lammps/src/KIM/pair_kim.cpp

1122 lines
36 KiB
C++

/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing authors: Ryan S. Elliott (UMinn)
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2 of the License, or (at your option)
any later version.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along with
this program; if not, see <https://www.gnu.org/licenses>.
Linking LAMMPS statically or dynamically with other modules is making a
combined work based on LAMMPS. Thus, the terms and conditions of the GNU
General Public License cover the whole combination.
In addition, as a special exception, the copyright holders of LAMMPS give
you permission to combine LAMMPS with free software programs or libraries
that are released under the GNU LGPL and with code included in the standard
release of the "kim-api" under the CDDL (or modified versions of such code,
with unchanged license). You may copy and distribute such a system following
the terms of the GNU GPL for LAMMPS and the licenses of the other code
concerned, provided that you include the source code of that other code
when and as the GNU GPL requires distribution of source code.
Note that people who make modified versions of LAMMPS are not obligated to
grant this special exception for their modified versions; it is their choice
whether to do so. The GNU General Public License gives permission to release
a modified version without this exception; this exception also makes it
possible to release a modified version which carries forward this exception.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Designed for use with the kim-api-v2-2.0.0 (and newer) package
------------------------------------------------------------------------- */
#include <cstring>
#include <cstdlib>
// includes from LAMMPS
#include "pair_kim.h"
#include "atom.h"
#include "comm.h"
#include "force.h"
#include "neighbor.h"
#include "neigh_list.h"
#include "neigh_request.h"
#include "update.h"
#include "memory.h"
#include "domain.h"
#include "error.h"
using namespace LAMMPS_NS;
/* ---------------------------------------------------------------------- */
PairKIM::PairKIM(LAMMPS *lmp) :
Pair(lmp),
settings_call_count(0),
init_style_call_count(0),
kim_modelname(NULL),
lmps_map_species_to_unique(NULL),
lmps_unique_elements(NULL),
lmps_num_unique_elements(0),
lmps_units(METAL),
lengthUnit(KIM_LENGTH_UNIT_unused),
energyUnit(KIM_ENERGY_UNIT_unused),
chargeUnit(KIM_CHARGE_UNIT_unused),
temperatureUnit(KIM_TEMPERATURE_UNIT_unused),
timeUnit(KIM_TIME_UNIT_unused),
pkim(NULL),
pargs(NULL),
kim_model_support_for_energy(KIM_SUPPORT_STATUS_notSupported),
kim_model_support_for_forces(KIM_SUPPORT_STATUS_notSupported),
kim_model_support_for_particleEnergy(KIM_SUPPORT_STATUS_notSupported),
kim_model_support_for_particleVirial(KIM_SUPPORT_STATUS_notSupported),
lmps_local_tot_num_atoms(0),
kim_global_influence_distance(0.0),
kim_number_of_neighbor_lists(0),
kim_cutoff_values(NULL),
modelWillNotRequestNeighborsOfNoncontributingParticles(NULL),
neighborLists(NULL),
kim_particle_codes(NULL),
lmps_maxalloc(0),
kim_particleSpecies(NULL),
kim_particleContributing(NULL),
lmps_stripped_neigh_list(NULL),
lmps_stripped_neigh_ptr(NULL)
{
// Initialize Pair data members to appropriate values
single_enable = 0; // We do not provide the Single() function
restartinfo = 0; // We do not write any restart info
one_coeff = 1; // We only allow one coeff * * call
// set to 1, regardless use of fdotr, to avoid ev_set()'s futzing with
// vflag_global
no_virial_fdotr_compute = 1;
// BEGIN: initial values that determine the KIM state
// (used by kim_free(), etc.)
