mirror of https://github.com/lammps/lammps.git
734 lines
21 KiB
C++
734 lines
21 KiB
C++
/* ----------------------------------------------------------------------
|
|
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
|
|
http://lammps.sandia.gov, Sandia National Laboratories
|
|
Steve Plimpton, sjplimp@sandia.gov
|
|
|
|
Copyright (2003) Sandia Corporation. Under the terms of Contract
|
|
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
|
|
certain rights in this software. This software is distributed under
|
|
the GNU General Public License.
|
|
|
|
See the README file in the top-level LAMMPS directory.
|
|
------------------------------------------------------------------------- */
|
|
|
|
/* ----------------------------------------------------------------------
|
|
Contributing authors: Amit Kumar and Michael Bybee (UIUC)
|
|
------------------------------------------------------------------------- */
|
|
|
|
#include <math.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include "pair_brownian.h"
|
|
#include "atom.h"
|
|
#include "atom_vec.h"
|
|
#include "comm.h"
|
|
#include "force.h"
|
|
#include "neighbor.h"
|
|
#include "neigh_list.h"
|
|
#include "neigh_request.h"
|
|
#include "domain.h"
|
|
#include "update.h"
|
|
#include "modify.h"
|
|
#include "fix.h"
|
|
#include "fix_deform.h"
|
|
#include "fix_wall.h"
|
|
#include "input.h"
|
|
#include "variable.h"
|
|
#include "random_mars.h"
|
|
#include "math_const.h"
|
|
#include "math_special.h"
|
|
#include "memory.h"
|
|
#include "error.h"
|
|
|
|
using namespace LAMMPS_NS;
|
|
using namespace MathConst;
|
|
using namespace MathSpecial;
|
|
|
|
// same as fix_wall.cpp
|
|
|
|
enum{EDGE,CONSTANT,VARIABLE};
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
PairBrownian::PairBrownian(LAMMPS *lmp) : Pair(lmp)
|
|
{
|
|
single_enable = 0;
|
|
random = NULL;
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
PairBrownian::~PairBrownian()
|
|
{
|
|
if (allocated) {
|
|
memory->destroy(setflag);
|
|
memory->destroy(cutsq);
|
|
|
|
memory->destroy(cut);
|
|
memory->destroy(cut_inner);
|
|
}
|
|
delete random;
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
void PairBrownian::compute(int eflag, int vflag)
|
|
{
|
|
int i,j,ii,jj,inum,jnum,itype,jtype;
|
|
double xtmp,ytmp,ztmp,delx,dely,delz,fx,fy,fz,tx,ty,tz;
|
|
double rsq,r,h_sep,radi;
|
|
int *ilist,*jlist,*numneigh,**firstneigh;
|
|
|
|
if (eflag || vflag) ev_setup(eflag,vflag);
|
|
else evflag = vflag_fdotr = 0;
|
|
|
|
double **x = atom->x;
|
|
double **f = atom->f;
|
|
double **torque = atom->torque;
|
|
double *radius = atom->radius;
|
|
int *type = atom->type;
|
|
int nlocal = atom->nlocal;
|
|
int newton_pair = force->newton_pair;
|
|
|
|
double vxmu2f = force->vxmu2f;
|
|
double randr;
|
|
double prethermostat;
|
|
double xl[3],a_sq,a_sh,a_pu,Fbmag;
|
|
double p1[3],p2[3],p3[3];
|
|
int overlaps = 0;
|
|
|
|
// This section of code adjusts R0/RT0/RS0 if necessary due to changes
