled_fp8_quant);
// Compute NVFP4 block quantized tensor.
ops.def(
"scaled_fp4_quant(Tensor! output, Tensor input,"
" Tensor! output_scale, Tensor input_scale) -> ()");
ops.impl("scaled_fp4_quant", torch::kCUDA, &scaled_fp4_quant);
// Compute int8 quantized tensor for given scaling factor. // Compute int8 quantized tensor for given scaling factor.
ops.def( ops.def(
"static_scaled_int8_quant(Tensor! result, Tensor input, Tensor scale," "static_scaled_int8_quant(Tensor! result, Tensor input, Tensor scale,"

View File

@ -0,0 +1,149 @@
# SPDX-License-Identifier: Apache-2.0
import pytest
import torch
from vllm import _custom_ops as ops
from vllm.platforms import current_platform
from vllm.scalar_type import scalar_types
if not current_platform.has_device_capability(100):
pytest.skip(reason="Nvfp4 Requires compute capability of 10 or above.",
allow_module_level=True)
DTYPES = [torch.float16, torch.bfloat16]
SHAPES = [(128, 64), (128, 128), (256, 64), (256, 128)]
PAD_SHAPES = [(90, 64), (150, 64), (128, 48), (128, 80), (150, 80), (90, 48),
(90, 128), (150, 128), (150, 48), (90, 80)]
SEEDS = [42]
CUDA_DEVICES = ['cuda:0']
FLOAT4_E2M1_MAX = scalar_types.float4_e2m1fn.max()
FLOAT8_E4M3_MAX = torch.finfo(torch.float8_e4m3fn).max
# E2M1 to float
# 0111 -> 6
# 0110 -> 4
# 0101 -> 3
# 0100 -> 2
# 0011 -> 1.5
# 0010 -> 1
# 0001 -> 0.5
# 0000 -> 0
E2M1_TO_FLOAT32 = [
0., 0.5, 1., 1.5, 2., 3., 4., 6., 0., -0.5, -1., -1.5, -2., -3., -4., -6.
]
BLOCK_SIZE = 16
def cast_from_fp4(x, m, n):
# The fp4 values are packed in uint8 as [v_1st | v_2nd]
v_2nd = x & 0xF
v_1st = (x >> 4) & 0xF
c = torch.stack((v_2nd, v_1st), dim=-1)
out = torch.tensor([E2M1_TO_FLOAT32[x] for x in c.flatten()])
out = out.reshape(m, n).to(torch.float32)
return out
def cast_to_fp4(x):
sign = torch.sign(x)
x = torch.abs(x)
x[(x >= 0.0) & (x <= 0.25)] = 0.0
x[(x > 0.25) & (x < 0.75)] = 0.5
x[(x >= 0.75) & (x <= 1.25)] = 1.0
x[(x > 1.25) & (x < 1.75)] = 1.5
x[(x >= 1.75) & (x <= 2.5)] = 2.0
x[(x > 2.5) & (x < 3.5)] = 3.0
x[(x >= 3.5) & (x <= 5.0)] = 4.0
x[x > 5.0] = 6.0
return x * sign
def get_reciprocal(x):
if isinstance(x, torch.Tensor):
return torch.where(x == 0, torch.tensor(0.0, dtype=x.dtype), 1.0 / x)
elif isinstance(x, (float, int)):
return 0.0 if x == 0 else 1.0 / x
else:
raise TypeError("Input must be a float, int, or a torch.Tensor.")
def ref_nvfp4_quant(x, global_scale):
assert global_scale.dtype == torch.float32
assert x.ndim == 2
m, n = x.shape
x = torch.reshape(x, (m, n // BLOCK_SIZE, BLOCK_SIZE))
vec_max = torch.max(torch.abs(x), dim=-1,
keepdim=True)[0].to(torch.float32)
scale = global_scale * (vec_max * get_reciprocal(FLOAT4_E2M1_MAX))
scale = scale.to(torch.float8_e4m3fn).to(torch.float32)
output_scale = get_reciprocal(scale * get_reciprocal(global_scale))
scaled_x = x.to(torch.float32) * output_scale
clipped_x = torch.clamp(scaled_x, -6.0, 6.0).reshape(m, n)
return cast_to_fp4(clipped_x), scale.squeeze(-1)
def recover_swizzled_scales(scale, m, n):
round_up = lambda x, y: (x + y - 1) // y * y
rounded_m = round_up(m, 128)
scale_n = n // BLOCK_SIZE
rounded_n = round_up(scale_n, 4)
# Recover the swizzled scaling factor to linear layout
tmp = torch.reshape(scale, (1, rounded_m // 128, rounded_n // 4, 32, 4, 4))
tmp = torch.permute(tmp, (0, 1, 4, 3, 2, 5))
result = torch.reshape(tmp, (rounded_m, rounded_n)).to(torch.float32)
return result[:m, :scale_n]
@pytest.mark.parametrize("dtype", DTYPES)
@pytest.mark.parametrize("shape", SHAPES)
@pytest.mark.parametrize("seed", SEEDS)
@pytest.mark.parametrize("device", CUDA_DEVICES)
@torch.inference_mode()
def test_quantize_to_fp4(
dtype: torch.dtype,
shape: tuple[int, int],
seed: int,
device: str,
) -> None:
current_platform.seed_everything(seed)
torch.set_default_device(device)
m, n = shape
x = torch.randn((m, n), dtype=dtype)
tensor_amax = torch.abs(x).max().to(torch.float32)
global_scale = FLOAT8_E4M3_MAX * FLOAT4_E2M1_MAX / tensor_amax
out_ref, scale_ref = ref_nvfp4_quant(x, global_scale)
out, out_scale = ops.scaled_fp4_quant(x, global_scale)
scale_ans = recover_swizzled_scales(out_scale, m, n)
out_ans = cast_from_fp4(out, m, n)
torch.testing.assert_close(out_ans, out_ref)
torch.testing.assert_close(scale_ans, scale_ref)
@pytest.mark.parametrize("pad_shape", PAD_SHAPES)
@torch.inference_mode()
def test_quantize_to_fp4_padded(pad_shape: tuple[int, int]) -> None:
dtype = torch.float16
current_platform.seed_everything(42)
torch.set_default_device('cuda:0')
m, n = pad_shape
x = torch.randn((m, n), dtype=dtype)
tensor_amax = torch.abs(x).max().to(torch.float32)
global_scale = FLOAT8_E4M3_MAX * FLOAT4_E2M1_MAX / tensor_amax
out_ref, scale_ref = ref_nvfp4_quant(x, global_scale)
out, out_scale = ops.scaled_fp4_quant(x, global_scale)
scale_ans = recover_swizzled_scales(out_scale, m, n)
out_ans = cast_from_fp4(out, m, n)
torch.testing.assert_close(out_ans, out_ref)
torch.testing.assert_close(scale_ans, scale_ref)

