2023-06-19 16:31:13 +08:00
< p align = "center" >
< picture >
2023-06-20 11:15:15 +08:00
< source media = "(prefers-color-scheme: dark)" srcset = "https://raw.githubusercontent.com/vllm-project/vllm/main/docs/source/assets/logos/vllm-logo-text-dark.png" >
< img alt = "vLLM" src = "https://raw.githubusercontent.com/vllm-project/vllm/main/docs/source/assets/logos/vllm-logo-text-light.png" width = 55% >
2023-06-19 16:31:13 +08:00
< / picture >
< / p >
2023-02-24 20:04:49 +08:00
2023-06-19 16:31:13 +08:00
< h3 align = "center" >
Easy, fast, and cheap LLM serving for everyone
< / h3 >
2023-02-24 20:04:49 +08:00
2023-06-19 16:31:13 +08:00
< p align = "center" >
2023-06-20 13:57:14 +08:00
| < a href = "https://vllm.readthedocs.io/en/latest/" > < b > Documentation< / b > < / a > | < a href = "https://vllm.ai" > < b > Blog< / b > < / a > | < a href = "https://github.com/vllm-project/vllm/discussions" > < b > Discussions< / b > < / a > |
2023-02-24 20:04:49 +08:00
2023-06-19 16:31:13 +08:00
< / p >
2023-02-24 20:04:49 +08:00
2023-06-19 16:31:13 +08:00
---
2023-05-21 04:06:59 +08:00
2023-06-19 16:31:13 +08:00
*Latest News* 🔥
2023-03-29 14:48:56 +08:00
2023-06-20 13:57:14 +08:00
- [2023/06] We officially released vLLM! vLLM has powered [LMSYS Vicuna and Chatbot Arena ](https://chat.lmsys.org ) since mid April. Check out our [blog post ](https://vllm.ai ).
2023-06-19 16:31:13 +08:00
---
2023-03-29 14:48:56 +08:00
2023-06-20 10:58:23 +08:00
vLLM is a fast and easy-to-use library for LLM inference and serving.
2023-03-29 14:48:56 +08:00
2023-06-19 16:31:13 +08:00
vLLM is fast with:
2023-03-29 14:48:56 +08:00
2023-06-19 16:31:13 +08:00
- State-of-the-art serving throughput
2023-06-18 18:19:38 +08:00
- Efficient management of attention key and value memory with **PagedAttention**
- Dynamic batching of incoming requests
- Optimized CUDA kernels
2023-06-19 16:31:13 +08:00
vLLM is flexible and easy to use with:
- Seamless integration with popular HuggingFace models
- High-throughput serving with various decoding algorithms, including *parallel sampling* , *beam search* , and more
2023-06-18 18:19:38 +08:00
- Tensor parallelism support for distributed inference
- Streaming outputs
- OpenAI-compatible API server
2023-03-29 14:48:56 +08:00
2023-06-20 10:57:46 +08:00
vLLM seamlessly supports many Huggingface models, including the following architectures:
2023-06-20 14:00:28 +08:00
- GPT-2 (`gpt2`, `gpt2-xl` , etc.)
2023-06-23 06:05:11 +08:00
- GPT BigCode (`bigcode/starcoder`, `bigcode/gpt_bigcode-santacoder` , etc.)
- GPT-NeoX (`EleutherAI/gpt-neox-20b`, `databricks/dolly-v2-12b` , `stabilityai/stablelm-tuned-alpha-7b` , etc.)
2023-06-20 14:00:28 +08:00
- LLaMA (`lmsys/vicuna-13b-v1.3`, `young-geng/koala` , `openlm-research/open_llama_13b` , etc.)
- OPT (`facebook/opt-66b`, `facebook/opt-iml-max-30b` , etc.)