kim_init_ok = false;
kim_particle_codes_ok = false;
// END
return;
}
/* ---------------------------------------------------------------------- */
PairKIM::~PairKIM()
{
// clean up kim_modelname
if (kim_modelname != 0) delete [] kim_modelname;
// clean up lammps atom species number to unique particle names mapping
if (lmps_unique_elements)
for (int i = 0; i < lmps_num_unique_elements; i++)
delete [] lmps_unique_elements[i];
delete [] lmps_unique_elements;
if (kim_particle_codes_ok)
{
delete [] kim_particle_codes;
kim_particle_codes = NULL;
kim_particle_codes_ok = false;
}
// clean up local memory used to support KIM interface
memory->destroy(kim_particleSpecies);
memory->destroy(kim_particleContributing);
memory->destroy(lmps_stripped_neigh_list);
// clean up lmps_stripped_neigh_ptr
if (lmps_stripped_neigh_ptr)
{
delete [] lmps_stripped_neigh_ptr;
lmps_stripped_neigh_ptr = 0;
}
// clean up allocated memory for standard Pair class usage
// also, we allocate lmps_map_species_to_uniuqe in the allocate() function
if (allocated) {
memory->destroy(setflag);
memory->destroy(cutsq);
delete [] lmps_map_species_to_unique;
}
// clean up neighborlist pointers
if (neighborLists)
{
delete [] neighborLists;
neighborLists = 0;
}
// clean up KIM interface (if necessary)
kim_free();
return;
}
/* ---------------------------------------------------------------------- */
void PairKIM::set_contributing()
{
int const nall = atom->nlocal + atom->nghost;
for (int i = 0; i < nall; ++i)
{
kim_particleContributing[i] = ( (i < atom->nlocal) ? 1 : 0 );
}
}
/* ---------------------------------------------------------------------- */
void PairKIM::compute(int eflag , int vflag)
{
int kimerror;
ev_init(eflag,vflag);
// grow kim_particleSpecies and kim_particleContributing array if necessary
// needs to be atom->nmax in length
if (atom->nmax > lmps_maxalloc) {
memory->destroy(kim_particleSpecies);
memory->destroy(kim_particleContributing);
lmps_maxalloc = atom->nmax;
memory->create(kim_particleSpecies,lmps_maxalloc,
"pair:kim_particleSpecies");
int kimerror = KIM_ComputeArguments_SetArgumentPointerInteger(pargs,
KIM_COMPUTE_ARGUMENT_NAME_particleSpeciesCodes,
kim_particleSpecies);
memory->create(kim_particleContributing,lmps_maxalloc,
"pair:kim_particleContributing");
kimerror = kimerror || KIM_ComputeArguments_SetArgumentPointerInteger(
pargs,
KIM_COMPUTE_ARGUMENT_NAME_particleContributing,
kim_particleContributing);
if (kimerror)
error->all(
FLERR,
"Unable to set KIM particle species codes and/or contributing");
}
// kim_particleSpecies = KIM atom species for each LAMMPS atom
int *species = atom->type;
int nall = atom->nlocal + atom->nghost;
int ielement;
for (int i = 0; i < nall; i++) {
ielement = lmps_map_species_to_unique[species[i]];
kim_particleSpecies[i] = kim_particle_codes[ielement];
}
// Set kim contributing flags
set_contributing();
// pass current atom pointers to KIM
set_argument_pointers();
// set number of particles
lmps_local_tot_num_atoms = (int) nall;
// compute via KIM model
kimerror = KIM_Model_Compute(pkim, pargs);
if (kimerror) error->all(FLERR,"KIM Compute returned error");
// compute virial before reverse comm!
if (vflag_global)
{
virial_fdotr_compute();
}
// if newton is off, perform reverse comm
if (!lmps_using_newton)
{
comm->reverse_comm_pair(this);
}
if ((vflag_atom) &&
KIM_SupportStatus_NotEqual(kim_model_support_for_particleVirial,
KIM_SUPPORT_STATUS_notSupported)
)
{ // flip sign and order of virial if KIM is computing it
double tmp;
for (int i = 0; i < nall; ++i)
{
for (int j = 0; j < 3; ++j) vatom[i][j] = -1.0*vatom[i][j];
tmp = vatom[i][3];
vatom[i][3] = -vatom[i][5];
vatom[i][4] = -vatom[i][4];
vatom[i][5] = -tmp;
}
}
return;
}
/* ----------------------------------------------------------------------
allocate all arrays
------------------------------------------------------------------------- */
void PairKIM::allocate()
{
int n = atom->ntypes;
// allocate standard Pair class arrays
memory->create(setflag,n+1,n+1,"pair:setflag");
for (int i = 1; i <= n; i++)
for (int j = i; j <= n; j++)
setflag[i][j] = 0;
memory->create(cutsq,n+1,n+1,"pair:cutsq");
// allocate mapping array
lmps_map_species_to_unique = new int[n+1];
allocated = 1;
return;
}
/* ----------------------------------------------------------------------
global settings
------------------------------------------------------------------------- */
void PairKIM::settings(int narg, char **arg)
{
// This is called when "pair_style kim ..." is read from input
// may be called multiple times
++settings_call_count;
init_style_call_count = 0;
if (narg != 1)
{
if ((narg > 0) && ((0 == strcmp("KIMvirial", arg[0])) ||
(0 == strcmp("LAMMPSvirial", arg[0]))))
{
error->all(FLERR,"'KIMvirial' or 'LAMMPSvirial' not supported with "
"kim-api-v2.");
}
else
error->all(FLERR,"Illegal pair_style command");
}
// arg[0] is the KIM Model name
lmps_using_molecular = (atom->molecular > 0);
// ensure we are in a clean state for KIM (needed on repeated call)
// first time called will do nothing...
