mirror of https://github.com/vllm-project/vllm
[CI/Build][TPU] Add TPU CI test (#6277)
Co-authored-by: kevin <kevin@anyscale.com>
This commit is contained in:
parent
ec9933f4a5
commit
4552e37b55
|
@ -0,0 +1,16 @@
|
|||
set -e
|
||||
|
||||
# Build the docker image.
|
||||
docker build -f Dockerfile.tpu -t vllm-tpu .
|
||||
|
||||
# Set up cleanup.
|
||||
remove_docker_container() { docker rm -f tpu-test || true; }
|
||||
trap remove_docker_container EXIT
|
||||
# Remove the container that might not be cleaned up in the previous run.
|
||||
remove_docker_container
|
||||
|
||||
# For HF_TOKEN.
|
||||
source /etc/environment
|
||||
# Run a simple end-to-end example.
|
||||
docker run --privileged --net host --shm-size=16G -it -e HF_TOKEN=$HF_TOKEN --name tpu-test vllm-tpu \
|
||||
python3 /workspace/vllm/examples/offline_inference_tpu.py
|
|
@ -15,9 +15,4 @@ COPY . /workspace/vllm
|
|||
ENV VLLM_TARGET_DEVICE="tpu"
|
||||
RUN cd /workspace/vllm && python setup.py develop
|
||||
|
||||
# Re-install outlines to avoid dependency errors.
|
||||
# The outlines version must follow requirements-common.txt.
|
||||
RUN pip uninstall outlines -y
|
||||
RUN pip install "outlines>=0.0.43"
|
||||
|
||||
CMD ["/bin/bash"]
|
||||
|
|
|
@ -0,0 +1,28 @@
|
|||
from vllm import LLM, SamplingParams
|
||||
|
||||
prompts = [
|
||||
"A robot may not injure a human being",
|
||||
"It is only with the heart that one can see rightly;",
|
||||
"The greatest glory in living lies not in never falling,",
|
||||
]
|
||||
answers = [
|
||||
" or, through inaction, allow a human being to come to harm.",
|
||||
" what is essential is invisible to the eye.",
|
||||
" but in rising every time we fall.",
|
||||
]
|
||||
N = 1
|
||||
# Currently, top-p sampling is disabled. `top_p` should be 1.0.
|
||||
sampling_params = SamplingParams(temperature=0.7,
|
||||
top_p=1.0,
|
||||
n=N,
|
||||
max_tokens=16)
|
||||
|
||||
# Set `enforce_eager=True` to avoid ahead-of-time compilation.
|
||||
# In real workloads, `enforace_eager` should be `False`.
|
||||
llm = LLM(model="google/gemma-2b", enforce_eager=True)
|
||||
outputs = llm.generate(prompts, sampling_params)
|
||||
for output, answer in zip(outputs, answers):
|
||||
prompt = output.prompt
|
||||
generated_text = output.outputs[0].text
|
||||
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
|
||||
assert generated_text.startswith(answer)
|
Loading…
Reference in New Issue