View File

@ -11,6 +11,7 @@ from vllm.scalar_type import scalar_types
(0, 15, scalar_types.uint4), (0, 15, scalar_types.uint4),
(-8, 7, scalar_types.uint4b8), (-8, 7, scalar_types.uint4b8),
(-128, 127, scalar_types.uint8b128), (-128, 127, scalar_types.uint8b128),
(-6., 6., scalar_types.float4_e2m1fn),
(-28., 28., scalar_types.float6_e3m2f), (-28., 28., scalar_types.float6_e3m2f),
(torch.int8, scalar_types.int8), (torch.int8, scalar_types.int8),
(torch.uint8, scalar_types.uint8), (torch.uint8, scalar_types.uint8),

View File

@ -765,6 +765,63 @@ def permute_cols(a: torch.Tensor, perm: torch.Tensor) -> torch.Tensor:
return torch.ops._C.permute_cols(a, perm) return torch.ops._C.permute_cols(a, perm)
# fp4
def scaled_fp4_quant(
input: torch.Tensor,
input_global_scale: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Quantize input tensor to FP4 and return quantized tensor and scale.
This function quantizes the last dimension of the given tensor `input`. For
every 16 consecutive elements, a single dynamically computed scaling factor
is shared. This scaling factor is quantized using the `input_global_scale`
and is stored in a swizzled layout (see
https://docs.nvidia.com/cuda/parallel-thread-execution/#tcgen05-mma-scale-factor-b-layout-4x).
Args:
input: The input tensor to be quantized to FP4
input_global_scale: A scalar scaling factor for the entire tensor.
Returns:
Tuple[torch.Tensor, torch.Tensor]: The output tensor in FP4 but every
two values are packed into a uint8 and float8_e4m3 scaling factors
in the sizzled layout.
"""
assert input.ndim >= 1, (
f'input.ndim needs to be >= 1, but got {input.ndim}.')
other_dims = 1 if input.ndim == 1 else -1
input = input.reshape(other_dims, input.shape[-1])
m, n = input.shape
block_size = 16
device = input.device
assert n % block_size == 0, (
f'last dim has to be multiple of 16, but got {n}.')
assert input.dtype in (torch.float16, torch.bfloat16), (
f'input.dtype needs to be fp16 or bf16 but got {input.dtype}.')
# Two fp4 values will be packed into an uint8.
output = torch.empty((m, n // 2), device=device, dtype=torch.uint8)
# We use the rounded values to store the swizzled values. Due to the
# requirement of the Tensor Core, the minimum tile is 128x4 for the scales.
# So, we first pad the scales to multiples of 128 and 4. Then, the scales
# (in float8_e4m3fn) are packed into an int32 for every 4 values. More:
# https://docs.nvidia.com/cuda/parallel-thread-execution/#tcgen05-mma-scale-factor-b-layout-4x
round_up = lambda x, y: (x + y - 1) // y * y
rounded_m = round_up(m, 128)
scale_n = n // block_size
rounded_n = round_up(scale_n, 4)
output_scale = torch.empty((rounded_m, rounded_n // 4),
device=device,
dtype=torch.int32)
torch.ops._C.scaled_fp4_quant(output, input, output_scale,
input_global_scale)
output_scale = output_scale.view(torch.float8_e4m3fn)
return output, output_scale
# fp8 # fp8
def scaled_fp8_quant( def scaled_fp8_quant(
input: torch.Tensor, input: torch.Tensor,

View File

@ -321,6 +321,9 @@ class scalar_types:
# fp6, https://github.com/usyd-fsalab/fp6_llm/tree/main # fp6, https://github.com/usyd-fsalab/fp6_llm/tree/main
float6_e3m2f = ScalarType.float_(3, 2, True, NanRepr.NONE) float6_e3m2f = ScalarType.float_(3, 2, True, NanRepr.NONE)
# fp4, https://www.opencompute.org/documents/ocp-microscaling-formats-mx-v1-0-spec-final-pdf
float4_e2m1fn = ScalarType.float_(2, 1, True, NanRepr.NONE)
# "gptq" types # "gptq" types
uint2b2 = ScalarType.uint(2, 2) uint2b2 = ScalarType.uint(2, 2)
uint3b4 = ScalarType.uint(3, 4) uint3b4 = ScalarType.uint(3, 4)