lammps/tools/colvars/abf_data.cpp

342 lines
9.4 KiB
C++

#include "abf_data.h"
#include <fstream>
#include <string>
#include <cstring>
#include <cstdlib>
#include <ctime>
/// Construct gradient field object from an ABF-saved file
ABFdata::ABFdata(const char *gradFileName)
{
std::ifstream gradFile;
std::ifstream countFile;
char hash;
double xi;
char *countFileName;
countFileName = new char[strlen (gradFileName) + 2];
strcpy (countFileName, gradFileName);
countFileName[strlen (gradFileName) - 4] = '\0';
strcat (countFileName, "count");
std::cout << "Opening file " << gradFileName << " for reading\n";
gradFile.open(gradFileName);
if (!gradFile.good()) {
std::cerr << "Cannot read from file " << gradFileName << ", aborting\n";
exit(1);
}
gradFile >> hash;
if (hash != '#') {
std::cerr << "Missing \'#\' sign in gradient file\n";
exit(1);
}
gradFile >> Nvars;
std::cout << "Number of variables: " << Nvars << "\n";
sizes = new int[Nvars];
blocksizes = new int[Nvars];
PBC = new int[Nvars];
widths = new double[Nvars];
mins = new double[Nvars];
scalar_dim = 1; // total is (n1 * n2 * ... * n_Nvars )
for (int i = 0; i < Nvars; i++) {
gradFile >> hash;
if (hash != '#') {
std::cerr << "Missing \'#\' sign in gradient file\n";
exit(1);
}
// format is: xiMin dxi Nbins PBCflag
gradFile >> mins[i] >> widths[i] >> sizes[i] >> PBC[i];
std::cout << "min = " << mins[i] << " width = " << widths[i]
<< " n = " << sizes[i] << " PBC: " << (PBC[i]?"yes":"no") << "\n";
if (sizes[i] == 0) {
std::cout << "ERROR: size should not be zero!\n";
exit(1);
}
scalar_dim *= sizes[i];
}
// block sizes, smallest for the last dimension
blocksizes[Nvars - 1] = 1;
for (int i = Nvars - 2; i >= 0; i--) {
blocksizes[i] = blocksizes[i + 1] * sizes[i + 1];
}
vec_dim = scalar_dim * Nvars;
//std::cout << "Gradient field has length " << vec_dim << "\n";
gradients = new double[vec_dim];
estimate = new double[vec_dim];
deviation = new double[vec_dim];
count = new unsigned int[scalar_dim];
int *pos = new int[Nvars];
for (int i = 0; i < Nvars; i++)
pos[i] = 0;
for (unsigned int i = 0; i < scalar_dim; i++) {
// Here we do the Euclidean division iteratively
for (int k = Nvars - 1; k > 0; k--) {
if (pos[k] == sizes[k]) {
pos[k] = 0;
pos[k - 1]++;
}
}
for (unsigned int j = 0; j < Nvars; j++) {
// Read values of the collective variables only to check for consistency with grid
gradFile >> xi;
double rel_diff = (mins[j] + widths[j] * (pos[j] + 0.5) - xi) / widths[j];
if ( rel_diff * rel_diff > 1e-12 ) {
std::cout << "\nERROR: wrong coordinates in gradient file\n";
std::cout << "Expected " << mins[j] + widths[j] * (pos[j] + 0.5) << ", got " << xi << std::endl;
exit(1);
}
}
for (unsigned int j = 0; j < Nvars; j++) {
// Read and store gradients
if ( ! (gradFile >> gradients[i * Nvars + j]) ) {
std::cout << "\nERROR: could not read gradient data\n";
exit(1);
}
}
pos[Nvars - 1]++; // move on to next position
}
// check for end of file
if ( gradFile >> xi ) {
std::cout << "\nERROR: extraneous data at end of gradient file\n";
exit(1);
}
gradFile.close();
std::cout << "Opening file " << countFileName << " for reading\n";
countFile.open(countFileName);
if (!countFile.good()) {
std::cerr << "Cannot read from file " << countFileName << ", aborting\n";
exit(1);
}
countFile >> hash;
if (hash != '#') {
std::cerr << "Missing \'#\' sign in count file\n";
exit(1);
}
countFile >> Nvars;
for (int i = 0; i < Nvars; i++) {
countFile >> hash;
if (hash != '#') {
std::cerr << "Missing \'#\' sign in gradient file\n";
exit(1);
}
countFile >> mins[i] >> widths[i] >> sizes[i] >> PBC[i];
}
for (unsigned int i = 0; i < scalar_dim; i++) {
for (unsigned int j = 0; j < Nvars; j++) {
// Read and ignore values of the collective variables
countFile >> xi;
}
// Read and store counts
countFile >> count[i];
}
// Could check for end-of-file string here
countFile.close();