kim_free();
// make sure things are allocated
if (allocated != 1) allocate();
// clear setflag to ensure coeff() is called after settings()
int n = atom->ntypes;
for (int i = 1; i <= n; i++)
for (int j = i; j <= n; j++)
setflag[i][j] = 0;
// set lmps_* bool flags
set_lmps_flags();
// set KIM Model name
int nmlen = strlen(arg[0]);
if (kim_modelname != 0)
{
delete [] kim_modelname;
kim_modelname = 0;
}
kim_modelname = new char[nmlen+1];
strcpy(kim_modelname, arg[0]);
// initialize KIM Model
kim_init();
return;
}
/* ----------------------------------------------------------------------
set coeffs for one or more type pairs
------------------------------------------------------------------------- */
void PairKIM::coeff(int narg, char **arg)
{
// This is called when "pair_coeff ..." is read from input
// may be called multiple times
int i,j,n;
if (!allocated) allocate();
if (narg != 2 + atom->ntypes)
error->all(FLERR,"Incorrect args for pair coefficients");
// insure I,J args are * *
if (strcmp(arg[0],"*") != 0 || strcmp(arg[1],"*") != 0)
error->all(FLERR,"Incorrect args for pair coefficients");
int ilo,ihi,jlo,jhi;
force->bounds(FLERR,arg[0],atom->ntypes,ilo,ihi);
force->bounds(FLERR,arg[1],atom->ntypes,jlo,jhi);
// read args that map atom species to KIM elements
// lmps_map_species_to_unique[i] =
// which element the Ith atom type is
// lmps_num_unique_elements = # of unique elements
// lmps_unique_elements = list of element names
// if called multiple times: update lmps_unique_elements
if (lmps_unique_elements) {
for (i = 0; i < lmps_num_unique_elements; i++)
delete [] lmps_unique_elements[i];
delete [] lmps_unique_elements;
}
lmps_unique_elements = new char*[atom->ntypes];
for (i = 0; i < atom->ntypes; i++) lmps_unique_elements[i] = 0;
// Assume all species arguments are valid
// errors will be detected by below
lmps_num_unique_elements = 0;
for (i = 2; i < narg; i++) {
for (j = 0; j < lmps_num_unique_elements; j++)
if (strcmp(arg[i],lmps_unique_elements[j]) == 0) break;
lmps_map_species_to_unique[i-1] = j;
if (j == lmps_num_unique_elements) {
n = strlen(arg[i]) + 1;
lmps_unique_elements[j] = new char[n];
strcpy(lmps_unique_elements[j],arg[i]);
lmps_num_unique_elements++;
}
}
int count = 0;
for (int i = ilo; i <= ihi; i++) {
for (int j = MAX(jlo,i); j <= jhi; j++) {
if (lmps_map_species_to_unique[i] >= 0 &&
lmps_map_species_to_unique[j] >= 0) {
setflag[i][j] = 1;
count++;
}
}
}
if (count == 0) error->all(FLERR,"Incorrect args for pair coefficients");
// setup mapping between LAMMPS unique elements and KIM species codes
if (kim_particle_codes_ok)
{
delete [] kim_particle_codes;
kim_particle_codes = NULL;
kim_particle_codes_ok = false;
}
kim_particle_codes = new int[lmps_num_unique_elements];
kim_particle_codes_ok = true;
for(int i = 0; i < lmps_num_unique_elements; i++){
int kimerror;
int supported;
int code;
kimerror = KIM_Model_GetSpeciesSupportAndCode(
pkim,
KIM_SpeciesName_FromString(lmps_unique_elements[i]),
&supported,
&code);
if (supported)
kim_particle_codes[i] = code;
else
{
std::stringstream msg;
msg << "create_kim_particle_codes: symbol not found: "
<< lmps_unique_elements[i];
error->all(FLERR, msg.str().c_str());
}
}
return;
}
/* ----------------------------------------------------------------------
init specific to this pair style
------------------------------------------------------------------------- */
void PairKIM::init_style()
{
// This is called for each "run ...", "minimize ...", etc. read from input
++init_style_call_count;
if (domain->dimension != 3)