|
|
// in the volume fraction as a result of fix deform or moving walls
|
|
|
|
double dims[3], wallcoord;
|
|
if (flagVF) // Flag for volume fraction corrections
|
|
if (flagdeform || flagwall == 2){ // Possible changes in volume fraction
|
|
if (flagdeform && !flagwall)
|
|
for (j = 0; j < 3; j++)
|
|
dims[j] = domain->prd[j];
|
|
else if (flagwall == 2 || (flagdeform && flagwall == 1)){
|
|
double wallhi[3], walllo[3];
|
|
for (int j = 0; j < 3; j++){
|
|
wallhi[j] = domain->prd[j];
|
|
walllo[j] = 0;
|
|
}
|
|
for (int m = 0; m < wallfix->nwall; m++){
|
|
int dim = wallfix->wallwhich[m] / 2;
|
|
int side = wallfix->wallwhich[m] % 2;
|
|
if (wallfix->xstyle[m] == VARIABLE){
|
|
wallcoord = input->variable->compute_equal(wallfix->xindex[m]);
|
|
}
|
|
else wallcoord = wallfix->coord0[m];
|
|
if (side == 0) walllo[dim] = wallcoord;
|
|
else wallhi[dim] = wallcoord;
|
|
}
|
|
for (int j = 0; j < 3; j++)
|
|
dims[j] = wallhi[j] - walllo[j];
|
|
}
|
|
double vol_T = dims[0]*dims[1]*dims[2];
|
|
double vol_f = vol_P/vol_T;
|
|
if (flaglog == 0) {
|
|
R0 = 6*MY_PI*mu*rad*(1.0 + 2.16*vol_f);
|
|
RT0 = 8*MY_PI*mu*cube(rad);
|
|
//RS0 = 20.0/3.0*MY_PI*mu*pow(rad,3)*(1.0 + 3.33*vol_f + 2.80*vol_f*vol_f);
|
|
} else {
|
|
R0 = 6*MY_PI*mu*rad*(1.0 + 2.725*vol_f - 6.583*vol_f*vol_f);
|
|
RT0 = 8*MY_PI*mu*cube(rad)*(1.0 + 0.749*vol_f - 2.469*vol_f*vol_f);
|
|
//RS0 = 20.0/3.0*MY_PI*mu*pow(rad,3)*(1.0 + 3.64*vol_f - 6.95*vol_f*vol_f);
|
|
}
|
|
}
|
|
|
|
// scale factor for Brownian moments
|
|
|
|
prethermostat = sqrt(24.0*force->boltz*t_target/update->dt);
|
|
prethermostat *= sqrt(force->vxmu2f/force->ftm2v/force->mvv2e);
|
|
|
|
inum = list->inum;
|
|
ilist = list->ilist;
|
|
numneigh = list->numneigh;
|
|
firstneigh = list->firstneigh;
|
|
|
|
for (ii = 0; ii < inum; ii++) {
|
|
i = ilist[ii];
|
|
xtmp = x[i][0];
|
|
ytmp = x[i][1];
|
|
ztmp = x[i][2];
|
|
itype = type[i];
|
|
radi = radius[i];
|
|
jlist = firstneigh[i];
|
|
jnum = numneigh[i];
|
|
|
|
// FLD contribution to force and torque due to isotropic terms
|
|
|
|
if (flagfld) {
|
|
f[i][0] += prethermostat*sqrt(R0)*(random->uniform()-0.5);
|
|
f[i][1] += prethermostat*sqrt(R0)*(random->uniform()-0.5);
|
|
f[i][2] += prethermostat*sqrt(R0)*(random->uniform()-0.5);
|
|
if (flaglog) {
|
|
torque[i][0] += prethermostat*sqrt(RT0)*(random->uniform()-0.5);
|
|
torque[i][1] += prethermostat*sqrt(RT0)*(random->uniform()-0.5);
|
|
torque[i][2] += prethermostat*sqrt(RT0)*(random->uniform()-0.5);
|
|
}
|
|
}
|
|
|
|
if (!flagHI) continue;
|
|
|
|
for (jj = 0; jj < jnum; jj++) {
|
|
j = jlist[jj];
|
|
j &= NEIGHMASK;
|
|
|
|
delx = xtmp - x[j][0];
|
|
dely = ytmp - x[j][1];
|
|
delz = ztmp - x[j][2];
|
|
rsq = delx*delx + dely*dely + delz*delz;
|
|
jtype = type[j];
|
|
|
|
if (rsq < cutsq[itype][jtype]) {
|
|
r = sqrt(rsq);
|
|
|
|
// scalar resistances a_sq and a_sh
|
|
|
|
h_sep = r - 2.0*radi;
|
|
|
|
// check for overlaps
|
|
|
|
if (h_sep < 0.0) overlaps++;
|
|
|
|
