mirror of https://github.com/vllm-project/vllm
Optimize Mixtral with expert parallelism (#2090)
This commit is contained in:
parent
f1c8520146
commit
21d93c140d
14
Dockerfile
14
Dockerfile
|
@ -41,14 +41,6 @@ ENV NVCC_THREADS=$nvcc_threads
|
|||
|
||||
RUN python3 setup.py build_ext --inplace
|
||||
|
||||
# Build the megablocks library as wheel because it doesn't publish pre-built wheels.
|
||||
# https://github.com/stanford-futuredata/megablocks/commit/5897cd6f254b7b3edf7a708a3a3314ecb54b6f78
|
||||
RUN apt-get install -y git && \
|
||||
git clone https://github.com/stanford-futuredata/megablocks.git && \
|
||||
cd megablocks && \
|
||||
git checkout 5897cd6f254b7b3edf7a708a3a3314ecb54b6f78 && \
|
||||
MAX_JOBS=8 NVCC_THREADS=8 python3 setup.py bdist_wheel
|
||||
|
||||
# image to run unit testing suite
|
||||
FROM dev AS test
|
||||
|
||||
|
@ -85,12 +77,8 @@ FROM vllm-base AS vllm-openai
|
|||
RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
pip install accelerate
|
||||
|
||||
COPY vllm vllm
|
||||
COPY --from=build /workspace/vllm/*.so /workspace/vllm/
|
||||
COPY --from=build /workspace/megablocks/dist/*.whl /tmp/
|
||||
RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
pip install /tmp/megablocks-0.5.0-cp310-cp310-linux_x86_64.whl && \
|
||||
rm /tmp/megablocks-0.5.0-cp310-cp310-linux_x86_64.whl
|
||||
COPY vllm vllm
|
||||
|
||||
ENTRYPOINT ["python3", "-m", "vllm.entrypoints.openai.api_server"]
|
||||
|
||||
|
|
|
@ -72,10 +72,6 @@ Install vLLM with pip or [from source](https://vllm.readthedocs.io/en/latest/get
|
|||
```bash
|
||||
pip install vllm
|
||||
```
|
||||
**NOTE:** The Mixtral model additionally requires `megablocks` which can be installed with pip or [from source](https://github.com/stanford-futuredata/megablocks):
|
||||
```bash
|
||||
pip install megablocks
|
||||
```
|
||||
|
||||
## Getting Started
|
||||
|
||||
|
|
|
@ -74,8 +74,7 @@ Otherwise, please refer to :ref:`Adding a New Model <adding_a_new_model>` for in
|
|||
Alternatively, you can raise an issue on our `GitHub <https://github.com/vllm-project/vllm/issues>`_ project.
|
||||
|
||||
.. note::
|
||||
Currently, the ROCm version of vLLM does not support Mixtral.
|
||||
Additionally, it only supports Mistral for context lengths up to 4096.
|
||||
Currently, the ROCm version of vLLM supports Mistral and Mixtral only for context lengths up to 4096.
|
||||
|
||||
.. tip::
|
||||
The easiest way to check if your model is supported is to run the program below:
|
||||
|
|
|
@ -120,14 +120,16 @@ class ModelConfig:
|
|||
if load_format == "auto":
|
||||
load_format = "pt"
|
||||
|
||||
# FIXME(woosuk): This is a temporary hack. Support safetensor weights.
|
||||
# TODO: Remove this check once HF updates the pt weights of Mixtral.
|
||||
architectures = getattr(self.hf_config, "architectures", [])
|
||||
if "MixtralForCausalLM" in architectures and load_format != "pt":
|
||||
logger.info(
|
||||
"Currently, only 'pt' format is supported for Mixtral. "
|
||||
"Changing the format to 'pt'. This may re-download the "
|
||||
"weights if you have downloaded the safetensor weights.")