error->all(FLERR,"PairKIM only works with 3D problems");
int kimerror;
// setup lmps_stripped_neigh_list for neighbors of one atom, if needed
if (lmps_using_molecular) {
memory->destroy(lmps_stripped_neigh_list);
memory->create(lmps_stripped_neigh_list,
kim_number_of_neighbor_lists*neighbor->oneatom,
"pair:lmps_stripped_neigh_list");
delete [] lmps_stripped_neigh_ptr;
lmps_stripped_neigh_ptr = new int*[kim_number_of_neighbor_lists];
for (int i = 0; i < kim_number_of_neighbor_lists; ++i)
{
lmps_stripped_neigh_ptr[i]
= &(lmps_stripped_neigh_list[i*(neighbor->oneatom)]);
}
}
// make sure comm_reverse expects (at most) 9 values when newton is off
if (!lmps_using_newton) comm_reverse_off = 9;
// request full neighbor
for (int i = 0; i < kim_number_of_neighbor_lists; ++i)
{
int irequest = neighbor->request(this,instance_me);
neighbor->requests[irequest]->id = i;
neighbor->requests[irequest]->half = 0;
neighbor->requests[irequest]->full = 1;
if (modelWillNotRequestNeighborsOfNoncontributingParticles[i])
{
neighbor->requests[irequest]->ghost = 0;
}
else
{
neighbor->requests[irequest]->ghost = 1;
}
// always want all owned/ghost pairs
neighbor->requests[irequest]->newton = 2;
// set cutoff
neighbor->requests[irequest]->cut = 1;
neighbor->requests[irequest]->cutoff
= kim_cutoff_values[i] + neighbor->skin;
}
return;
}
/* ----------------------------------------------------------------------
neighbor callback to inform pair style of neighbor list to use
half or full
------------------------------------------------------------------------- */
void PairKIM::init_list(int id, NeighList *ptr)
{
neighborLists[id] = ptr;
}
/* ----------------------------------------------------------------------
init for one type pair i,j and corresponding j,i
------------------------------------------------------------------------- */
double PairKIM::init_one(int i, int j)
{
// This is called once of each (unordered) i,j pair for each
// "run ...", "minimize ...", etc. read from input
if (setflag[i][j] == 0) error->all(FLERR,"All pair coeffs are not set");
return kim_global_influence_distance;
}
/* ---------------------------------------------------------------------- */
int PairKIM::pack_reverse_comm(int n, int first, double *buf)
{
int i,m,last;
double *fp;
fp = &(atom->f[0][0]);
m = 0;
last = first + n;
if (KIM_SupportStatus_NotEqual(kim_model_support_for_forces,
KIM_SUPPORT_STATUS_notSupported)
&&
((vflag_atom == 0) ||
KIM_SupportStatus_Equal(kim_model_support_for_particleVirial,
KIM_SUPPORT_STATUS_notSupported)))
{
for (i = first; i < last; i++)
{
buf[m++] = fp[3*i+0];
buf[m++] = fp[3*i+1];
buf[m++] = fp[3*i+2];
}
return m;
}
else if (KIM_SupportStatus_NotEqual(kim_model_support_for_forces,
KIM_SUPPORT_STATUS_notSupported) &&
(vflag_atom == 1) &&
KIM_SupportStatus_NotEqual(kim_model_support_for_particleVirial,
KIM_SUPPORT_STATUS_notSupported))
{
double *va=&(vatom[0][0]);
for (i = first; i < last; i++)
{
buf[m++] = fp[3*i+0];
buf[m++] = fp[3*i+1];
buf[m++] = fp[3*i+2];
buf[m++] = va[6*i+0];
buf[m++] = va[6*i+1];
buf[m++] = va[6*i+2];
buf[m++] = va[6*i+3];
buf[m++] = va[6*i+4];
buf[m++] = va[6*i+5];
}
return m;
}
else if (KIM_SupportStatus_Equal(kim_model_support_for_forces,
KIM_SUPPORT_STATUS_notSupported)
&&
(vflag_atom == 1) &&
KIM_SupportStatus_NotEqual(kim_model_support_for_particleVirial,
KIM_SUPPORT_STATUS_notSupported))
{
double *va=&(vatom[0][0]);
for (i = first; i < last; i++)
{
buf[m++] = va[6*i+0];
buf[m++] = va[6*i+1];
buf[m++] = va[6*i+2];
buf[m++] = va[6*i+3];
buf[m++] = va[6*i+4];
buf[m++] = va[6*i+5];
}
return m;
}
else
