[Kernel] Tuned int8 Cutlass Kernels for SM75 (T4) (#6996)

Co-authored-by: Varun Sundar Rabindranath <varun@neuralmagic.com>
This commit is contained in:
Varun Sundar Rabindranath 2024-07-31 17:40:32 -04:00 committed by GitHub
parent 93548eb37e
commit 35e9c12bfa
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 135 additions and 12 deletions

View File

@ -112,13 +112,20 @@ def bench_int8(dtype: torch.dtype, m: int, k: int, n: int, label: str,
scale_b = torch.tensor(1.0, device="cuda", dtype=torch.float32)
timers = []
# pytorch impl
# pytorch impl - bfloat16
timers.append(
bench_fn(a.to(dtype=torch.bfloat16, device="cuda"),
b.to(dtype=torch.bfloat16, device="cuda"), scale_a, scale_b,
torch.bfloat16, label, sub_label, pytorch_mm_impl,
"pytorch_bf16_bf16_bf16_matmul-no-scales"))
# pytorch impl - float16
timers.append(
bench_fn(a.to(dtype=torch.float16, device="cuda"),
b.to(dtype=torch.float16, device="cuda"), scale_a, scale_b,
torch.float16, label, sub_label, pytorch_mm_impl,
"pytorch_fp16_fp16_fp16_matmul-no-scales"))
# cutlass impl
timers.append(
bench_fn(a, b, scale_a, scale_b, torch.bfloat16, label, sub_label,

View File

@ -3,6 +3,7 @@
#include "cutlass/cutlass.h"
#include "scaled_mm_c2x.cuh"
#include "scaled_mm_c2x_sm75_dispatch.cuh"
#include "scaled_mm_c2x_sm80_dispatch.cuh"
#include "scaled_mm_c2x_sm89_fp8_dispatch.cuh"
#include "scaled_mm_c2x_sm89_int8_dispatch.cuh"
@ -20,21 +21,13 @@ void cutlass_scaled_mm_sm75_epilogue(torch::Tensor& out, torch::Tensor const& a,
TORCH_CHECK(a.dtype() == torch::kInt8);
TORCH_CHECK(b.dtype() == torch::kInt8);
using TileShape = typename cutlass::gemm::GemmShape<128, 128, 64>;
using WarpShape = typename cutlass::gemm::GemmShape<64, 64, 64>;
using InstructionShape = typename cutlass::gemm::GemmShape<8, 8, 16>;
if (out.dtype() == torch::kBFloat16) {
return vllm::cutlass_gemm_caller<
vllm::cutlass_2x_gemm<cutlass::arch::Sm75, vllm::enable_sm75_to_sm80,
int8_t, cutlass::bfloat16_t, Epilogue, TileShape,
WarpShape, InstructionShape, 2>>(
return vllm::cutlass_gemm_sm75_dispatch<int8_t, cutlass::bfloat16_t,
Epilogue>(
out, a, b, std::forward<EpilogueArgs>(epilogue_args)...);
} else {
TORCH_CHECK(out.dtype() == torch::kFloat16);
return vllm::cutlass_gemm_caller<vllm::cutlass_2x_gemm<
cutlass::arch::Sm75, vllm::enable_sm75_to_sm80, int8_t, cutlass::half_t,
Epilogue, TileShape, WarpShape, InstructionShape, 2>>(
return vllm::cutlass_gemm_sm75_dispatch<int8_t, cutlass::half_t, Epilogue>(
out, a, b, std::forward<EpilogueArgs>(epilogue_args)...);
}
}

