Optimize Mixtral with expert parallelism (#2090)

This commit is contained in:
Antoni Baum 2023-12-13 23:55:07 -08:00 committed by GitHub
parent f1c8520146
commit 21d93c140d
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 230 additions and 343 deletions

View File

@ -41,14 +41,6 @@ ENV NVCC_THREADS=$nvcc_threads
RUN python3 setup.py build_ext --inplace
# Build the megablocks library as wheel because it doesn't publish pre-built wheels.
# https://github.com/stanford-futuredata/megablocks/commit/5897cd6f254b7b3edf7a708a3a3314ecb54b6f78
RUN apt-get install -y git && \
git clone https://github.com/stanford-futuredata/megablocks.git && \
cd megablocks && \
git checkout 5897cd6f254b7b3edf7a708a3a3314ecb54b6f78 && \
MAX_JOBS=8 NVCC_THREADS=8 python3 setup.py bdist_wheel
# image to run unit testing suite
FROM dev AS test
@ -85,12 +77,8 @@ FROM vllm-base AS vllm-openai
RUN --mount=type=cache,target=/root/.cache/pip \
pip install accelerate
COPY vllm vllm
COPY --from=build /workspace/vllm/*.so /workspace/vllm/
COPY --from=build /workspace/megablocks/dist/*.whl /tmp/
RUN --mount=type=cache,target=/root/.cache/pip \
pip install /tmp/megablocks-0.5.0-cp310-cp310-linux_x86_64.whl && \
rm /tmp/megablocks-0.5.0-cp310-cp310-linux_x86_64.whl
COPY vllm vllm
ENTRYPOINT ["python3", "-m", "vllm.entrypoints.openai.api_server"]

View File

@ -72,10 +72,6 @@ Install vLLM with pip or [from source](https://vllm.readthedocs.io/en/latest/get
```bash
pip install vllm
```
**NOTE:** The Mixtral model additionally requires `megablocks` which can be installed with pip or [from source](https://github.com/stanford-futuredata/megablocks):
```bash
pip install megablocks
```
## Getting Started

View File

@ -74,8 +74,7 @@ Otherwise, please refer to :ref:`Adding a New Model <adding_a_new_model>` for in
Alternatively, you can raise an issue on our `GitHub <https://github.com/vllm-project/vllm/issues>`_ project.
.. note::
Currently, the ROCm version of vLLM does not support Mixtral.
Additionally, it only supports Mistral for context lengths up to 4096.
Currently, the ROCm version of vLLM supports Mistral and Mixtral only for context lengths up to 4096.
.. tip::
The easiest way to check if your model is supported is to run the program below:

View File

@ -120,14 +120,16 @@ class ModelConfig:
if load_format == "auto":
load_format = "pt"
# FIXME(woosuk): This is a temporary hack. Support safetensor weights.
# TODO: Remove this check once HF updates the pt weights of Mixtral.
architectures = getattr(self.hf_config, "architectures", [])
if "MixtralForCausalLM" in architectures and load_format != "pt":
logger.info(
"Currently, only 'pt' format is supported for Mixtral. "
"Changing the format to 'pt'. This may re-download the "
"weights if you have downloaded the safetensor weights.")
load_format = "pt"
if "MixtralForCausalLM" in architectures:
if load_format == "pt":
raise ValueError(
"Currently, the 'pt' format is not supported for Mixtral. "
"Please use the 'safetensors' format instead. ")
elif load_format == "auto":
# Do not fall back to pt weights.
load_format = "safetensors"
self.load_format = load_format

View File

@ -39,13 +39,15 @@ _MODELS = {
}
# Models not supported by ROCm.
_ROCM_UNSUPPORTED_MODELS = ["MixtralForCausalLM"]
_ROCM_UNSUPPORTED_MODELS = []
# Models partially supported by ROCm.
# Architecture -> Reason.
_ROCM_PARTIALLY_SUPPORTED_MODELS = {
"MistralForCausalLM":
"Sliding window attention is not yet supported in ROCm's flash attention",
"MixtralForCausalLM":
"Sliding window attention is not yet supported in ROCm's flash attention",
}