return 0;
}
/* ---------------------------------------------------------------------- */
void PairKIM::unpack_reverse_comm(int n, int *list, double *buf)
{
int i,j,m;
double *fp;
fp = &(atom->f[0][0]);
m = 0;
if (KIM_SupportStatus_NotEqual(kim_model_support_for_forces,
KIM_SUPPORT_STATUS_notSupported)
&&
((vflag_atom == 0) ||
KIM_SupportStatus_Equal(kim_model_support_for_particleVirial,
KIM_SUPPORT_STATUS_notSupported)))
{
for (i = 0; i < n; i++)
{
j = list[i];
fp[3*j+0]+= buf[m++];
fp[3*j+1]+= buf[m++];
fp[3*j+2]+= buf[m++];
}
}
else if (KIM_SupportStatus_NotEqual(kim_model_support_for_forces,
KIM_SUPPORT_STATUS_notSupported)
&&
(vflag_atom == 1) &&
KIM_SupportStatus_NotEqual(kim_model_support_for_particleVirial,
KIM_SUPPORT_STATUS_notSupported))
{
double *va=&(vatom[0][0]);
for (i = 0; i < n; i++)
{
j = list[i];
fp[3*j+0]+= buf[m++];
fp[3*j+1]+= buf[m++];
fp[3*j+2]+= buf[m++];
va[j*6+0]+=buf[m++];
va[j*6+1]+=buf[m++];
va[j*6+2]+=buf[m++];
va[j*6+3]+=buf[m++];
va[j*6+4]+=buf[m++];
va[j*6+5]+=buf[m++];
}
}
else if (KIM_SupportStatus_Equal(kim_model_support_for_forces,
KIM_SUPPORT_STATUS_notSupported)
&&
(vflag_atom == 1) &&
KIM_SupportStatus_NotEqual(kim_model_support_for_particleVirial,
KIM_SUPPORT_STATUS_notSupported))
{
double *va=&(vatom[0][0]);
for (i = 0; i < n; i++)
{
j = list[i];
va[j*6+0]+=buf[m++];
va[j*6+1]+=buf[m++];
va[j*6+2]+=buf[m++];
va[j*6+3]+=buf[m++];
va[j*6+4]+=buf[m++];
va[j*6+5]+=buf[m++];
}
}
else
;// do nothing
return;
}
/* ----------------------------------------------------------------------
memory usage of local atom-based arrays
------------------------------------------------------------------------- */
double PairKIM::memory_usage()
{
double bytes = 2 * lmps_maxalloc * sizeof(int);
return bytes;
}
/* ----------------------------------------------------------------------
KIM-specific interface
------------------------------------------------------------------------- */
int PairKIM::get_neigh(void const * const dataObject,
int const numberOfNeighborLists,
double const * const cutoffs,
int const neighborListIndex, int const particleNumber,
int * const numberOfNeighbors,
int const ** const neighborsOfParticle)
{
PairKIM const * const Model
= reinterpret_cast<PairKIM const * const>(dataObject);
if (numberOfNeighborLists != Model->kim_number_of_neighbor_lists)
return true;
for (int i = 0; i < numberOfNeighborLists; ++i)
{
if (Model->kim_cutoff_values[i] < cutoffs[i]) return true;
}
// neighborListIndex and particleNumber are validated by KIM API
// initialize numNeigh
*numberOfNeighbors = 0;
NeighList * neiobj = Model->neighborLists[neighborListIndex];
int nAtoms = Model->lmps_local_tot_num_atoms;
int j, jj, inum, *ilist, *numneigh, **firstneigh;
inum = neiobj->inum; //# of I atoms neighbors are stored for
ilist = neiobj->ilist; //local indices of I atoms
numneigh = neiobj->numneigh; // # of J neighbors for each I atom
firstneigh = neiobj->firstneigh; // ptr to 1st J int value of each I atom
*numberOfNeighbors = numneigh[particleNumber];
// strip off neighbor mask for molecular systems
if (!Model->lmps_using_molecular)
*neighborsOfParticle = firstneigh[particleNumber];
else
{
int n = *numberOfNeighbors;
int *ptr = firstneigh[particleNumber];
int *lmps_stripped_neigh_list
= Model->lmps_stripped_neigh_ptr[neighborListIndex];
for (int i = 0; i < n; i++)
lmps_stripped_neigh_list[i] = *(ptr++) & NEIGHMASK;
*neighborsOfParticle = lmps_stripped_neigh_list;
}
return false;
}
/* ---------------------------------------------------------------------- */
void PairKIM::kim_free()