// if less than minimum gap, use minimum gap instead
|
|
|
|
if (r < cut_inner[itype][jtype])
|
|
h_sep = cut_inner[itype][jtype] - 2.0*radi;
|
|
|
|
// scale h_sep by radi
|
|
|
|
h_sep = h_sep/radi;
|
|
|
|
// scalar resistances
|
|
|
|
if (flaglog) {
|
|
a_sq = 6.0*MY_PI*mu*radi*(1.0/4.0/h_sep + 9.0/40.0*log(1.0/h_sep));
|
|
a_sh = 6.0*MY_PI*mu*radi*(1.0/6.0*log(1.0/h_sep));
|
|
a_pu = 8.0*MY_PI*mu*cube(radi)*(3.0/160.0*log(1.0/h_sep));
|
|
} else
|
|
a_sq = 6.0*MY_PI*mu*radi*(1.0/4.0/h_sep);
|
|
|
|
// generate the Pairwise Brownian Force: a_sq
|
|
|
|
Fbmag = prethermostat*sqrt(a_sq);
|
|
|
|
// generate a random number
|
|
|
|
randr = random->uniform()-0.5;
|
|
|
|
// contribution due to Brownian motion
|
|
|
|
fx = Fbmag*randr*delx/r;
|
|
fy = Fbmag*randr*dely/r;
|
|
fz = Fbmag*randr*delz/r;
|
|
|
|
// add terms due to a_sh
|
|
|
|
if (flaglog) {
|
|
|
|
// generate two orthogonal vectors to the line of centers
|
|
|
|
p1[0] = delx/r; p1[1] = dely/r; p1[2] = delz/r;
|
|
set_3_orthogonal_vectors(p1,p2,p3);
|
|
|
|
// magnitude
|
|
|
|
Fbmag = prethermostat*sqrt(a_sh);
|
|
|
|
// force in each of the two directions
|
|
|
|
randr = random->uniform()-0.5;
|
|
fx += Fbmag*randr*p2[0];
|
|
fy += Fbmag*randr*p2[1];
|
|
fz += Fbmag*randr*p2[2];
|
|
|
|
randr = random->uniform()-0.5;
|
|
fx += Fbmag*randr*p3[0];
|
|
fy += Fbmag*randr*p3[1];
|
|
fz += Fbmag*randr*p3[2];
|
|
}
|
|
|
|
// scale forces to appropriate units
|
|
|
|
fx = vxmu2f*fx;
|
|
fy = vxmu2f*fy;
|
|
fz = vxmu2f*fz;
|
|
|
|
// sum to total force
|
|
|
|
f[i][0] -= fx;
|
|
f[i][1] -= fy;
|
|
f[i][2] -= fz;
|
|
|
|
if (newton_pair || j < nlocal) {
|
|
//randr = random->uniform()-0.5;
|
|
//fx = Fbmag*randr*delx/r;
|
|
//fy = Fbmag*randr*dely/r;
|
|
//fz = Fbmag*randr*delz/r;
|
|
|
|
f[j][0] += fx;
|
|
f[j][1] += fy;
|
|
f[j][2] += fz;
|
|
}
|
|
|
|
// torque due to the Brownian Force
|
|
|
|
if (flaglog) {
|
|
|
|
// location of the point of closest approach on I from its center
|
|
|
|
xl[0] = -delx/r*radi;
|
|
xl[1] = -dely/r*radi;
|
|
xl[2] = -delz/r*radi;
|
|
|
|
// torque = xl_cross_F
|
|
|
|
tx = xl[1]*fz - xl[2]*fy;
|
|
ty = xl[2]*fx - xl[0]*fz;
|
|
tz = xl[0]*fy - xl[1]*fx;
|
|
|
|
// torque is same on both particles
|
|
|
|
torque[i][0] -= tx;
|
|
torque[i][1] -= ty;
|
|
torque[i][2] -= tz;
|
|
|
|
if (newton_pair || j < nlocal) {
|
|
torque[j][0] -= tx;
|
|
torque[j][1] -= ty;
|
|
torque[j][2] -= tz;
|
|
}
|
|
|
|
// torque due to a_pu
|
|
|
|
Fbmag = prethermostat*sqrt(a_pu);
|
|
|
|
// force in each direction
|
|
|
|
randr = random->uniform()-0.5;
|
|
tx = Fbmag*randr*p2[0];
|
|
ty = Fbmag*randr*p2[1];
|
|
tz = Fbmag*randr*p2[2];
|
|
|
|
randr = random->uniform()-0.5;
|
|
tx += Fbmag*randr*p3[0];
|
|
ty += Fbmag*randr*p3[1];
|
|
tz += Fbmag*randr*p3[2];
|
|
|
|
// torque has opposite sign on two particles
|
|
|
|
torque[i][0] -= tx;
|
|
torque[i][1] -= ty;
|
|
torque[i][2] -= tz;
|
|
|
|
if (newton_pair || j < nlocal) {
|
|
torque[j][0] += tx;