View File

@ -31,22 +31,11 @@ import torch.nn.functional as F
from torch import nn
from transformers import MixtralConfig
try:
import megablocks.ops as ops
except ImportError as e:
raise ImportError("MegaBlocks not found. "
"Please install it by `pip install megablocks`.") from e
try:
import stk
except ImportError as e:
raise ImportError(
"STK not found. "
"Please install it by `pip install stanford-stk`.") from e
from vllm.model_executor.input_metadata import InputMetadata
from vllm.model_executor.layers.attention import PagedAttention
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.model_executor.layers.linear import (LinearMethodBase,
ReplicatedLinear,
QKVParallelLinear,
RowParallelLinear)
from vllm.model_executor.layers.rotary_embedding import get_rope
@ -66,8 +55,134 @@ from vllm.sequence import SamplerOutput
KVCache = Tuple[torch.Tensor, torch.Tensor]
def promote_scalar(x: torch.Tensor) -> torch.Tensor:
return x.view(1) if len(x.size()) == 0 else x
class MixtralMLP(nn.Module):
def __init__(
self,
num_experts: int,
hidden_size: int,
intermediate_size: int,
linear_method: Optional[LinearMethodBase] = None,
) -> None:
super().__init__()
self.num_experts = num_experts
self.ffn_dim = intermediate_size
self.hidden_dim = hidden_size
self.w1 = ReplicatedLinear(self.hidden_dim,
self.ffn_dim,
bias=False,
linear_method=linear_method)
self.w2 = ReplicatedLinear(self.ffn_dim,
self.hidden_dim,
bias=False,
linear_method=linear_method)
self.w3 = ReplicatedLinear(self.hidden_dim,
self.ffn_dim,
bias=False,
linear_method=linear_method)
# TODO: Use vllm's SiluAndMul
self.act_fn = nn.SiLU()
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
w1_out, _ = self.w1(hidden_states)
w1_out = self.act_fn(w1_out)
w3_out, _ = self.w3(hidden_states)
current_hidden_states = w1_out * w3_out
current_hidden_states, _ = self.w2(current_hidden_states)
return current_hidden_states
class DummyModule(nn.Module):
def __init__(self) -> None:
super().__init__()
self.w1 = nn.Linear(0, 0, bias=False)
self.w2 = nn.Linear(0, 0, bias=False)
self.w3 = nn.Linear(0, 0, bias=False)
set_weight_attrs(self.w1.weight,
{"weight_loader": self.dummy_weight_loader})
set_weight_attrs(self.w2.weight,
{"weight_loader": self.dummy_weight_loader})
set_weight_attrs(self.w3.weight,
{"weight_loader": self.dummy_weight_loader})
def forward(self, *args, **kwargs) -> None:
raise NotImplementedError()
def dummy_weight_loader(self, *args, **kwargs) -> None: # pylint: disable=unused-argument
# Noop
return
class MixtralMoE(nn.Module):
def __init__(
self,
config: MixtralConfig,
linear_method: Optional[LinearMethodBase] = None,
):
super().__init__()
self.config = config
self.rank = get_tensor_model_parallel_rank()
self.tp_size = get_tensor_model_parallel_world_size()
self.num_total_experts = config.num_local_experts
self.top_k = config.num_experts_per_tok
if self.tp_size > self.num_total_experts:
raise ValueError(
f"Tensor parallel size {self.tp_size} is greater than "
f"the number of experts {self.num_total_experts}.")
# Split experts equally between ranks
self.expert_indicies = np.array_split(range(
self.num_total_experts), self.tp_size)[self.rank].tolist()
if not self.expert_indicies:
raise ValueError(
f"Rank {self.rank} has no experts assigned to it.")
self.experts = nn.ModuleList([
MixtralMLP(self.num_total_experts,
config.hidden_size,
config.intermediate_size,
linear_method=linear_method)
if idx in self.expert_indicies else DummyModule()
for idx in range(self.num_total_experts)
])
self.gate = ReplicatedLinear(config.hidden_size,
self.num_total_experts,
bias=False,
linear_method=linear_method)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
batch_size, sequence_length, hidden_dim = hidden_states.shape
hidden_states = hidden_states.view(-1, hidden_dim)
# router_logits: (batch * sequence_length, n_experts)
router_logits, _ = self.gate(hidden_states)
routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float)
routing_weights, selected_experts = torch.topk(routing_weights,
self.top_k,
dim=-1)
routing_weights /= routing_weights.sum(dim=-1, keepdim=True)
final_hidden_states = None
for expert_idx in self.expert_indicies:
expert_layer = self.experts[expert_idx]
expert_mask = (selected_experts == expert_idx)
expert_weights = (routing_weights * expert_mask).sum(dim=-1,
keepdim=True)
current_hidden_states = expert_layer(hidden_states).mul_(
expert_weights)
if final_hidden_states is None:
final_hidden_states = current_hidden_states
else:
final_hidden_states.add_(current_hidden_states)
return tensor_model_parallel_all_reduce(final_hidden_states).view(
batch_size, sequence_length, hidden_dim)
class MixtralAttention(nn.Module):
@ -78,6 +193,7 @@ class MixtralAttention(nn.Module):
num_kv_heads: int,
max_position: int = 4096 * 32,
rope_theta: float = 10000,
linear_method: Optional[LinearMethodBase] = None,
sliding_window: Optional[int] = None) -> None:
super().__init__()
self.hidden_size = hidden_size
@ -102,24 +218,26 @@ class MixtralAttention(nn.Module):
self.rope_theta = rope_theta
self.sliding_window = sliding_window
self.wqkv = QKVParallelLinear(
self.qkv_proj = QKVParallelLinear(
hidden_size,
self.head_dim,
self.total_num_heads,
self.total_num_kv_heads,
bias=False,
linear_method=linear_method,
)
self.wo = RowParallelLinear(
self.o_proj = RowParallelLinear(
self.total_num_heads * self.head_dim,
hidden_size,
bias=False,
linear_method=linear_method,
)
self.rotary_emb = get_rope(
self.head_dim,
rotary_dim=self.head_dim,
max_position=max_position,
base=int(self.rope_theta),
is_neox_style=False, # weights not in HF format
is_neox_style=True,
)
self.attn = PagedAttention(
self.num_heads,
@ -137,307 +255,112 @@ class MixtralAttention(nn.Module):
input_metadata: InputMetadata,
cache_event: Optional[torch.cuda.Event],
) -> torch.Tensor:
qkv, _ = self.wqkv(hidden_states)
qkv, _ = self.qkv_proj(hidden_states)
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
q, k = self.rotary_emb(positions, q, k)
k_cache, v_cache = kv_cache
attn_output = self.attn(q, k, v, k_cache, v_cache, input_metadata,
cache_event)
output, _ = self.wo(attn_output)
output, _ = self.o_proj(attn_output)
return output
class BlockSparseMoE(nn.Module):
"""
Built on the paper and library Megablocks as described in
https://arxiv.org/abs/2211.15841. This implementation is
strictly equivalent to standard MoE with full capacity (no
dropped tokens). It's faster since it formulates MoE operations
in terms of block-sparse operations to accomodate imbalanced
assignments of tokens to experts, whereas standard MoE either
(1) drop tokens at the cost of reduced performance or (2) set
capacity factor to number of experts and thus waste computation
and memory on padding.
"""
def __init__(self, hidden_dim: int, ffn_dim: int, num_experts: int,
top_k: int):
super().__init__()
self.hidden_dim = hidden_dim
self.ffn_dim = ffn_dim
self.num_experts = num_experts
self.top_k = top_k
# gating
self.gate = nn.Linear(self.hidden_dim,
self.num_experts,
bias=False,
device=torch.cuda.current_device())
tp_size = get_tensor_model_parallel_world_size()
assert self.ffn_dim % tp_size == 0
self.ffn_dim_per_partition = self.ffn_dim // tp_size
# merged expert weights, all of size (ffn_dim * n_experts, model_dim)
self.w1 = nn.Parameter(
torch.empty(self.ffn_dim_per_partition * self.num_experts,
self.hidden_dim,
device=torch.cuda.current_device()))
set_weight_attrs(self.w1, {"weight_loader": self.moe_weight_loader})
self.w2 = nn.Parameter(
torch.empty(self.ffn_dim_per_partition * self.num_experts,
self.hidden_dim,
device=torch.cuda.current_device()))
set_weight_attrs(self.w2, {"weight_loader": self.moe_weight_loader})
self.w3 = nn.Parameter(
torch.empty(self.ffn_dim_per_partition * self.num_experts,