View File

@ -0,0 +1,123 @@
#pragma once
#include "scaled_mm_c2x.cuh"
/**
* This file defines Gemm kernel configurations for SM75 based on the Gemm
* shape.
*/
namespace vllm {
template <typename InType, typename OutType,
template <typename, typename> typename Epilogue>
struct sm75_config_default {
// This config is used in 2 cases,
// - M in (256, inf]
// - M in (64, 128]
// Shared memory required by this Gemm 32768
static_assert(std::is_same<InType, int8_t>());
using TileShape = typename cutlass::gemm::GemmShape<128, 128, 64>;
using WarpShape = typename cutlass::gemm::GemmShape<64, 64, 64>;
using InstructionShape = typename cutlass::gemm::GemmShape<8, 8, 16>;
using Cutlass2xGemm =
cutlass_2x_gemm<cutlass::arch::Sm75, enable_sm75_to_sm80, InType, OutType,
Epilogue, TileShape, WarpShape, InstructionShape, 2>;
};
template <typename InType, typename OutType,
template <typename, typename> typename Epilogue>
struct sm75_config_M256 {
// M in (128, 256]
// Shared memory required by this Gemm 65536
static_assert(std::is_same<InType, int8_t>());
using TileShape = typename cutlass::gemm::GemmShape<128, 128, 128>;
using WarpShape = typename cutlass::gemm::GemmShape<64, 64, 64>;
using InstructionShape = typename cutlass::gemm::GemmShape<8, 8, 16>;
using Cutlass2xGemm =
cutlass_2x_gemm<cutlass::arch::Sm75, enable_sm75_to_sm80, InType, OutType,
Epilogue, TileShape, WarpShape, InstructionShape, 2>;
};
template <typename InType, typename OutType,
template <typename, typename> typename Epilogue>
struct sm75_config_M64 {
// M in (32, 64]
// Shared memory required by this Gemm 49152
static_assert(std::is_same<InType, int8_t>());
using TileShape = typename cutlass::gemm::GemmShape<64, 128, 128>;
using WarpShape = typename cutlass::gemm::GemmShape<64, 64, 64>;
using InstructionShape = typename cutlass::gemm::GemmShape<8, 8, 16>;
using Cutlass2xGemm =
cutlass_2x_gemm<cutlass::arch::Sm75, enable_sm75_to_sm80, InType, OutType,
Epilogue, TileShape, WarpShape, InstructionShape, 2>;
};
template <typename InType, typename OutType,
template <typename, typename> typename Epilogue>
struct sm75_config_M32 {
// M in [1, 32]
// Shared memory required by this Gemm 49152
static_assert(std::is_same<InType, int8_t>());
using TileShape = typename cutlass::gemm::GemmShape<32, 128, 64>;
using WarpShape = typename cutlass::gemm::GemmShape<32, 64, 64>;
using InstructionShape = typename cutlass::gemm::GemmShape<8, 8, 16>;
using Cutlass2xGemm =
cutlass_2x_gemm<cutlass::arch::Sm75, enable_sm75_to_sm80, InType, OutType,
Epilogue, TileShape, WarpShape, InstructionShape, 2>;
};
template <typename InType, typename OutType,
template <typename, typename> typename Epilogue,
typename... EpilogueArgs>
inline void cutlass_gemm_sm75_dispatch(torch::Tensor& out,
torch::Tensor const& a,
torch::Tensor const& b,
EpilogueArgs&&... args) {
static_assert(std::is_same<InType, int8_t>());
TORCH_CHECK(a.dtype() == torch::kInt8);
TORCH_CHECK(b.dtype() == torch::kInt8);
using Cutlass2xGemmDefault =
typename sm75_config_default<InType, OutType, Epilogue>::Cutlass2xGemm;
using Cutlass2xGemmM256 =
typename sm75_config_M256<InType, OutType, Epilogue>::Cutlass2xGemm;
using Cutlass2xGemmM128 = Cutlass2xGemmDefault;
using Cutlass2xGemmM64 =
typename sm75_config_M64<InType, OutType, Epilogue>::Cutlass2xGemm;
using Cutlass2xGemmM32 =
typename sm75_config_M32<InType, OutType, Epilogue>::Cutlass2xGemm;
// Due to shared memory requirements, some Gemms may fail to run on some
// GPUs. As the name indicates, the Fallback Gemm is used as an alternative
// in such cases.
// sm75_config_default has the least shared-memory requirements.
using FallbackGemm = Cutlass2xGemmDefault;
uint32_t const m = a.size(0);
uint32_t const mp2 =
std::max(static_cast<uint32_t>(32), next_pow_2(m)); // next power of 2
if (mp2 <= 32) {
// M in [1, 32]
return fallback_cutlass_gemm_caller<Cutlass2xGemmM32, FallbackGemm>(
out, a, b, std::forward<EpilogueArgs>(args)...);
} else if (mp2 <= 64) {
// M in (32, 64]
return fallback_cutlass_gemm_caller<Cutlass2xGemmM64, FallbackGemm>(
out, a, b, std::forward<EpilogueArgs>(args)...);
} else if (mp2 <= 128) {
// M in (64, 128]
return fallback_cutlass_gemm_caller<Cutlass2xGemmM128, FallbackGemm>(
out, a, b, std::forward<EpilogueArgs>(args)...);
} else if (mp2 <= 256) {
// M in (128, 256]
return fallback_cutlass_gemm_caller<Cutlass2xGemmM256, FallbackGemm>(
out, a, b, std::forward<EpilogueArgs>(args)...);
} else {
// M in (256, inf)
return fallback_cutlass_gemm_caller<Cutlass2xGemmDefault, FallbackGemm>(
out, a, b, std::forward<EpilogueArgs>(args)...);
}
}
} // namespace vllm