|
|
torque[j][1] += ty;
|
|
torque[j][2] += tz;
|
|
}
|
|
}
|
|
|
|
if (evflag) ev_tally_xyz(i,j,nlocal,newton_pair,
|
|
0.0,0.0,-fx,-fy,-fz,delx,dely,delz);
|
|
}
|
|
}
|
|
}
|
|
|
|
int print_overlaps = 0;
|
|
if (print_overlaps && overlaps)
|
|
printf("Number of overlaps=%d\n",overlaps);
|
|
|
|
if (vflag_fdotr) virial_fdotr_compute();
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
allocate all arrays
|
|
------------------------------------------------------------------------- */
|
|
|
|
void PairBrownian::allocate()
|
|
{
|
|
allocated = 1;
|
|
int n = atom->ntypes;
|
|
|
|
memory->create(setflag,n+1,n+1,"pair:setflag");
|
|
for (int i = 1; i <= n; i++)
|
|
for (int j = i; j <= n; j++)
|
|
setflag[i][j] = 0;
|
|
|
|
memory->create(cutsq,n+1,n+1,"pair:cutsq");
|
|
|
|
memory->create(cut,n+1,n+1,"pair:cut");
|
|
memory->create(cut_inner,n+1,n+1,"pair:cut_inner");
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
global settings
|
|
------------------------------------------------------------------------- */
|
|
|
|
void PairBrownian::settings(int narg, char **arg)
|
|
{
|
|
if (narg != 7 && narg != 9) error->all(FLERR,"Illegal pair_style command");
|
|
|
|
mu = force->numeric(FLERR,arg[0]);
|
|
flaglog = force->inumeric(FLERR,arg[1]);
|
|
flagfld = force->inumeric(FLERR,arg[2]);
|
|
cut_inner_global = force->numeric(FLERR,arg[3]);
|
|
cut_global = force->numeric(FLERR,arg[4]);
|
|
t_target = force->numeric(FLERR,arg[5]);
|
|
seed = force->inumeric(FLERR,arg[6]);
|
|
|
|
flagHI = flagVF = 1;
|
|
if (narg == 9) {
|
|
flagHI = force->inumeric(FLERR,arg[7]);
|
|
flagVF = force->inumeric(FLERR,arg[8]);
|
|
}
|
|
|
|
if (flaglog == 1 && flagHI == 0) {
|
|
error->warning(FLERR,"Cannot include log terms without 1/r terms; "
|
|
"setting flagHI to 1");
|
|
flagHI = 1;
|
|
}
|
|
|
|
// initialize Marsaglia RNG with processor-unique seed
|
|
|
|
delete random;
|
|
random = new RanMars(lmp,seed + comm->me);
|
|
|
|
// reset cutoffs that have been explicitly set
|
|
|
|
if (allocated) {
|
|
for (int i = 1; i <= atom->ntypes; i++)
|
|
for (int j = i+1; j <= atom->ntypes; j++)
|
|
if (setflag[i][j]) {
|
|
cut_inner[i][j] = cut_inner_global;
|
|
cut[i][j] = cut_global;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
set coeffs for one or more type pairs
|
|
------------------------------------------------------------------------- */
|
|
|
|
void PairBrownian::coeff(int narg, char **arg)
|
|
{
|
|
if (narg != 2 && narg != 4)
|
|
error->all(FLERR,"Incorrect args for pair coefficients");
|
|
|
|
if (!allocated) allocate();
|
|
|
|
int ilo,ihi,jlo,jhi;
|
|
force->bounds(arg[0],atom->ntypes,ilo,ihi);
|
|
force->bounds(arg[1],atom->ntypes,jlo,jhi);
|
|
|
|
double cut_inner_one = cut_inner_global;
|
|
double cut_one = cut_global;
|
|
|
|
if (narg == 4) {
|
|
cut_inner_one = force->numeric(FLERR,arg[2]);
|
|
cut_one = force->numeric(FLERR,arg[3]);
|
|
}
|
|
|
|
int count = 0;
|
|
for (int i = ilo; i <= ihi; i++)
|