{
int kimerror;
if (kim_init_ok)
{
int kimerror = KIM_Model_ComputeArgumentsDestroy(pkim, &pargs);
if (kimerror)
error->all(FLERR,"Unable to destroy Compute Arguments Object");
KIM_Model_Destroy(&pkim);
}
kim_init_ok = false;
return;
}
/* ---------------------------------------------------------------------- */
void PairKIM::kim_init()
{
int kimerror;
// initialize KIM model
int requestedUnitsAccepted;
kimerror = KIM_Model_Create(
KIM_NUMBERING_zeroBased,
lengthUnit, energyUnit, chargeUnit, temperatureUnit, timeUnit,
kim_modelname,
&requestedUnitsAccepted,
&pkim);
if (kimerror)
error->all(FLERR,"KIM ModelCreate failed");
else {
if (!requestedUnitsAccepted) {
error->all(FLERR,"KIM Model did not accept the requested unit system");
}
// check that the model does not require unknown capabilities
kimerror = check_for_routine_compatibility();
if (kimerror)
{
error->all(FLERR,
"KIM Model requires unknown Routines. Unable to proceed.");
}
kimerror = KIM_Model_ComputeArgumentsCreate(pkim, &pargs);
if (kimerror)
{
KIM_Model_Destroy(&pkim);
error->all(FLERR,"KIM ComputeArgumentsCreate failed");
}
else
{
kim_init_ok = true;
}
}
// determine KIM Model capabilities (used in this function below)
set_kim_model_has_flags();
KIM_Model_GetInfluenceDistance(pkim, &kim_global_influence_distance);
KIM_Model_GetNeighborListPointers(
pkim,
&kim_number_of_neighbor_lists,
&kim_cutoff_values,
&modelWillNotRequestNeighborsOfNoncontributingParticles);
if (neighborLists)
{
delete [] neighborLists;
neighborLists = 0;
}
neighborLists = new NeighList*[kim_number_of_neighbor_lists];
kimerror = KIM_ComputeArguments_SetArgumentPointerInteger(pargs,
KIM_COMPUTE_ARGUMENT_NAME_numberOfParticles,
&lmps_local_tot_num_atoms);
if (KIM_SupportStatus_NotEqual(kim_model_support_for_energy,
KIM_SUPPORT_STATUS_notSupported))
kimerror = kimerror || KIM_ComputeArguments_SetArgumentPointerDouble(pargs,
KIM_COMPUTE_ARGUMENT_NAME_partialEnergy,
&(eng_vdwl));
kimerror = KIM_ComputeArguments_SetCallbackPointer(pargs,
KIM_COMPUTE_CALLBACK_NAME_GetNeighborList,
KIM_LANGUAGE_NAME_cpp,
reinterpret_cast<KIM_Function *>(get_neigh),
reinterpret_cast<void *>(this));
if (kimerror)
error->all(FLERR,"Unable to register KIM pointers");
return;
}
/* ---------------------------------------------------------------------- */
void PairKIM::set_argument_pointers()
{
int kimerror;
kimerror = KIM_ComputeArguments_SetArgumentPointerDouble(
pargs, KIM_COMPUTE_ARGUMENT_NAME_coordinates, &(atom->x[0][0]));
// Set KIM pointer appropriately for particalEnergy
if (KIM_SupportStatus_Equal(kim_model_support_for_particleEnergy,
KIM_SUPPORT_STATUS_required)
&& (eflag_atom != 1))
{
// reallocate per-atom energy array if necessary
if (atom->nmax > maxeatom)
{
maxeatom = atom->nmax;
memory->destroy(eatom);
memory->create(eatom,comm->nthreads*maxeatom,"pair:eatom");
}
}
if (KIM_SupportStatus_Equal(kim_model_support_for_particleEnergy,
KIM_SUPPORT_STATUS_optional)
&& (eflag_atom != 1))
{
kimerror = kimerror || KIM_ComputeArguments_SetArgumentPointerDouble(
pargs,
KIM_COMPUTE_ARGUMENT_NAME_partialParticleEnergy,
reinterpret_cast<double * const>(NULL));
}
else if (KIM_SupportStatus_NotEqual(kim_model_support_for_particleEnergy,
KIM_SUPPORT_STATUS_notSupported))
{
kimerror = kimerror || KIM_ComputeArguments_SetArgumentPointerDouble(
pargs, KIM_COMPUTE_ARGUMENT_NAME_partialParticleEnergy, eatom);
}
// Set KIM pointer appropriately for forces
if (KIM_SupportStatus_Equal(kim_model_support_for_forces,
KIM_SUPPORT_STATUS_notSupported))
{
kimerror = kimerror || KIM_ComputeArguments_SetArgumentPointerDouble(
