vllm/README.md

124 lines
6.1 KiB
Markdown
Raw Normal View History

2023-06-19 16:31:13 +08:00
<p align="center">
<picture>
2023-06-20 11:15:15 +08:00
<source media="(prefers-color-scheme: dark)" srcset="https://raw.githubusercontent.com/vllm-project/vllm/main/docs/source/assets/logos/vllm-logo-text-dark.png">
<img alt="vLLM" src="https://raw.githubusercontent.com/vllm-project/vllm/main/docs/source/assets/logos/vllm-logo-text-light.png" width=55%>
2023-06-19 16:31:13 +08:00
</picture>
</p>
2023-02-24 20:04:49 +08:00
2023-06-19 16:31:13 +08:00
<h3 align="center">
Easy, fast, and cheap LLM serving for everyone
</h3>
2023-02-24 20:04:49 +08:00
2023-06-19 16:31:13 +08:00
<p align="center">
2024-08-12 08:13:37 +08:00
| <a href="https://docs.vllm.ai"><b>Documentation</b></a> | <a href="https://vllm.ai"><b>Blog</b></a> | <a href="https://arxiv.org/abs/2309.06180"><b>Paper</b></a> | <a href="https://discord.gg/jz7wjKhh6g"><b>Discord</b></a> | <a href="https://x.com/vllm_project"><b>Twitter/X</b></a> |
2023-02-24 20:04:49 +08:00
2023-06-19 16:31:13 +08:00
</p>
2023-02-24 20:04:49 +08:00
---
2023-06-19 16:31:13 +08:00
*Latest News* 🔥
- [2024/07] We hosted [the fifth vLLM meetup](https://lu.ma/lp0gyjqr) with AWS! Please find the meetup slides [here](https://docs.google.com/presentation/d/1RgUD8aCfcHocghoP3zmXzck9vX3RCI9yfUAB2Bbcl4Y/edit?usp=sharing).
- [2024/07] In partnership with Meta, vLLM officially supports Llama 3.1 with FP8 quantization and pipeline parallelism! Please check out our blog post [here](https://blog.vllm.ai/2024/07/23/llama31.html).
2024-06-14 01:18:26 +08:00
- [2024/06] We hosted [the fourth vLLM meetup](https://lu.ma/agivllm) with Cloudflare and BentoML! Please find the meetup slides [here](https://docs.google.com/presentation/d/1iJ8o7V2bQEi0BFEljLTwc5G1S10_Rhv3beed5oB0NJ4/edit?usp=sharing).
- [2024/04] We hosted [the third vLLM meetup](https://robloxandvllmmeetup2024.splashthat.com/) with Roblox! Please find the meetup slides [here](https://docs.google.com/presentation/d/1A--47JAK4BJ39t954HyTkvtfwn0fkqtsL8NGFuslReM/edit?usp=sharing).
2024-07-13 10:36:53 +08:00
- [2024/01] We hosted [the second vLLM meetup](https://lu.ma/ygxbpzhl) with IBM! Please find the meetup slides [here](https://docs.google.com/presentation/d/12mI2sKABnUw5RBWXDYY-HtHth4iMSNcEoQ10jDQbxgA/edit?usp=sharing).
- [2023/10] We hosted [the first vLLM meetup](https://lu.ma/first-vllm-meetup) with a16z! Please find the meetup slides [here](https://docs.google.com/presentation/d/1QL-XPFXiFpDBh86DbEegFXBXFXjix4v032GhShbKf3s/edit?usp=sharing).
2023-09-01 08:18:34 +08:00
- [2023/08] We would like to express our sincere gratitude to [Andreessen Horowitz](https://a16z.com/2023/08/30/supporting-the-open-source-ai-community/) (a16z) for providing a generous grant to support the open-source development and research of vLLM.
2023-06-26 07:58:06 +08:00
- [2023/06] We officially released vLLM! FastChat-vLLM integration has powered [LMSYS Vicuna and Chatbot Arena](https://chat.lmsys.org) since mid-April. Check out our [blog post](https://vllm.ai).
2023-06-19 16:31:13 +08:00
---
## About
2023-06-20 10:58:23 +08:00
vLLM is a fast and easy-to-use library for LLM inference and serving.
2023-03-29 14:48:56 +08:00
2023-06-19 16:31:13 +08:00
vLLM is fast with:
2023-03-29 14:48:56 +08:00
2023-06-19 16:31:13 +08:00
- State-of-the-art serving throughput
- Efficient management of attention key and value memory with **PagedAttention**
- Continuous batching of incoming requests
- Fast model execution with CUDA/HIP graph
2024-08-12 08:13:37 +08:00
- Quantizations: [GPTQ](https://arxiv.org/abs/2210.17323), [AWQ](https://arxiv.org/abs/2306.00978), INT4, INT8, and FP8.