|
||||
load_format = "pt"
|
||||
if "MixtralForCausalLM" in architectures:
|
||||
if load_format == "pt":
|
||||
raise ValueError(
|
||||
"Currently, the 'pt' format is not supported for Mixtral. "
|
||||
"Please use the 'safetensors' format instead. ")
|
||||
elif load_format == "auto":
|
||||
# Do not fall back to pt weights.
|
||||
load_format = "safetensors"
|
||||
|
||||
self.load_format = load_format
|
||||
|
||||
|
|
|
@ -39,13 +39,15 @@ _MODELS = {
|
|||
}
|
||||
|
||||
# Models not supported by ROCm.
|
||||
_ROCM_UNSUPPORTED_MODELS = ["MixtralForCausalLM"]
|
||||
_ROCM_UNSUPPORTED_MODELS = []
|
||||
|
||||
# Models partially supported by ROCm.
|
||||
# Architecture -> Reason.
|
||||
_ROCM_PARTIALLY_SUPPORTED_MODELS = {
|
||||
"MistralForCausalLM":
|
||||
"Sliding window attention is not yet supported in ROCm's flash attention",
|
||||
"MixtralForCausalLM":
|
||||
"Sliding window attention is not yet supported in ROCm's flash attention",
|
||||
}
|
||||
|
||||
|
||||
|
|
|
@ -31,22 +31,11 @@ import torch.nn.functional as F
|
|||
from torch import nn
|
||||
from transformers import MixtralConfig
|
||||
|
||||
try:
|
||||
import megablocks.ops as ops
|
||||
except ImportError as e:
|
||||
raise ImportError("MegaBlocks not found. "
|
||||
"Please install it by `pip install megablocks`.") from e
|
||||
try:
|
||||
import stk
|
||||
except ImportError as e:
|
||||
raise ImportError(
|
||||
"STK not found. "
|
||||
"Please install it by `pip install stanford-stk`.") from e
|
||||
|
||||
from vllm.model_executor.input_metadata import InputMetadata
|
||||
from vllm.model_executor.layers.attention import PagedAttention
|
||||
from vllm.model_executor.layers.layernorm import RMSNorm
|
||||
from vllm.model_executor.layers.linear import (LinearMethodBase,
|
||||
ReplicatedLinear,
|
||||
QKVParallelLinear,
|
||||
RowParallelLinear)
|
||||
from vllm.model_executor.layers.rotary_embedding import get_rope
|
||||
|
@ -66,8 +55,134 @@ from vllm.sequence import SamplerOutput
|
|||
KVCache = Tuple[torch.Tensor, torch.Tensor]
|
||||
|
||||
|
||||
def promote_scalar(x: torch.Tensor) -> torch.Tensor:
|
||||
return x.view(1) if len(x.size()) == 0 else x
|
||||
class MixtralMLP(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
num_experts: int,
|
||||
hidden_size: int,
|
||||
intermediate_size: int,
|
||||
linear_method: Optional[LinearMethodBase] = None,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.num_experts = num_experts
|
||||
self.ffn_dim = intermediate_size
|
||||
self.hidden_dim = hidden_size
|
||||
|
||||
self.w1 = ReplicatedLinear(self.hidden_dim,
|
||||
self.ffn_dim,
|
||||
bias=False,
|
||||
linear_method=linear_method)
|
||||
self.w2 = ReplicatedLinear(self.ffn_dim,
|
||||
self.hidden_dim,
|
||||
bias=False,
|
||||
linear_method=linear_method)
|
||||
self.w3 = ReplicatedLinear(self.hidden_dim,
|
||||
self.ffn_dim,
|
||||
bias=False,
|
||||
linear_method=linear_method)
|
||||
|
||||
# TODO: Use vllm's SiluAndMul
|
||||
self.act_fn = nn.SiLU()
|
||||
|
||||
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
||||
w1_out, _ = self.w1(hidden_states)
|
||||
w1_out = self.act_fn(w1_out)
|
||||
w3_out, _ = self.w3(hidden_states)
|
||||
current_hidden_states = w1_out * w3_out
|
||||
current_hidden_states, _ = self.w2(current_hidden_states)
|
||||
return current_hidden_states
|
||||
|
||||
|
||||
class DummyModule(nn.Module):
|
||||
|
||||
def __init__(self) -> None:
|
||||
super().__init__()
|
||||
|
||||
self.w1 = nn.Linear(0, 0, bias=False)
|
||||
self.w2 = nn.Linear(0, 0, bias=False)
|
||||
self.w3 = nn.Linear(0, 0, bias=False)
|
||||
|
||||
set_weight_attrs(self.w1.weight,
|
||||
{"weight_loader": self.dummy_weight_loader})
|
||||
set_weight_attrs(self.w2.weight,
|
||||
{"weight_loader": self.dummy_weight_loader})
|
||||
set_weight_attrs(self.w3.weight,
|
||||
{"weight_loader": self.dummy_weight_loader})
|
||||
|
||||
def forward(self, *args, **kwargs) -> None:
|
||||
raise NotImplementedError()
|
||||
|
||||
def dummy_weight_loader(self, *args, **kwargs) -> None: # pylint: disable=unused-argument
|
||||
# Noop
|
||||
return
|
||||
|
||||
|
||||
class MixtralMoE(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: MixtralConfig,
|
||||
linear_method: Optional[LinearMethodBase] = None,
|
||||
):
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.rank = get_tensor_model_parallel_rank()
|
||||
self.tp_size = get_tensor_model_parallel_world_size()
|
||||
self.num_total_experts = config.num_local_experts
|
||||
self.top_k = config.num_experts_per_tok
|
||||
if self.tp_size > self.num_total_experts:
|
||||
raise ValueError(
|
||||
f"Tensor parallel size {self.tp_size} is greater than "
|
||||
f"the number of experts {self.num_total_experts}.")