|
for (int j = MAX(jlo,i); j <= jhi; j++) {
|
|
cut_inner[i][j] = cut_inner_one;
|
|
cut[i][j] = cut_one;
|
|
setflag[i][j] = 1;
|
|
count++;
|
|
}
|
|
|
|
if (count == 0) error->all(FLERR,"Incorrect args for pair coefficients");
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
init specific to this pair style
|
|
------------------------------------------------------------------------- */
|
|
|
|
void PairBrownian::init_style()
|
|
{
|
|
if (!atom->sphere_flag)
|
|
error->all(FLERR,"Pair brownian requires atom style sphere");
|
|
|
|
// if newton off, forces between atoms ij will be double computed
|
|
// using different random numbers
|
|
|
|
if (force->newton_pair == 0 && comm->me == 0)
|
|
error->warning(FLERR,
|
|
"Pair brownian needs newton pair on for "
|
|
"momentum conservation");
|
|
|
|
neighbor->request(this,instance_me);
|
|
|
|
// insure all particles are finite-size
|
|
// for pair hybrid, should limit test to types using the pair style
|
|
|
|
double *radius = atom->radius;
|
|
int nlocal = atom->nlocal;
|
|
|
|
for (int i = 0; i < nlocal; i++)
|
|
if (radius[i] == 0.0)
|
|
error->one(FLERR,"Pair brownian requires extended particles");
|
|
|
|
// require monodisperse system with same radii for all types
|
|
|
|
double radtype;
|
|
for (int i = 1; i <= atom->ntypes; i++) {
|
|
if (!atom->radius_consistency(i,radtype))
|
|
error->all(FLERR,"Pair brownian requires monodisperse particles");
|
|
if (i > 1 && radtype != rad)
|
|
error->all(FLERR,"Pair brownian requires monodisperse particles");
|
|
rad = radtype;
|
|
}
|
|
|
|
// set the isotropic constants that depend on the volume fraction
|
|
// vol_T = total volume
|
|
// check for fix deform, if exists it must use "remap v"
|
|
// If box will change volume, set appropriate flag so that volume
|
|
// and v.f. corrections are re-calculated at every step.
|
|
//
|
|
// If available volume is different from box volume
|
|
// due to walls, set volume appropriately; if walls will
|
|
// move, set appropriate flag so that volume and v.f. corrections
|
|
// are re-calculated at every step.
|
|
|
|
flagdeform = flagwall = 0;
|
|
for (int i = 0; i < modify->nfix; i++){
|
|
if (strcmp(modify->fix[i]->style,"deform") == 0)
|
|
flagdeform = 1;
|
|
else if (strstr(modify->fix[i]->style,"wall") != NULL) {
|
|
if (flagwall)
|
|
error->all(FLERR,
|
|
"Cannot use multiple fix wall commands with pair brownian");
|
|
flagwall = 1; // Walls exist
|
|
wallfix = (FixWall *) modify->fix[i];
|
|
if (wallfix->xflag) flagwall = 2; // Moving walls exist
|
|
}
|
|
}
|
|
|
|
// set the isotropic constants depending on the volume fraction
|
|
// vol_T = total volumeshearing = flagdeform = flagwall = 0;
|
|
|
|
double vol_T, wallcoord;
|
|
if (!flagwall) vol_T = domain->xprd*domain->yprd*domain->zprd;
|
|
else {
|
|
double wallhi[3], walllo[3];
|
|
for (int j = 0; j < 3; j++){
|
|
wallhi[j] = domain->prd[j];
|
|
walllo[j] = 0;
|
|
}
|
|
for (int m = 0; m < wallfix->nwall; m++){
