vllm/README.md

97 lines
4.2 KiB
Markdown
Raw Normal View History

2023-06-19 16:31:13 +08:00
<p align="center">
<picture>
2023-06-20 11:15:15 +08:00
<source media="(prefers-color-scheme: dark)" srcset="https://raw.githubusercontent.com/vllm-project/vllm/main/docs/source/assets/logos/vllm-logo-text-dark.png">
<img alt="vLLM" src="https://raw.githubusercontent.com/vllm-project/vllm/main/docs/source/assets/logos/vllm-logo-text-light.png" width=55%>
2023-06-19 16:31:13 +08:00
</picture>
</p>
2023-02-24 20:04:49 +08:00
2023-06-19 16:31:13 +08:00
<h3 align="center">
Easy, fast, and cheap LLM serving for everyone
</h3>
2023-02-24 20:04:49 +08:00
2023-06-19 16:31:13 +08:00
<p align="center">
2023-06-20 13:57:14 +08:00
| <a href="https://vllm.readthedocs.io/en/latest/"><b>Documentation</b></a> | <a href="https://vllm.ai"><b>Blog</b></a> | <a href="https://github.com/vllm-project/vllm/discussions"><b>Discussions</b></a> |
2023-02-24 20:04:49 +08:00
2023-06-19 16:31:13 +08:00
</p>
2023-02-24 20:04:49 +08:00
2023-06-19 16:31:13 +08:00
---
2023-05-21 04:06:59 +08:00
2023-06-19 16:31:13 +08:00
*Latest News* 🔥
2023-03-29 14:48:56 +08:00
2023-06-20 13:57:14 +08:00
- [2023/06] We officially released vLLM! vLLM has powered [LMSYS Vicuna and Chatbot Arena](https://chat.lmsys.org) since mid April. Check out our [blog post](https://vllm.ai).
2023-06-19 16:31:13 +08:00
---
2023-03-29 14:48:56 +08:00
2023-06-20 10:58:23 +08:00
vLLM is a fast and easy-to-use library for LLM inference and serving.
2023-03-29 14:48:56 +08:00
2023-06-19 16:31:13 +08:00
vLLM is fast with:
2023-03-29 14:48:56 +08:00
2023-06-19 16:31:13 +08:00
- State-of-the-art serving throughput
- Efficient management of attention key and value memory with **PagedAttention**
- Dynamic batching of incoming requests
- Optimized CUDA kernels
2023-06-19 16:31:13 +08:00
vLLM is flexible and easy to use with:
- Seamless integration with popular HuggingFace models
- High-throughput serving with various decoding algorithms, including *parallel sampling*, *beam search*, and more
- Tensor parallelism support for distributed inference
- Streaming outputs
- OpenAI-compatible API server
2023-03-29 14:48:56 +08:00
vLLM seamlessly supports many Huggingface models, including the following architectures:
2023-06-20 14:00:28 +08:00
- GPT-2 (`gpt2`, `gpt2-xl`, etc.)
- GPT BigCode (`bigcode/starcoder`, `bigcode/gpt_bigcode-santacoder`, etc.)
- GPT-NeoX (`EleutherAI/gpt-neox-20b`, `databricks/dolly-v2-12b`, `stabilityai/stablelm-tuned-alpha-7b`, etc.)
2023-06-20 14:00:28 +08:00
- LLaMA (`lmsys/vicuna-13b-v1.3`, `young-geng/koala`, `openlm-research/open_llama_13b`, etc.)
- OPT (`facebook/opt-66b`, `facebook/opt-iml-max-30b`, etc.)
2023-06-20 11:03:40 +08:00
Install vLLM with pip or [from source](https://vllm.readthedocs.io/en/latest/getting_started/installation.html#build-from-source):
2023-06-19 16:31:13 +08:00
```bash
pip install vllm
```
## Getting Started
2023-06-20 11:03:40 +08:00
Visit our [documentation](https://vllm.readthedocs.io/en/latest/) to get started.
- [Installation](https://vllm.readthedocs.io/en/latest/getting_started/installation.html)
- [Quickstart](https://vllm.readthedocs.io/en/latest/getting_started/quickstart.html)
- [Supported Models](https://vllm.readthedocs.io/en/latest/models/supported_models.html)
2023-06-19 16:31:13 +08:00
## Performance
2023-03-29 14:48:56 +08:00
vLLM outperforms HuggingFace Transformers (HF) by up to 24x and Text Generation Inference (TGI) by up to 3.5x, in terms of throughput.
2023-06-20 13:57:14 +08:00
For details, check out our [blog post](https://vllm.ai).
2023-03-29 14:48:56 +08:00
<p align="center">
2023-06-19 16:31:13 +08:00
<picture>
2023-06-20 11:15:15 +08:00
<source media="(prefers-color-scheme: dark)" srcset="https://raw.githubusercontent.com/vllm-project/vllm/main/docs/source/assets/figures/perf_a10g_n1_dark.png">
<img src="https://raw.githubusercontent.com/vllm-project/vllm/main/docs/source/assets/figures/perf_a10g_n1_light.png" width="45%">
2023-06-19 16:31:13 +08:00
</picture>
<picture>
2023-06-20 13:57:14 +08:00
<source media="(prefers-color-scheme: dark)" srcset="https://raw.githubusercontent.com/vllm-project/vllm/main/docs/source/assets/figures/perf_a100_n1_dark.png">
2023-06-20 11:15:15 +08:00
<img src="https://raw.githubusercontent.com/vllm-project/vllm/main/docs/source/assets/figures/perf_a100_n1_light.png" width="45%">
2023-06-19 16:31:13 +08:00
</picture>
<br>
<em> Serving throughput when each request asks for 1 output completion. </em>
</p>
<p align="center">
2023-06-19 16:31:13 +08:00
<picture>
2023-06-20 13:57:14 +08:00
<source media="(prefers-color-scheme: dark)" srcset="https://raw.githubusercontent.com/vllm-project/vllm/main/docs/source/assets/figures/perf_a10g_n3_dark.png">
2023-06-20 11:15:15 +08:00
<img src="https://raw.githubusercontent.com/vllm-project/vllm/main/docs/source/assets/figures/perf_a10g_n3_light.png" width="45%">
2023-06-19 16:31:13 +08:00
</picture>
<picture>
2023-06-20 13:57:14 +08:00
<source media="(prefers-color-scheme: dark)" srcset="https://raw.githubusercontent.com/vllm-project/vllm/main/docs/source/assets/figures/perf_a100_n3_dark.png">
2023-06-20 11:15:15 +08:00
<img src="https://raw.githubusercontent.com/vllm-project/vllm/main/docs/source/assets/figures/perf_a100_n3_light.png" width="45%">
2023-06-19 16:31:13 +08:00
</picture> <br>
<em> Serving throughput when each request asks for 3 output completions. </em>
</p>
## Contributing
We welcome and value any contributions and collaborations.
Please check out [CONTRIBUTING.md](./CONTRIBUTING.md) for how to get involved.