|
||||
# Split experts equally between ranks
|
||||
self.expert_indicies = np.array_split(range(
|
||||
self.num_total_experts), self.tp_size)[self.rank].tolist()
|
||||
if not self.expert_indicies:
|
||||
raise ValueError(
|
||||
f"Rank {self.rank} has no experts assigned to it.")
|
||||
|
||||
self.experts = nn.ModuleList([
|
||||
MixtralMLP(self.num_total_experts,
|
||||
config.hidden_size,
|
||||
config.intermediate_size,
|
||||
linear_method=linear_method)
|
||||
if idx in self.expert_indicies else DummyModule()
|
||||
for idx in range(self.num_total_experts)
|
||||
])
|
||||
self.gate = ReplicatedLinear(config.hidden_size,
|
||||
self.num_total_experts,
|
||||
bias=False,
|
||||
linear_method=linear_method)
|
||||
|
||||
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
||||
batch_size, sequence_length, hidden_dim = hidden_states.shape
|
||||
hidden_states = hidden_states.view(-1, hidden_dim)
|
||||
# router_logits: (batch * sequence_length, n_experts)
|
||||
router_logits, _ = self.gate(hidden_states)
|
||||
|
||||
routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float)
|
||||
routing_weights, selected_experts = torch.topk(routing_weights,
|
||||
self.top_k,
|
||||
dim=-1)
|
||||
routing_weights /= routing_weights.sum(dim=-1, keepdim=True)
|
||||
|
||||
final_hidden_states = None
|
||||
for expert_idx in self.expert_indicies:
|
||||
expert_layer = self.experts[expert_idx]
|
||||
expert_mask = (selected_experts == expert_idx)
|
||||
expert_weights = (routing_weights * expert_mask).sum(dim=-1,
|
||||
keepdim=True)
|
||||
|
||||
current_hidden_states = expert_layer(hidden_states).mul_(
|
||||
expert_weights)
|
||||
if final_hidden_states is None:
|
||||
final_hidden_states = current_hidden_states
|
||||
else:
|
||||
final_hidden_states.add_(current_hidden_states)
|
||||
|
||||
return tensor_model_parallel_all_reduce(final_hidden_states).view(
|
||||
batch_size, sequence_length, hidden_dim)
|
||||
|
||||
|
||||
class MixtralAttention(nn.Module):
|
||||
|
@ -78,6 +193,7 @@ class MixtralAttention(nn.Module):
|
|||
num_kv_heads: int,
|
||||
max_position: int = 4096 * 32,
|
||||
rope_theta: float = 10000,
|
||||
linear_method: Optional[LinearMethodBase] = None,
|
||||
sliding_window: Optional[int] = None) -> None:
|
||||
super().__init__()
|
||||
self.hidden_size = hidden_size
|
||||
|
@ -102,24 +218,26 @@ class MixtralAttention(nn.Module):
|
|||
self.rope_theta = rope_theta
|
||||
self.sliding_window = sliding_window
|
||||
|
||||
self.wqkv = QKVParallelLinear(
|
||||
self.qkv_proj = QKVParallelLinear(
|
||||
hidden_size,
|
||||
self.head_dim,
|
||||
self.total_num_heads,
|
||||
self.total_num_kv_heads,
|
||||
bias=False,
|
||||
linear_method=linear_method,
|
||||
)
|
||||
self.wo = RowParallelLinear(
|
||||
self.o_proj = RowParallelLinear(
|
||||
self.total_num_heads * self.head_dim,
|
||||
hidden_size,
|
||||
bias=False,
|
||||
linear_method=linear_method,
|
||||
)
|
