[TPU] Support single and multi-host TPUs on GKE (#7613)

This commit is contained in:
Richard Liu 2024-08-30 00:27:40 -07:00 committed by GitHub
parent dc13e99348
commit 2148441fd3
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
5 changed files with 74 additions and 4 deletions

View File

@ -4,4 +4,4 @@
# Dependencies for TPU
# Currently, the TPU backend uses a nightly version of PyTorch XLA.
# You can install the dependencies in Dockerfile.tpu.
ray
ray[default]

View File

@ -123,7 +123,10 @@ class PallasAttentionBackendImpl(AttentionImpl):
raise NotImplementedError("TPU version must be 4 or higher.")
self.megacore_mode = None
tpu_type = torch_xla.tpu.get_tpu_env()["TYPE"].lower()
tpu_env = torch_xla.tpu.get_tpu_env()
tpu_type = tpu_env.get("TYPE") or tpu_env.get("ACCELERATOR_TYPE")
tpu_type = tpu_type.lower()
if "lite" not in tpu_type:
if self.num_kv_heads % 2 == 0:
self.megacore_mode = "kv_head"

View File

@ -1,3 +1,5 @@
import os
import torch
import torch.distributed as dist
from torch.distributed import ProcessGroup
@ -5,11 +7,12 @@ from torch.distributed import ProcessGroup
from vllm.platforms import current_platform
if current_platform.is_tpu():
import ray
import torch_xla.core.xla_model as xm
import torch_xla.runtime as xr
from torch_xla._internal import pjrt
from vllm.executor import ray_utils
class TpuCommunicator:
@ -24,9 +27,29 @@ class TpuCommunicator:
# be simply calculated as follows.
global_rank = dist.get_rank(group)
global_world_size = dist.get_world_size(group)
num_nodes = len(ray.nodes())
# Calculate how many TPU nodes are in the current deployment. This
# is the Ray placement group if it is deployed with Ray. Default
# to the number of TPU nodes in the Ray cluster. The number of TPU
# nodes is computed by the total number of TPUs divided by the
# number of TPU accelerators per node, to account for clusters
# with both CPUs and TPUs.
num_nodes = ray_utils.get_num_tpu_nodes()
num_nodes_in_pg = ray_utils.get_num_nodes_in_placement_group()
if num_nodes_in_pg > 0:
num_nodes = num_nodes_in_pg
local_world_size = global_world_size // num_nodes
local_rank = global_rank % local_world_size
# Ensure environment variables are set for multihost deployments.
# On GKE, this is needed for libtpu and TPU driver to know which TPU
# chip is actually visible. Otherwise the TPU driver will fail to
# initialize because the number of devices would be different from
# the number of visible worker addresses.
os.environ["CLOUD_TPU_TASK_ID"] = str(global_rank)
os.environ["TPU_VISIBLE_CHIPS"] = str(local_rank)
pjrt.initialize_multiprocess(local_rank, local_world_size)
xr._init_world_size_ordinal()

View File

@ -71,6 +71,19 @@ class RayTPUExecutor(TPUExecutor):
worker_module_name = "vllm.worker.tpu_worker"
worker_class_name = "TPUWorker"
# GKE does not fetch environment information from metadata server
# and instead sets these from within the Ray process. Therefore we
# need to override the Ray environment variables manually.
override_env = {}
if "TPU_CHIPS_PER_HOST_BOUNDS" in os.environ:
override_env.update({
"TPU_CHIPS_PER_HOST_BOUNDS":
os.environ["TPU_CHIPS_PER_HOST_BOUNDS"]
})
if "TPU_HOST_BOUNDS" in os.environ:
override_env.update(
{"TPU_HOST_BOUNDS": os.environ["TPU_HOST_BOUNDS"]})
worker = ray.remote(
num_cpus=0,
resources={"TPU": 1},
@ -81,6 +94,8 @@ class RayTPUExecutor(TPUExecutor):
worker_class_name=worker_class_name,
trust_remote_code=self.model_config.trust_remote_code,
)
if override_env:
worker.override_env_vars.remote(override_env)
worker_ip = ray.get(worker.get_node_ip.remote())
if worker_ip == driver_ip and self.driver_dummy_worker is None:

View File

@ -1,3 +1,4 @@
import os
import time
from collections import defaultdict
from typing import Dict, List, Optional, Tuple, Union
@ -84,6 +85,9 @@ try:
return output
def override_env_vars(self, vars: Dict[str, str]):
os.environ.update(vars)
ray_import_err = None
except ImportError as e:
@ -291,3 +295,28 @@ def initialize_ray_cluster(
_verify_bundles(current_placement_group, parallel_config, device_str)
# Set the placement group in the parallel config
parallel_config.placement_group = current_placement_group
def get_num_tpu_nodes() -> int:
from ray._private.accelerators import TPUAcceleratorManager
cluster_resources = ray.cluster_resources()
total_tpus = int(cluster_resources["TPU"])
tpus_per_node = TPUAcceleratorManager.get_current_node_num_accelerators()
assert total_tpus % tpus_per_node == 0
return total_tpus // tpus_per_node
def get_num_nodes_in_placement_group() -> int:
pg_table = ray.util.placement_group_table()
current_pg = ray.util.get_current_placement_group()
num_nodes = 0
if current_pg:
nodes_in_pg = set()
for pg_key, pg in pg_table.items():
if pg_key == current_pg.id.hex():
for _, node in pg["bundles_to_node_id"].items():
nodes_in_pg.add(node)
num_nodes = len(nodes_in_pg)
return num_nodes