|
|
int dim = wallfix->wallwhich[m] / 2;
|
|
int side = wallfix->wallwhich[m] % 2;
|
|
if (wallfix->xstyle[m] == VARIABLE){
|
|
wallfix->xindex[m] = input->variable->find(wallfix->xstr[m]);
|
|
// Since fix->wall->init happens after pair->init_style
|
|
wallcoord = input->variable->compute_equal(wallfix->xindex[m]);
|
|
}
|
|
|
|
else wallcoord = wallfix->coord0[m];
|
|
|
|
if (side == 0) walllo[dim] = wallcoord;
|
|
else wallhi[dim] = wallcoord;
|
|
}
|
|
vol_T = (wallhi[0] - walllo[0]) * (wallhi[1] - walllo[1]) *
|
|
(wallhi[2] - walllo[2]);
|
|
}
|
|
|
|
// vol_P = volume of particles, assuming mono-dispersity
|
|
// vol_f = volume fraction
|
|
|
|
vol_P = atom->natoms*(4.0/3.0)*MY_PI*cube(rad);
|
|
|
|
double vol_f = vol_P/vol_T;
|
|
|
|
// set isotropic constants
|
|
if (!flagVF) vol_f = 0;
|
|
|
|
if (flaglog == 0) {
|
|
R0 = 6*MY_PI*mu*rad*(1.0 + 2.16*vol_f);
|
|
RT0 = 8*MY_PI*mu*cube(rad); // not actually needed
|
|
} else {
|
|
R0 = 6*MY_PI*mu*rad*(1.0 + 2.725*vol_f - 6.583*vol_f*vol_f);
|
|
RT0 = 8*MY_PI*mu*cube(rad)*(1.0 + 0.749*vol_f - 2.469*vol_f*vol_f);
|
|
}
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
init for one type pair i,j and corresponding j,i
|
|
------------------------------------------------------------------------- */
|
|
|
|
double PairBrownian::init_one(int i, int j)
|
|
{
|
|
if (setflag[i][j] == 0) {
|
|
cut_inner[i][j] = mix_distance(cut_inner[i][i],cut_inner[j][j]);
|
|
cut[i][j] = mix_distance(cut[i][i],cut[j][j]);
|
|
}
|
|
|
|
cut_inner[j][i] = cut_inner[i][j];
|
|
|
|
return cut[i][j];
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
proc 0 writes to restart file
|
|
------------------------------------------------------------------------- */
|
|
|
|
void PairBrownian::write_restart(FILE *fp)
|
|
{
|
|
write_restart_settings(fp);
|
|
|
|
int i,j;
|
|
for (i = 1; i <= atom->ntypes; i++)
|
|
for (j = i; j <= atom->ntypes; j++) {
|
|
fwrite(&setflag[i][j],sizeof(int),1,fp);
|
|
if (setflag[i][j]) {
|
|
fwrite(&cut_inner[i][j],sizeof(double),1,fp);
|
|
fwrite(&cut[i][j],sizeof(double),1,fp);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
proc 0 reads from restart file, bcasts
|
|
------------------------------------------------------------------------- */
|
|
|
|
void PairBrownian::read_restart(FILE *fp)
|
|
{
|
|
read_restart_settings(fp);
|
|
allocate();
|
|
|
|
int i,j;
|
|
int me = comm->me;
|
|
for (i = 1; i <= atom->ntypes; i++)
|
|
for (j = i; j <= atom->ntypes; j++) {
|
|
if (me == 0) fread(&setflag[i][j],sizeof(int),1,fp);
|
|
MPI_Bcast(&setflag[i][j],1,MPI_INT,0,world);
|
|
if (setflag[i][j]) {
|
|
if (me == 0) {
|
|
fread(&cut_inner[i][j],sizeof(double),1,fp);
|
|
fread(&cut[i][j],sizeof(double),1,fp);
|
|
}
|
|
MPI_Bcast(&cut_inner[i][j],1,MPI_DOUBLE,0,world);
|
|
MPI_Bcast(&cut[i][j],1,MPI_DOUBLE,0,world);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
proc 0 writes to restart file
|
|
------------------------------------------------------------------------- */