||||
self.rotary_emb = get_rope(
|
||||
self.head_dim,
|
||||
rotary_dim=self.head_dim,
|
||||
max_position=max_position,
|
||||
base=int(self.rope_theta),
|
||||
is_neox_style=False, # weights not in HF format
|
||||
is_neox_style=True,
|
||||
)
|
||||
self.attn = PagedAttention(
|
||||
self.num_heads,
|
||||
|
@ -137,307 +255,112 @@ class MixtralAttention(nn.Module):
|
|||
input_metadata: InputMetadata,
|
||||
cache_event: Optional[torch.cuda.Event],
|
||||
) -> torch.Tensor:
|
||||
qkv, _ = self.wqkv(hidden_states)
|
||||
qkv, _ = self.qkv_proj(hidden_states)
|
||||
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
|
||||
q, k = self.rotary_emb(positions, q, k)
|
||||
k_cache, v_cache = kv_cache
|
||||
attn_output = self.attn(q, k, v, k_cache, v_cache, input_metadata,
|
||||
cache_event)
|
||||
output, _ = self.wo(attn_output)
|
||||
output, _ = self.o_proj(attn_output)
|
||||
return output
|
||||
|
||||
|
||||
class BlockSparseMoE(nn.Module):
|
||||
"""
|
||||
Built on the paper and library Megablocks as described in
|
||||
https://arxiv.org/abs/2211.15841. This implementation is
|
||||
strictly equivalent to standard MoE with full capacity (no
|
||||
dropped tokens). It's faster since it formulates MoE operations
|
||||
in terms of block-sparse operations to accomodate imbalanced
|
||||
assignments of tokens to experts, whereas standard MoE either
|
||||
(1) drop tokens at the cost of reduced performance or (2) set
|
||||
capacity factor to number of experts and thus waste computation
|
||||
and memory on padding.
|
||||
"""
|
||||
|
||||
def __init__(self, hidden_dim: int, ffn_dim: int, num_experts: int,
|
||||
top_k: int):
|
||||
super().__init__()
|
||||
self.hidden_dim = hidden_dim
|
||||
self.ffn_dim = ffn_dim
|
||||
self.num_experts = num_experts
|
||||
self.top_k = top_k
|
||||
|
||||
# gating
|
||||
self.gate = nn.Linear(self.hidden_dim,
|
||||
self.num_experts,
|
||||
bias=False,
|
||||
device=torch.cuda.current_device())
|
||||
|
||||
tp_size = get_tensor_model_parallel_world_size()
|
||||
assert self.ffn_dim % tp_size == 0
|
||||
self.ffn_dim_per_partition = self.ffn_dim // tp_size
|
||||
# merged expert weights, all of size (ffn_dim * n_experts, model_dim)
|
||||
self.w1 = nn.Parameter(
|
||||
torch.empty(self.ffn_dim_per_partition * self.num_experts,
|
||||
self.hidden_dim,
|
||||
device=torch.cuda.current_device()))
|
||||
set_weight_attrs(self.w1, {"weight_loader": self.moe_weight_loader})
|
||||
self.w2 = nn.Parameter(
|
||||
torch.empty(self.ffn_dim_per_partition * self.num_experts,
|
||||
self.hidden_dim,
|
||||
device=torch.cuda.current_device()))
|
||||
set_weight_attrs(self.w2, {"weight_loader": self.moe_weight_loader})
|
||||
self.w3 = nn.Parameter(
|
||||
torch.empty(self.ffn_dim_per_partition * self.num_experts,
|
||||
self.hidden_dim,
|
||||
device=torch.cuda.current_device()))
|
||||
set_weight_attrs(self.w3, {"weight_loader": self.moe_weight_loader})