self.hidden_dim,
device=torch.cuda.current_device()))
set_weight_attrs(self.w3, {"weight_loader": self.moe_weight_loader})
# Calculate the number of bits needed to represent the expert indices
# so that we can pass it to radix sort.
self.sort_end_bit = max(int(np.ceil(np.log2(self.num_experts))), 1)
self.blocking = 128
self.quantize_scatter_num_bits = -1
# Calculate the number of bits needed to represent the column indices
# in the intermediate sparse matrix.
max_column_index = (self.ffn_dim * self.num_experts) // self.blocking
self.transpose_sort_end_bit = max(
int(np.ceil(np.log2(max_column_index))), 1)
def moe_weight_loader(self, param: nn.Parameter,
loaded_weight: torch.Tensor) -> None:
"""
Load the weights for the MoE linear layer.
"""
tp_rank = get_tensor_model_parallel_rank()
shard_size = self.ffn_dim_per_partition
loaded_weight = loaded_weight.view(self.num_experts, self.ffn_dim, -1)
loaded_weight = loaded_weight[:, shard_size * tp_rank:shard_size *
(tp_rank + 1)]
loaded_weight = loaded_weight.reshape_as(param)
param.data.copy_(loaded_weight)
def sparse_transpose(
self, size: int, row_indices,
column_indices) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
block_columns = size[1] // self.blocking
# Sort row indices by column indices to get the transposed matrix's
# column indices.
#
# NOTE: Our sort operation uses the same width indices as the input
# values. To avoid overflow when we have large activation matrices
# we cast to 32-bit before sorting.
_, gather_indices = ops.sort(column_indices.int(),
self.transpose_sort_end_bit)
# There are a constant number of blocks in every row of the sparse
# matrix. A blocks offset is:
#
# row_index * blocks_per_row + column_index % blocks_per_row
#
# Once we have the block offsets ordered for transposition we can
# divide by blocks_per_row to get the transposed column indices.
column_indices_t = row_indices.gather(0, gather_indices.long())
block_offsets_t = gather_indices.int()
zero = torch.zeros((1, ), dtype=torch.int32, device=row_indices.device)
nnz_per_column = ops.histogram(column_indices, block_columns)
nnz_per_column = ops.inclusive_cumsum(nnz_per_column, 0)
offsets_t = torch.cat([zero, nnz_per_column])
return column_indices_t, offsets_t, block_offsets_t
def topology(self, x: torch.Tensor,
padded_bins: torch.Tensor) -> "stk.Matrix":
padded_tokens, _ = x.size()
assert padded_tokens % self.blocking == 0
assert self.ffn_dim_per_partition % self.blocking == 0
# Offsets for the sparse matrix. All rows have the
# same number of nonzero blocks dictated by the
# dimensionality of a single expert.
block_rows = padded_tokens // self.blocking
blocks_per_row = self.ffn_dim_per_partition // self.blocking
offsets = torch.arange(
0,
block_rows * blocks_per_row + 1,
blocks_per_row,
dtype=torch.int32,
device=x.device,
)
# Indices for the sparse matrix. The indices for
# the intermediate matrix are dynamic depending
# on the mapping of tokens to experts.
column_indices = ops.topology(padded_bins, self.blocking, block_rows,
blocks_per_row)
# TODO(tgale): This is unused. Remove the need for this in stk.
# For now, use meta init to save the device memory.
data = torch.empty(
column_indices.numel(),
self.blocking,
self.blocking,
dtype=x.dtype,
device="meta",
)
shape = (padded_tokens, self.ffn_dim_per_partition * self.num_experts)
row_indices = stk.ops.row_indices(shape, data, offsets, column_indices)
column_indices_t, offsets_t, block_offsets_t = self.sparse_transpose(
shape, row_indices, column_indices)
return stk.Matrix(
shape,
data,
row_indices,
column_indices,
offsets,
column_indices_t,
offsets_t,
block_offsets_t,
)
def indices_and_padded_bins(
self, selected_experts: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor,
torch.Tensor]:
# Sort the expert ids to produce the scatter/gather
# indices for the permutation.
selected_experts = selected_experts.int()