delete[] countFileName;
delete[] pos;
// for metadynamics
bias = new double[scalar_dim];
histogram = new unsigned int[scalar_dim];
for (unsigned int i = 0; i < scalar_dim; i++) {
histogram[i] = 0;
bias[i] = 0.0;
}
}
ABFdata::~ABFdata()
{
delete[] sizes;
delete[] blocksizes;
delete[] PBC;
delete[] widths;
delete[] mins;
delete[] gradients;
delete[] estimate;
delete[] deviation;
delete[] count;
delete[] bias;
delete[] histogram;
}
unsigned int ABFdata::offset(const int *pos)
{
unsigned int index = 0;
for (int i = 0; i < Nvars; i++) {
// Check for out-of bounds indices here
if (pos[i] < 0 || pos[i] >= sizes[i]) {
std::cerr << "Out-of-range index: " << pos[i] << " for rank " << i << "\n";
exit(1);
}
index += blocksizes[i] * pos[i];
}
// we leave the multiplication below for the caller to do
// we just give the offset for scalar fields
// index *= Nvars; // Nb of gradient vectors -> nb of array elts
return index;
}
void ABFdata::write_histogram(const char *fileName)
{
std::ofstream os;
unsigned int index;
int *pos, i;
os.open(fileName);
if (!os.good()) {
std::cerr << "Cannot write to file " << fileName << ", aborting\n";
exit(1);
}
pos = new int[Nvars];
for (i = 0; i < Nvars; i++)
pos[i] = 0;
for (index = 0; index < scalar_dim; index++) {
// Here we do the Euclidean division iteratively
for (i = Nvars - 1; i > 0; i--) {
if (pos[i] == sizes[i]) {
pos[i] = 0;
pos[i - 1]++;
os << "\n";
}
}
// Now a stupid check:
if (index != offset(pos)) {
std::cerr << "Wrong position vector at index " << index << "\n";
exit(1);
}
for (i = 0; i < Nvars; i++) {
os << mins[i] + widths[i] * (pos[i] + 0.5) << " ";
}
os << histogram[index] << "\n";
pos[Nvars - 1]++; // move on to next position
}
os.close();
delete[]pos;
}
void ABFdata::write_bias(const char *fileName)
{
// write the opposite of the bias, with global minimum set to 0
std::ofstream os;
unsigned int index;
int *pos, i;
double minbias, maxbias;
os.open(fileName);
if (!os.good()) {
std::cerr << "Cannot write to file " << fileName << ", aborting\n";
exit(1);
}
pos = new int[Nvars];
for (i = 0; i < Nvars; i++)
pos[i] = 0;
// Set the minimum value to 0 by subtracting each value from the max
maxbias = bias[0];
for (index = 0; index < scalar_dim; index++) {
if (bias[index] > maxbias)
maxbias = bias[index];
}
// Set the maximum value to that of the lowest nonzero bias
minbias = bias[0];
for (index = 0; index < scalar_dim; index++) {
if (minbias == 0.0 || (bias[index] > 0.0 && bias[index] < minbias))
minbias = bias[index];
}
for (index = 0; index < scalar_dim; index++) {
// Here we do the Euclidean division iteratively
for (i = Nvars - 1; i > 0; i--) {
if (pos[i] == sizes[i]) {
pos[i] = 0;
pos[i - 1]++;
os << "\n";
}
}
// Now a stupid check:
if (index != offset(pos)) {
std::cerr << "Wrong position vector at index " << index << "\n";
exit(1);
}
for (i = 0; i < Nvars; i++) {
os << mins[i] + widths[i] * (pos[i] + 0.5) << " ";
}
os << maxbias - (bias[index] > 0.0 ? bias[index] : minbias) << "\n";
pos[Nvars - 1]++; // move on to next position
}
os.close();
delete[]pos;
}
void ABFdata::write_field(double *field, const char *fileName)
{
std::ofstream os;
unsigned int index;
int *pos, i;
double *f;
os.open(fileName);
if (!os.good()) {
std::cerr << "Cannot write to file " << fileName << ", aborting\n";
exit(1);
}
pos = new int[Nvars];
for (i = 0; i < Nvars; i++)
pos[i] = 0;
// start at beginning of array
f = field;
for (index = 0; index < scalar_dim; index++) {
// Here we do the Euclidean division iteratively
for (i = Nvars - 1; i > 0; i--) {
if (pos[i] == sizes[i]) {
pos[i] = 0;
pos[i - 1]++;
os << "\n";
}
}
for (i = 0; i < Nvars; i++) {
os << mins[i] + widths[i] * (pos[i] + 0.5) << " ";
}
for (i = 0; i < Nvars; i++) {
os << f[i] << " ";;
}
os << "\n";
pos[Nvars - 1]++; // move on to next position...
f += Nvars; // ...also in the array
}
os.close();
delete[]pos;
}