|
||||
|
||||
# Calculate the number of bits needed to represent the expert indices
|
||||
# so that we can pass it to radix sort.
|
||||
self.sort_end_bit = max(int(np.ceil(np.log2(self.num_experts))), 1)
|
||||
self.blocking = 128
|
||||
self.quantize_scatter_num_bits = -1
|
||||
|
||||
# Calculate the number of bits needed to represent the column indices
|
||||
# in the intermediate sparse matrix.
|
||||
max_column_index = (self.ffn_dim * self.num_experts) // self.blocking
|
||||
self.transpose_sort_end_bit = max(
|
||||
int(np.ceil(np.log2(max_column_index))), 1)
|
||||
|
||||
def moe_weight_loader(self, param: nn.Parameter,
|
||||
loaded_weight: torch.Tensor) -> None:
|
||||
"""
|
||||
Load the weights for the MoE linear layer.
|
||||
"""
|
||||
tp_rank = get_tensor_model_parallel_rank()
|
||||
shard_size = self.ffn_dim_per_partition
|
||||
loaded_weight = loaded_weight.view(self.num_experts, self.ffn_dim, -1)
|
||||
loaded_weight = loaded_weight[:, shard_size * tp_rank:shard_size *
|
||||
(tp_rank + 1)]
|
||||
loaded_weight = loaded_weight.reshape_as(param)
|
||||
param.data.copy_(loaded_weight)
|
||||
|
||||
def sparse_transpose(
|
||||
self, size: int, row_indices,
|
||||
column_indices) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
||||
block_columns = size[1] // self.blocking
|
||||
|
||||
# Sort row indices by column indices to get the transposed matrix's
|
||||
# column indices.
|
||||
#
|
||||
# NOTE: Our sort operation uses the same width indices as the input
|
||||
# values. To avoid overflow when we have large activation matrices
|
||||
# we cast to 32-bit before sorting.
|
||||
_, gather_indices = ops.sort(column_indices.int(),
|
||||
self.transpose_sort_end_bit)
|
||||
|
||||
# There are a constant number of blocks in every row of the sparse
|
||||
# matrix. A blocks offset is:
|
||||
#
|
||||
# row_index * blocks_per_row + column_index % blocks_per_row
|
||||
#
|
||||
# Once we have the block offsets ordered for transposition we can
|
||||
# divide by blocks_per_row to get the transposed column indices.
|
||||
column_indices_t = row_indices.gather(0, gather_indices.long())
|
||||
block_offsets_t = gather_indices.int()
|
||||
|
||||
zero = torch.zeros((1, ), dtype=torch.int32, device=row_indices.device)
|
||||
nnz_per_column = ops.histogram(column_indices, block_columns)
|
||||
nnz_per_column = ops.inclusive_cumsum(nnz_per_column, 0)
|
||||
offsets_t = torch.cat([zero, nnz_per_column])
|
||||
return column_indices_t, offsets_t, block_offsets_t
|
||||
|
||||
def topology(self, x: torch.Tensor,
|
||||
padded_bins: torch.Tensor) -> "stk.Matrix":
|
||||
padded_tokens, _ = x.size()
|
||||
assert padded_tokens % self.blocking == 0
|
||||
assert self.ffn_dim_per_partition % self.blocking == 0
|
||||
|
||||
# Offsets for the sparse matrix. All rows have the
|
||||
# same number of nonzero blocks dictated by the
|
||||
# dimensionality of a single expert.
|
||||
block_rows = padded_tokens // self.blocking
|
||||
blocks_per_row = self.ffn_dim_per_partition // self.blocking
|
||||
offsets = torch.arange(
|
||||
0,
|
||||
block_rows * blocks_per_row + 1,
|
||||
blocks_per_row,
|
||||
dtype=torch.int32,
|
||||
device=x.device,
|
||||
)
|
||||
|
||||
# Indices for the sparse matrix. The indices for
|
||||
# the intermediate matrix are dynamic depending
|
||||
# on the mapping of tokens to experts.
|
||||
column_indices = ops.topology(padded_bins, self.blocking, block_rows,
|
||||
blocks_per_row)