bin_ids, indices = ops.sort(selected_experts, self.sort_end_bit)
# Histogram the expert ids to identify the number of
# tokens routed to each expert.
tokens_per_expert = ops.histogram(selected_experts, self.num_experts)
# Round the token counts up to the block size used in
# the matrix muliplications. Caculate the starting
# position of each bin.
padded_tokens_per_expert = ops.round_up(tokens_per_expert,
self.blocking)
padded_bins = ops.inclusive_cumsum(padded_tokens_per_expert, 0)
padded_bins = promote_scalar(padded_bins)
# Calculate the bin bounds for the sorted tokens.
bins = ops.inclusive_cumsum(tokens_per_expert, 0)
bins = promote_scalar(bins)
return indices, bin_ids, bins, padded_bins, tokens_per_expert
@torch.inference_mode()
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
x: (sequence_length, model_dim)
gate_logits: (sequence_length, n_experts)
"""
# optional reshape
input_shape = x.shape
x = x.view(-1, input_shape[-1])
# gate_logits: (sequence_length, n_experts)
gate_logits = self.gate(x)
# all_probs: (sequence_length, n_experts) and upcast for softmax
all_probs = F.softmax(gate_logits, dim=1, dtype=torch.float)
# weights, selected_experts: (sequence_length, top-k)
weights, selected_experts = torch.topk(all_probs, self.top_k, dim=-1)
weights /= weights.sum(dim=-1, keepdim=True)
weights = weights.flatten().to(x.dtype)
selected_experts = selected_experts.flatten()
(indices, bin_ids, bins, padded_bins,
_) = self.indices_and_padded_bins(selected_experts)
# Permute tokens and pad to prepare expert computation
# (top_k * sequence_length + padding, model_dim)
x = ops.padded_gather(x, indices, bin_ids, bins, padded_bins,
self.top_k)
# Create the sparse matrix topology
with torch.no_grad():
topo = self.topology(x, padded_bins)
# Perform the expert computation
# First Dense x Dense -> Sparse for w1 and w3,
# (top_k * sequence_length + padding, ffn_dim * n_experts)
x = stk.Matrix(
topo.size(),
F.silu(stk.ops.sdd(x, self.w1.t(), topo).data) *
stk.ops.sdd(x, self.w3.t(), topo).data,
topo.row_indices,
topo.column_indices,
topo.offsets,
topo.column_indices_t,
topo.offsets_t,
topo.block_offsets_t,
)
# Then Sparse x Dense -> Dense for w2
# (top_k * sequence_length + padding, model_dim)
x = stk.ops.dsd(x, self.w2)
x = tensor_model_parallel_all_reduce(x)
# Permute back and remove padding
# (top_k * sequence_length, model_dim)
x = ops.padded_scatter(
x,
indices,
bin_ids,
weights,
bins,
padded_bins,
self.top_k,
self.quantize_scatter_num_bits,
)
return x.view(*input_shape)
class MixtralDecoderLayer(nn.Module):
def __init__(
self,
config: MixtralConfig,
linear_method: Optional[LinearMethodBase] = None,
) -> None:
super().__init__()
self.hidden_size = config.hidden_size
# Requires transformers > 4.32.0
rope_theta = getattr(config, "rope_theta", 10000)
self.attention = MixtralAttention(
self.self_attn = MixtralAttention(
hidden_size=self.hidden_size,
num_heads=config.num_attention_heads,
max_position=config.max_position_embeddings,
num_kv_heads=config.num_key_value_heads,
rope_theta=rope_theta,
sliding_window=config.sliding_window)
self.block_sparse_moe = BlockSparseMoE(
hidden_dim=self.hidden_size,
ffn_dim=config.intermediate_size,
num_experts=config.num_local_experts,
top_k=config.num_experts_per_tok,
)
self.attention_norm = RMSNorm(config.hidden_size,
eps=config.rms_norm_eps)
self.ffn_norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
sliding_window=config.sliding_window,
linear_method=linear_method)
self.block_sparse_moe = MixtralMoE(config=config,
linear_method=linear_method)
self.input_layernorm = RMSNorm(config.hidden_size,
eps=config.rms_norm_eps)
self.post_attention_layernorm = RMSNorm(config.hidden_size,
eps=config.rms_norm_eps)
def forward(
self,
positions: torch.Tensor,
x: torch.Tensor,
hidden_states: torch.Tensor,
kv_cache: KVCache,
input_metadata: InputMetadata,