- Optimized CUDA kernels, including integration with FlashAttention and FlashInfer.
- Speculative decoding
- Chunked prefill
2023-06-19 16:31:13 +08:00
2024-08-12 08:13:37 +08:00
**Performance benchmark**: We include a [performance benchmark](https://buildkite.com/vllm/performance-benchmark/builds/4068) that compares the performance of vLLM against other LLM serving engines ([TensorRT-LLM](https://github.com/NVIDIA/TensorRT-LLM), [text-generation-inference](https://github.com/huggingface/text-generation-inference) and [lmdeploy](https://github.com/InternLM/lmdeploy)).
2023-06-19 16:31:13 +08:00
vLLM is flexible and easy to use with:
2023-09-14 03:55:23 +08:00
- Seamless integration with popular Hugging Face models
2023-06-19 16:31:13 +08:00
- High-throughput serving with various decoding algorithms, including *parallel sampling*, *beam search*, and more
- Tensor parallelism and pipeline parallelism support for distributed inference
- Streaming outputs
- OpenAI-compatible API server
2024-08-12 08:13:37 +08:00
- Support NVIDIA GPUs, AMD CPUs and GPUs, Intel CPUs and GPUs, PowerPC CPUs, TPU, and AWS Neuron.
- Prefix caching support
- Multi-lora support
2023-03-29 14:48:56 +08:00
vLLM seamlessly supports most popular open-source models on HuggingFace, including:
- Transformer-like LLMs (e.g., Llama)
- Mixture-of-Expert LLMs (e.g., Mixtral)
2024-08-12 08:13:37 +08:00
- Embedding Models (e.g. E5-Mistral)
- Multi-modal LLMs (e.g., LLaVA)
Find the full list of supported models [here](https://docs.vllm.ai/en/latest/models/supported_models.html).
## Getting Started
2024-08-12 08:13:37 +08:00
Install vLLM with `pip` or [from source](https://vllm.readthedocs.io/en/latest/getting_started/installation.html#build-from-source):
2023-06-19 16:31:13 +08:00
```bash
pip install vllm
```
Visit our [documentation](https://vllm.readthedocs.io/en/latest/) to learn more.
2023-06-20 11:03:40 +08:00
- [Installation](https://vllm.readthedocs.io/en/latest/getting_started/installation.html)
- [Quickstart](https://vllm.readthedocs.io/en/latest/getting_started/quickstart.html)
- [Supported Models](https://vllm.readthedocs.io/en/latest/models/supported_models.html)
2023-06-19 16:31:13 +08:00
## Contributing
We welcome and value any contributions and collaborations.
Please check out [CONTRIBUTING.md](./CONTRIBUTING.md) for how to get involved.
2023-09-14 08:38:13 +08:00
## Sponsors
vLLM is a community project. Our compute resources for development and testing are supported by the following organizations. Thank you for your support!
<!-- Note: Please sort them in alphabetical order. -->
<!-- Note: Please keep these consistent with docs/source/community/sponsors.md -->
- a16z
- AMD
- Anyscale
- AWS
- Crusoe Cloud
- Databricks
- DeepInfra
2024-05-29 01:29:09 +08:00
- Dropbox
- Google Cloud
- Lambda Lab
- NVIDIA
- Replicate
- Roblox
- RunPod
- Sequoia Capital
2024-08-09 04:59:57 +08:00
- Skywork AI
- Trainy
- UC Berkeley
- UC San Diego
- ZhenFund
We also have an official fundraising venue through [OpenCollective](https://opencollective.com/vllm). We plan to use the fund to support the development, maintenance, and adoption of vLLM.
2023-09-14 08:38:13 +08:00
## Citation
If you use vLLM for your research, please cite our [paper](https://arxiv.org/abs/2309.06180):
```bibtex
@inproceedings{kwon2023efficient,
title={Efficient Memory Management for Large Language Model Serving with PagedAttention},
2023-09-14 08:38:13 +08:00
author={Woosuk Kwon and Zhuohan Li and Siyuan Zhuang and Ying Sheng and Lianmin Zheng and Cody Hao Yu and Joseph E. Gonzalez and Hao Zhang and Ion Stoica},
booktitle={Proceedings of the ACM SIGOPS 29th Symposium on Operating Systems Principles},
year={2023}
}
```