|
||||
|
||||
# TODO(tgale): This is unused. Remove the need for this in stk.
|
||||
# For now, use meta init to save the device memory.
|
||||
data = torch.empty(
|
||||
column_indices.numel(),
|
||||
self.blocking,
|
||||
self.blocking,
|
||||
dtype=x.dtype,
|
||||
device="meta",
|
||||
)
|
||||
shape = (padded_tokens, self.ffn_dim_per_partition * self.num_experts)
|
||||
row_indices = stk.ops.row_indices(shape, data, offsets, column_indices)
|
||||
column_indices_t, offsets_t, block_offsets_t = self.sparse_transpose(
|
||||
shape, row_indices, column_indices)
|
||||
return stk.Matrix(
|
||||
shape,
|
||||
data,
|
||||
row_indices,
|
||||
column_indices,
|
||||
offsets,
|
||||
column_indices_t,
|
||||
offsets_t,
|
||||
block_offsets_t,
|
||||
)
|
||||
|
||||
def indices_and_padded_bins(
|
||||
self, selected_experts: torch.Tensor
|
||||
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor,
|
||||
torch.Tensor]:
|
||||
# Sort the expert ids to produce the scatter/gather
|
||||
# indices for the permutation.
|
||||
selected_experts = selected_experts.int()
|
||||
bin_ids, indices = ops.sort(selected_experts, self.sort_end_bit)
|
||||
|
||||
# Histogram the expert ids to identify the number of
|
||||
# tokens routed to each expert.
|
||||
tokens_per_expert = ops.histogram(selected_experts, self.num_experts)
|
||||
|
||||
# Round the token counts up to the block size used in
|
||||
# the matrix muliplications. Caculate the starting
|
||||
# position of each bin.
|
||||
padded_tokens_per_expert = ops.round_up(tokens_per_expert,
|
||||
self.blocking)
|
||||
padded_bins = ops.inclusive_cumsum(padded_tokens_per_expert, 0)
|
||||
padded_bins = promote_scalar(padded_bins)
|
||||
|
||||
# Calculate the bin bounds for the sorted tokens.
|
||||
bins = ops.inclusive_cumsum(tokens_per_expert, 0)
|
||||
bins = promote_scalar(bins)
|
||||
return indices, bin_ids, bins, padded_bins, tokens_per_expert
|
||||
|
||||
@torch.inference_mode()
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
"""
|
||||
x: (sequence_length, model_dim)
|
||||
gate_logits: (sequence_length, n_experts)
|
||||
"""
|
||||
# optional reshape
|
||||
input_shape = x.shape
|
||||
x = x.view(-1, input_shape[-1])
|
||||
|
||||
# gate_logits: (sequence_length, n_experts)
|
||||
gate_logits = self.gate(x)
|
||||
# all_probs: (sequence_length, n_experts) and upcast for softmax
|
||||
all_probs = F.softmax(gate_logits, dim=1, dtype=torch.float)
|
||||
# weights, selected_experts: (sequence_length, top-k)
|
||||
weights, selected_experts = torch.topk(all_probs, self.top_k, dim=-1)
|
||||
weights /= weights.sum(dim=-1, keepdim=True)
|
||||
weights = weights.flatten().to(x.dtype)
|
||||
selected_experts = selected_experts.flatten()
|
||||
|
||||
(indices, bin_ids, bins, padded_bins,
|
||||
_) = self.indices_and_padded_bins(selected_experts)
|
||||
|
||||
# Permute tokens and pad to prepare expert computation
|
||||
# (top_k * sequence_length + padding, model_dim)
|
||||
x = ops.padded_gather(x, indices, bin_ids, bins, padded_bins,
|
||||
self.top_k)
|
||||
|
||||
# Create the sparse matrix topology
|
||||
with torch.no_grad():
|
||||
topo = self.topology(x, padded_bins)
|
||||
|
||||
# Perform the expert computation
|
||||
# First Dense x Dense -> Sparse for w1 and w3,
|
||||
# (top_k * sequence_length + padding, ffn_dim * n_experts)
|
||||
x = stk.Matrix(
|
||||
topo.size(),
|
||||
F.silu(stk.ops.sdd(x, self.w1.t(), topo).data) *
|
||||
stk.ops.sdd(x, self.w3.t(), topo).data,
|
||||
topo.row_indices,
|
||||
topo.column_indices,
|
||||
topo.offsets,
|
||||
topo.column_indices_t,
|
||||