pargs,
KIM_COMPUTE_ARGUMENT_NAME_partialForces,
reinterpret_cast<double * const>(NULL));
}
else
{
kimerror = kimerror || KIM_ComputeArguments_SetArgumentPointerDouble(
pargs, KIM_COMPUTE_ARGUMENT_NAME_partialForces, &(atom->f[0][0]));
}
// Set KIM pointer appropriately for particleVirial
if (KIM_SupportStatus_Equal(kim_model_support_for_particleVirial,
KIM_SUPPORT_STATUS_required)
&& (vflag_atom != 1))
{
// reallocate per-atom virial array if necessary
if (atom->nmax > maxeatom)
{
maxvatom = atom->nmax;
memory->destroy(vatom);
memory->create(vatom,comm->nthreads*maxvatom,6,"pair:vatom");
}
}
if (KIM_SupportStatus_Equal(kim_model_support_for_particleVirial,
KIM_SUPPORT_STATUS_optional)
&& (vflag_atom != 1))
{
kimerror = kimerror || KIM_ComputeArguments_SetArgumentPointerDouble(
pargs,
KIM_COMPUTE_ARGUMENT_NAME_partialParticleVirial,
reinterpret_cast<double * const>(NULL));
}
else if (KIM_SupportStatus_NotEqual(kim_model_support_for_particleVirial,
KIM_SUPPORT_STATUS_notSupported))
{
kimerror = kimerror || KIM_ComputeArguments_SetArgumentPointerDouble(
pargs, KIM_COMPUTE_ARGUMENT_NAME_partialParticleEnergy, &(vatom[0][0]));
}
if (kimerror)
{
error->all(FLERR,"Unable to set KIM argument pointers");
}
return;
}
/* ---------------------------------------------------------------------- */
void PairKIM::set_lmps_flags()
{
// determint if newton is on or off
lmps_using_newton = (force->newton_pair == 1);
// determine if running with pair hybrid
if (force->pair_match("hybrid",0))
{
error->all(FLERR,"pair_kim does not support hybrid");
}
// determine unit system and set lmps_units flag
if ((strcmp(update->unit_style,"real")==0)) {
lmps_units = REAL;
lengthUnit = KIM_LENGTH_UNIT_A;
energyUnit = KIM_ENERGY_UNIT_kcal_mol;
chargeUnit = KIM_CHARGE_UNIT_e;
temperatureUnit = KIM_TEMPERATURE_UNIT_K;
timeUnit = KIM_TIME_UNIT_fs;
} else if ((strcmp(update->unit_style,"metal")==0)) {
lmps_units = METAL;
lengthUnit = KIM_LENGTH_UNIT_A;
energyUnit = KIM_ENERGY_UNIT_eV;
chargeUnit = KIM_CHARGE_UNIT_e;
temperatureUnit = KIM_TEMPERATURE_UNIT_K;
timeUnit = KIM_TIME_UNIT_ps;
} else if ((strcmp(update->unit_style,"si")==0)) {
lmps_units = SI;
lengthUnit = KIM_LENGTH_UNIT_m;
energyUnit = KIM_ENERGY_UNIT_J;
chargeUnit = KIM_CHARGE_UNIT_C;
temperatureUnit = KIM_TEMPERATURE_UNIT_K;
timeUnit = KIM_TIME_UNIT_s;
} else if ((strcmp(update->unit_style,"cgs")==0)) {
lmps_units = CGS;
lengthUnit = KIM_LENGTH_UNIT_cm;
energyUnit = KIM_ENERGY_UNIT_erg;
chargeUnit = KIM_CHARGE_UNIT_statC;
temperatureUnit = KIM_TEMPERATURE_UNIT_K;
timeUnit = KIM_TIME_UNIT_s;
} else if ((strcmp(update->unit_style,"electron")==0)) {
lmps_units = ELECTRON;
lengthUnit = KIM_LENGTH_UNIT_Bohr;
energyUnit = KIM_ENERGY_UNIT_Hartree;
chargeUnit = KIM_CHARGE_UNIT_e;
temperatureUnit = KIM_TEMPERATURE_UNIT_K;
timeUnit = KIM_TIME_UNIT_fs;
} else if ((strcmp(update->unit_style,"lj")==0)) {
error->all(FLERR,"LAMMPS unit_style lj not supported by KIM models");
} else {
error->all(FLERR,"Unknown unit_style");
}
return;
}
/* ---------------------------------------------------------------------- */
int PairKIM::check_for_routine_compatibility()
{
/* Check that we know about all required routines */
int numberOfModelRoutineNames;
KIM_MODEL_ROUTINE_NAME_GetNumberOfModelRoutineNames(
&numberOfModelRoutineNames);
for (int i = 0; i < numberOfModelRoutineNames; ++i)
{
KIM_ModelRoutineName modelRoutineName;
KIM_MODEL_ROUTINE_NAME_GetModelRoutineName(i, &modelRoutineName);
int present;
int required;
int error = KIM_Model_IsRoutinePresent(