2023-06-20 10:57:46 +08:00
2023-06-20 11:03:40 +08:00
Install vLLM with pip or [from source ](https://vllm.readthedocs.io/en/latest/getting_started/installation.html#build-from-source ):
2023-06-19 16:31:13 +08:00
```bash
pip install vllm
```
## Getting Started
2023-06-20 11:03:40 +08:00
Visit our [documentation ](https://vllm.readthedocs.io/en/latest/ ) to get started.
- [Installation ](https://vllm.readthedocs.io/en/latest/getting_started/installation.html )
- [Quickstart ](https://vllm.readthedocs.io/en/latest/getting_started/quickstart.html )
- [Supported Models ](https://vllm.readthedocs.io/en/latest/models/supported_models.html )
2023-06-19 16:31:13 +08:00
2023-06-18 18:19:38 +08:00
## Performance
2023-03-29 14:48:56 +08:00
2023-06-18 18:19:38 +08:00
vLLM outperforms HuggingFace Transformers (HF) by up to 24x and Text Generation Inference (TGI) by up to 3.5x, in terms of throughput.
2023-06-20 13:57:14 +08:00
For details, check out our [blog post ](https://vllm.ai ).
2023-03-29 14:48:56 +08:00
2023-06-18 18:19:38 +08:00
< p align = "center" >
2023-06-19 16:31:13 +08:00
< picture >
2023-06-20 11:15:15 +08:00
< source media = "(prefers-color-scheme: dark)" srcset = "https://raw.githubusercontent.com/vllm-project/vllm/main/docs/source/assets/figures/perf_a10g_n1_dark.png" >
< img src = "https://raw.githubusercontent.com/vllm-project/vllm/main/docs/source/assets/figures/perf_a10g_n1_light.png" width = "45%" >
2023-06-19 16:31:13 +08:00
< / picture >
< picture >
2023-06-20 13:57:14 +08:00
< source media = "(prefers-color-scheme: dark)" srcset = "https://raw.githubusercontent.com/vllm-project/vllm/main/docs/source/assets/figures/perf_a100_n1_dark.png" >
2023-06-20 11:15:15 +08:00
< img src = "https://raw.githubusercontent.com/vllm-project/vllm/main/docs/source/assets/figures/perf_a100_n1_light.png" width = "45%" >
2023-06-19 16:31:13 +08:00
< / picture >
2023-06-18 18:19:38 +08:00
< br >
< em > Serving throughput when each request asks for 1 output completion. < / em >
< / p >
2023-04-01 01:07:57 +08:00
2023-06-18 18:19:38 +08:00
< p align = "center" >
2023-06-19 16:31:13 +08:00
< picture >
2023-06-20 13:57:14 +08:00
< source media = "(prefers-color-scheme: dark)" srcset = "https://raw.githubusercontent.com/vllm-project/vllm/main/docs/source/assets/figures/perf_a10g_n3_dark.png" >
2023-06-20 11:15:15 +08:00
< img src = "https://raw.githubusercontent.com/vllm-project/vllm/main/docs/source/assets/figures/perf_a10g_n3_light.png" width = "45%" >
2023-06-19 16:31:13 +08:00
< / picture >
< picture >
2023-06-20 13:57:14 +08:00
< source media = "(prefers-color-scheme: dark)" srcset = "https://raw.githubusercontent.com/vllm-project/vllm/main/docs/source/assets/figures/perf_a100_n3_dark.png" >
2023-06-20 11:15:15 +08:00
< img src = "https://raw.githubusercontent.com/vllm-project/vllm/main/docs/source/assets/figures/perf_a100_n3_light.png" width = "45%" >
2023-06-19 16:31:13 +08:00
< / picture > < br >
2023-06-18 18:19:38 +08:00
< em > Serving throughput when each request asks for 3 output completions. < / em >
< / p >
2023-04-01 01:07:57 +08:00
2023-06-18 18:19:38 +08:00
## Contributing
2023-04-01 01:07:57 +08:00
2023-06-18 18:19:38 +08:00
We welcome and value any contributions and collaborations.
Please check out [CONTRIBUTING.md ](./CONTRIBUTING.md ) for how to get involved.