topo.offsets_t,
|
||||
topo.block_offsets_t,
|
||||
)
|
||||
|
||||
# Then Sparse x Dense -> Dense for w2
|
||||
# (top_k * sequence_length + padding, model_dim)
|
||||
x = stk.ops.dsd(x, self.w2)
|
||||
|
||||
x = tensor_model_parallel_all_reduce(x)
|
||||
|
||||
# Permute back and remove padding
|
||||
# (top_k * sequence_length, model_dim)
|
||||
x = ops.padded_scatter(
|
||||
x,
|
||||
indices,
|
||||
bin_ids,
|
||||
weights,
|
||||
bins,
|
||||
padded_bins,
|
||||
self.top_k,
|
||||
self.quantize_scatter_num_bits,
|
||||
)
|
||||
return x.view(*input_shape)
|
||||
|
||||
|
||||
class MixtralDecoderLayer(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: MixtralConfig,
|
||||
linear_method: Optional[LinearMethodBase] = None,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.hidden_size = config.hidden_size
|
||||
# Requires transformers > 4.32.0
|
||||
rope_theta = getattr(config, "rope_theta", 10000)
|
||||
self.attention = MixtralAttention(
|
||||
self.self_attn = MixtralAttention(
|
||||
hidden_size=self.hidden_size,
|
||||
num_heads=config.num_attention_heads,
|
||||
max_position=config.max_position_embeddings,
|
||||
num_kv_heads=config.num_key_value_heads,
|
||||
rope_theta=rope_theta,
|
||||
sliding_window=config.sliding_window)
|
||||
self.block_sparse_moe = BlockSparseMoE(
|
||||
hidden_dim=self.hidden_size,
|
||||
ffn_dim=config.intermediate_size,
|
||||
num_experts=config.num_local_experts,
|
||||
top_k=config.num_experts_per_tok,
|
||||
)
|
||||
self.attention_norm = RMSNorm(config.hidden_size,
|
||||
eps=config.rms_norm_eps)
|
||||
self.ffn_norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
||||
sliding_window=config.sliding_window,
|
||||
linear_method=linear_method)
|
||||
self.block_sparse_moe = MixtralMoE(config=config,
|
||||
linear_method=linear_method)
|
||||
self.input_layernorm = RMSNorm(config.hidden_size,
|
||||
eps=config.rms_norm_eps)
|
||||
self.post_attention_layernorm = RMSNorm(config.hidden_size,
|
||||
eps=config.rms_norm_eps)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
positions: torch.Tensor,
|
||||
x: torch.Tensor,
|
||||
hidden_states: torch.Tensor,
|
||||
kv_cache: KVCache,
|
||||
input_metadata: InputMetadata,
|
||||
cache_event: Optional[torch.cuda.Event],
|
||||
residual: Optional[torch.Tensor],
|
||||
) -> torch.Tensor:
|
||||
r = self.attention(
|
||||
# Self Attention
|
||||
if residual is None:
|
||||
residual = hidden_states
|
||||
hidden_states = self.input_layernorm(hidden_states)
|
||||
else:
|
||||
hidden_states, residual = self.input_layernorm(
|
||||
hidden_states, residual)
|
||||
hidden_states = self.self_attn(
|
||||
positions=positions,
|
||||
hidden_states=self.attention_norm(x),
|
||||
hidden_states=hidden_states,
|
||||
kv_cache=kv_cache,
|
||||
input_metadata=input_metadata,
|
||||
cache_event=cache_event,
|
||||
)
|
||||
h = x + r
|
||||
r = self.block_sparse_moe(self.ffn_norm(h))
|
||||
out = h + r
|
||||
return out
|
||||
|
||||
# Fully Connected
|
||||
hidden_states, residual = self.post_attention_layernorm(
|
||||
hidden_states, residual)
|
||||
hidden_states = self.block_sparse_moe(hidden_states)
|
||||
return hidden_states, residual
|
||||
|
||||
|
||||
class MixtralModel(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: MixtralConfig,
|
||||
linear_method: Optional[LinearMethodBase] = None,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.padding_idx = config.pad_token_id
|
||||
self.vocab_size = config.vocab_size
|
||||
|
||||
self.embed_tokens = VocabParallelEmbedding(
|
||||
config.vocab_size,
|
||||
config.hidden_size,
|
||||
)
|
||||