cache_event: Optional[torch.cuda.Event],
residual: Optional[torch.Tensor],
) -> torch.Tensor:
r = self.attention(
# Self Attention
if residual is None:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
else:
hidden_states, residual = self.input_layernorm(
hidden_states, residual)
hidden_states = self.self_attn(
positions=positions,
hidden_states=self.attention_norm(x),
hidden_states=hidden_states,
kv_cache=kv_cache,
input_metadata=input_metadata,
cache_event=cache_event,
)
h = x + r
r = self.block_sparse_moe(self.ffn_norm(h))
out = h + r
return out
# Fully Connected
hidden_states, residual = self.post_attention_layernorm(
hidden_states, residual)
hidden_states = self.block_sparse_moe(hidden_states)
return hidden_states, residual
class MixtralModel(nn.Module):
def __init__(
self,
config: MixtralConfig,
linear_method: Optional[LinearMethodBase] = None,
) -> None:
super().__init__()
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = VocabParallelEmbedding(
config.vocab_size,
config.hidden_size,
)
self.layers = nn.ModuleList([
MixtralDecoderLayer(config, linear_method=linear_method)
for _ in range(config.num_hidden_layers)
])
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[KVCache],
input_metadata: InputMetadata,
cache_events: Optional[List[torch.cuda.Event]],
) -> SamplerOutput:
hidden_states = self.embed_tokens(input_ids)
residual = None
for i in range(len(self.layers)):
cache_event = None if cache_events is None else cache_events[i]
layer = self.layers[i]
hidden_states, residual = layer(positions, hidden_states,
kv_caches[i], input_metadata,
cache_event, residual)
hidden_states, _ = self.norm(hidden_states, residual)
return hidden_states
class MixtralForCausalLM(nn.Module):
@ -449,23 +372,11 @@ class MixtralForCausalLM(nn.Module):
) -> None:
super().__init__()
self.config = config
assert linear_method is None
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.tok_embeddings = VocabParallelEmbedding(
config.vocab_size,
config.hidden_size,
)
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.output = ParallelLMHead(config.vocab_size, config.hidden_size)
self.linear_method = linear_method
self.model = MixtralModel(config, linear_method)
self.lm_head = ParallelLMHead(config.vocab_size, config.hidden_size)
self.sampler = Sampler(config.vocab_size)
self.layers = nn.ModuleList([
MixtralDecoderLayer(config)
for _ in range(config.num_hidden_layers)
])
def forward(
self,
input_ids: torch.Tensor,
@ -473,21 +384,9 @@ class MixtralForCausalLM(nn.Module):
kv_caches: List[KVCache],
input_metadata: InputMetadata,
cache_events: Optional[List[torch.cuda.Event]],
) -> SamplerOutput:
hidden_states = self.tok_embeddings(input_ids)
# forward
for i in range(len(self.layers)):
cache_event = None if cache_events is None else cache_events[i]
layer = self.layers[i]
hidden_states = layer(
positions,
hidden_states,
kv_caches[i],
input_metadata,
cache_event,
)
hidden_states = self.norm(hidden_states)
) -> torch.Tensor:
hidden_states = self.model(input_ids, positions, kv_caches,
input_metadata, cache_events)
return hidden_states
def sample(
@ -495,7 +394,7 @@ class MixtralForCausalLM(nn.Module):
hidden_states: Optional[torch.Tensor],
sampling_metadata: SamplingMetadata,
) -> SamplerOutput:
next_tokens = self.sampler(self.output.weight, hidden_states,
next_tokens = self.sampler(self.lm_head.weight, hidden_states,
sampling_metadata)
return next_tokens
@ -506,10 +405,11 @@ class MixtralForCausalLM(nn.Module):
revision: Optional[str] = None):
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
("wqkv", "wq", "q"),
("wqkv", "wk", "k"),
("wqkv", "wv", "v"),
("qkv_proj", "q_proj", "q"),
("qkv_proj", "k_proj", "k"),
("qkv_proj", "v_proj", "v"),
]
params_dict = dict(self.named_parameters())
for name, loaded_weight in hf_model_weights_iterator(
model_name_or_path, cache_dir, load_format, revision):