|
|
|
|
void PairBrownian::write_restart_settings(FILE *fp)
|
|
{
|
|
fwrite(&mu,sizeof(double),1,fp);
|
|
fwrite(&flaglog,sizeof(int),1,fp);
|
|
fwrite(&flagfld,sizeof(int),1,fp);
|
|
fwrite(&cut_inner_global,sizeof(double),1,fp);
|
|
fwrite(&cut_global,sizeof(double),1,fp);
|
|
fwrite(&t_target,sizeof(double),1,fp);
|
|
fwrite(&seed,sizeof(int),1,fp);
|
|
fwrite(&offset_flag,sizeof(int),1,fp);
|
|
fwrite(&mix_flag,sizeof(int),1,fp);
|
|
fwrite(&flagHI,sizeof(int),1,fp);
|
|
fwrite(&flagVF,sizeof(int),1,fp);
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
proc 0 reads from restart file, bcasts
|
|
------------------------------------------------------------------------- */
|
|
|
|
void PairBrownian::read_restart_settings(FILE *fp)
|
|
{
|
|
int me = comm->me;
|
|
if (me == 0) {
|
|
fread(&mu,sizeof(double),1,fp);
|
|
fread(&flaglog,sizeof(int),1,fp);
|
|
fread(&flagfld,sizeof(int),1,fp);
|
|
fread(&cut_inner_global,sizeof(double),1,fp);
|
|
fread(&cut_global,sizeof(double),1,fp);
|
|
fread(&t_target, sizeof(double),1,fp);
|
|
fread(&seed, sizeof(int),1,fp);
|
|
fread(&offset_flag,sizeof(int),1,fp);
|
|
fread(&mix_flag,sizeof(int),1,fp);
|
|
fread(&flagHI,sizeof(int),1,fp);
|
|
fread(&flagVF,sizeof(int),1,fp);
|
|
}
|
|
MPI_Bcast(&mu,1,MPI_DOUBLE,0,world);
|
|
MPI_Bcast(&flaglog,1,MPI_INT,0,world);
|
|
MPI_Bcast(&flagfld,1,MPI_INT,0,world);
|
|
MPI_Bcast(&cut_inner_global,1,MPI_DOUBLE,0,world);
|
|
MPI_Bcast(&cut_global,1,MPI_DOUBLE,0,world);
|
|
MPI_Bcast(&t_target,1,MPI_DOUBLE,0,world);
|
|
MPI_Bcast(&seed,1,MPI_INT,0,world);
|
|
MPI_Bcast(&offset_flag,1,MPI_INT,0,world);
|
|
MPI_Bcast(&mix_flag,1,MPI_INT,0,world);
|
|
MPI_Bcast(&flagHI,1,MPI_INT,0,world);
|
|
MPI_Bcast(&flagVF,1,MPI_INT,0,world);
|
|
|
|
// additional setup based on restart parameters
|
|
|
|
delete random;
|
|
random = new RanMars(lmp,seed + comm->me);
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------*/
|
|
|
|
void PairBrownian::set_3_orthogonal_vectors(double p1[3],
|
|
double p2[3], double p3[3])
|
|
{
|
|
double norm;
|
|
int ix,iy,iz;
|
|
|
|
// find the index of maximum magnitude and store it in iz
|
|
|
|
if (fabs(p1[0]) > fabs(p1[1])) {
|
|
iz=0;
|
|
ix=1;
|
|
iy=2;
|
|
} else {
|
|
iz=1;
|
|
ix=2;
|
|
iy=0;
|
|
}
|
|
|
|
if (iz==0) {
|
|
if (fabs(p1[0]) < fabs(p1[2])) {
|
|
iz = 2;
|
|
ix = 0;
|
|
iy = 1;
|
|
}
|
|
} else {
|
|
if (fabs(p1[1]) < fabs(p1[2])) {
|
|
iz = 2;
|
|
ix = 0;
|
|
iy = 1;
|
|
}
|
|
}
|
|
|
|
// set p2 arbitrarily such that it's orthogonal to p1
|
|
|
|
p2[ix]=1.0;
|
|
p2[iy]=1.0;
|
|
p2[iz] = -(p1[ix]*p2[ix] + p1[iy]*p2[iy])/p1[iz];
|
|
|
|
// normalize p2
|
|
|
|
norm = sqrt(p2[0]*p2[0] + p2[1]*p2[1] + p2[2]*p2[2]);
|
|
|
|
p2[0] = p2[0]/norm;
|
|
p2[1] = p2[1]/norm;
|
|
p2[2] = p2[2]/norm;
|
|
|
|
// Set p3 by taking the cross product p3=p2xp1
|
|
|
|
p3[0] = p1[1]*p2[2] - p1[2]*p2[1];
|
|
p3[1] = p1[2]*p2[0] - p1[0]*p2[2];
|
|
p3[2] = p1[0]*p2[1] - p1[1]*p2[0];
|
|
}
|