self.layers = nn.ModuleList([
|
||||
MixtralDecoderLayer(config, linear_method=linear_method)
|
||||
for _ in range(config.num_hidden_layers)
|
||||
])
|
||||
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
positions: torch.Tensor,
|
||||
kv_caches: List[KVCache],
|
||||
input_metadata: InputMetadata,
|
||||
cache_events: Optional[List[torch.cuda.Event]],
|
||||
) -> SamplerOutput:
|
||||
hidden_states = self.embed_tokens(input_ids)
|
||||
residual = None
|
||||
for i in range(len(self.layers)):
|
||||
cache_event = None if cache_events is None else cache_events[i]
|
||||
layer = self.layers[i]
|
||||
hidden_states, residual = layer(positions, hidden_states,
|
||||
kv_caches[i], input_metadata,
|
||||
cache_event, residual)
|
||||
hidden_states, _ = self.norm(hidden_states, residual)
|
||||
return hidden_states
|
||||
|
||||
|
||||
class MixtralForCausalLM(nn.Module):
|
||||
|
@ -449,23 +372,11 @@ class MixtralForCausalLM(nn.Module):
|
|||
) -> None:
|
||||
super().__init__()
|
||||
self.config = config
|
||||
assert linear_method is None
|
||||
self.padding_idx = config.pad_token_id
|
||||
self.vocab_size = config.vocab_size
|
||||
self.tok_embeddings = VocabParallelEmbedding(
|
||||
config.vocab_size,
|
||||
config.hidden_size,
|
||||
)
|
||||
|
||||
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
||||
self.output = ParallelLMHead(config.vocab_size, config.hidden_size)
|
||||
self.linear_method = linear_method
|
||||
self.model = MixtralModel(config, linear_method)
|
||||
self.lm_head = ParallelLMHead(config.vocab_size, config.hidden_size)
|
||||
self.sampler = Sampler(config.vocab_size)
|
||||
|
||||
self.layers = nn.ModuleList([
|
||||
MixtralDecoderLayer(config)
|
||||
for _ in range(config.num_hidden_layers)
|
||||
])
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
|
@ -473,21 +384,9 @@ class MixtralForCausalLM(nn.Module):
|
|||
kv_caches: List[KVCache],
|
||||
input_metadata: InputMetadata,
|
||||
cache_events: Optional[List[torch.cuda.Event]],
|
||||
) -> SamplerOutput:
|
||||
hidden_states = self.tok_embeddings(input_ids)
|
||||
|
||||
# forward
|
||||
for i in range(len(self.layers)):
|
||||
cache_event = None if cache_events is None else cache_events[i]
|
||||
layer = self.layers[i]
|
||||
hidden_states = layer(
|
||||
positions,
|
||||
hidden_states,
|
||||
kv_caches[i],
|
||||
input_metadata,
|
||||
cache_event,
|
||||
)
|
||||
hidden_states = self.norm(hidden_states)
|
||||
) -> torch.Tensor:
|
||||
hidden_states = self.model(input_ids, positions, kv_caches,
|
||||
input_metadata, cache_events)
|
||||
return hidden_states
|
||||
|
||||
def sample(
|
||||
|
@ -495,7 +394,7 @@ class MixtralForCausalLM(nn.Module):
|
|||
hidden_states: Optional[torch.Tensor],
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> SamplerOutput:
|
||||
next_tokens = self.sampler(self.output.weight, hidden_states,
|
||||
next_tokens = self.sampler(self.lm_head.weight, hidden_states,
|
||||
sampling_metadata)
|
||||
return next_tokens
|
||||
|
||||
|
@ -506,10 +405,11 @@ class MixtralForCausalLM(nn.Module):
|
|||
revision: Optional[str] = None):
|
||||
stacked_params_mapping = [
|
||||
# (param_name, shard_name, shard_id)
|
||||
("wqkv", "wq", "q"),
|
||||
("wqkv", "wk", "k"),
|
||||
("wqkv", "wv", "v"),
|
||||
("qkv_proj", "q_proj", "q"),
|
||||
("qkv_proj", "k_proj", "k"),
|
||||
("qkv_proj", "v_proj", "v"),
|
||||
]
|
||||
|
||||
params_dict = dict(self.named_parameters())
|
||||
for name, loaded_weight in hf_model_weights_iterator(
|
||||
model_name_or_path, cache_dir, load_format, revision):
|
||||
|
|
Loading…
Reference in New Issue