pkim, modelRoutineName, &present, &required);
if (error) { return true; }
if ((present == true) && (required == true))
{
if (!(KIM_ModelRoutineName_Equal(modelRoutineName,
KIM_MODEL_ROUTINE_NAME_Create)
|| KIM_ModelRoutineName_Equal(
modelRoutineName,
KIM_MODEL_ROUTINE_NAME_ComputeArgumentsCreate)
|| KIM_ModelRoutineName_Equal(modelRoutineName,
KIM_MODEL_ROUTINE_NAME_Compute)
|| KIM_ModelRoutineName_Equal(modelRoutineName,
KIM_MODEL_ROUTINE_NAME_Refresh)
|| KIM_ModelRoutineName_Equal(
modelRoutineName,
KIM_MODEL_ROUTINE_NAME_ComputeArgumentsDestroy)
|| KIM_ModelRoutineName_Equal(modelRoutineName,
KIM_MODEL_ROUTINE_NAME_Destroy)))
{ return true; }
}
}
/* everything is good */
return false;
}
/* ---------------------------------------------------------------------- */
void PairKIM::set_kim_model_has_flags()
{
int numberOfComputeArgumentNames;
KIM_COMPUTE_ARGUMENT_NAME_GetNumberOfComputeArgumentNames(
&numberOfComputeArgumentNames);
for (int i = 0; i < numberOfComputeArgumentNames; ++i)
{
KIM_ComputeArgumentName computeArgumentName;
int kimerror = KIM_COMPUTE_ARGUMENT_NAME_GetComputeArgumentName(
i, &computeArgumentName);
KIM_SupportStatus supportStatus;
kimerror = KIM_ComputeArguments_GetArgumentSupportStatus(
pargs, computeArgumentName, &supportStatus);
if (KIM_ComputeArgumentName_Equal(computeArgumentName,
KIM_COMPUTE_ARGUMENT_NAME_partialEnergy)
)
kim_model_support_for_energy = supportStatus;
else if (KIM_ComputeArgumentName_Equal(
computeArgumentName, KIM_COMPUTE_ARGUMENT_NAME_partialForces)
)
kim_model_support_for_forces = supportStatus;
else if
(KIM_ComputeArgumentName_Equal(
computeArgumentName,
KIM_COMPUTE_ARGUMENT_NAME_partialParticleEnergy)\
)
kim_model_support_for_particleEnergy = supportStatus;
else if
(KIM_ComputeArgumentName_Equal(
computeArgumentName,
KIM_COMPUTE_ARGUMENT_NAME_partialParticleVirial)
)
kim_model_support_for_particleVirial = supportStatus;
else if (KIM_SupportStatus_Equal(supportStatus, KIM_SUPPORT_STATUS_required)
)
{
std::stringstream msg;
msg << "KIM Model requires unsupported compute argument: "
<< KIM_ComputeArgumentName_ToString(computeArgumentName);
error->all(FLERR, msg.str().c_str());
}
}
if (KIM_SupportStatus_Equal(kim_model_support_for_energy,
KIM_SUPPORT_STATUS_notSupported))
error->warning(FLERR,"KIM Model does not provide `partialEnergy'; "
"Potential energy will be zero");
if (KIM_SupportStatus_Equal(kim_model_support_for_forces,
KIM_SUPPORT_STATUS_notSupported))
error->warning(FLERR,"KIM Model does not provide `partialForce'; "
"Forces will be zero");
if (KIM_SupportStatus_Equal(kim_model_support_for_particleEnergy,
KIM_SUPPORT_STATUS_notSupported))
error->warning(FLERR,"KIM Model does not provide `partialParticleEnergy'; "
"energy per atom will be zero");
if (KIM_SupportStatus_Equal(kim_model_support_for_particleVirial,
KIM_SUPPORT_STATUS_notSupported))
error->warning(FLERR,"KIM Model does not provide `partialParticleVirial'; "
"virial per atom will be zero");
int numberOfComputeCallbackNames;
KIM_COMPUTE_CALLBACK_NAME_GetNumberOfComputeCallbackNames(
&numberOfComputeCallbackNames);
for (int i = 0; i < numberOfComputeCallbackNames; ++i)
{
KIM_ComputeCallbackName computeCallbackName;
int kimerror = KIM_COMPUTE_CALLBACK_NAME_GetComputeCallbackName(
i, &computeCallbackName);
KIM_SupportStatus supportStatus;
kimerror = KIM_ComputeArguments_GetCallbackSupportStatus(
pargs, computeCallbackName, &supportStatus);
if (KIM_SupportStatus_Equal(supportStatus, KIM_SUPPORT_STATUS_required))
{
error->all(FLERR,"KIM Model requires unsupported compute callback");
}
}
return;
}