mirror of https://github.com/lammps/lammps.git
db1cdb53f5 | ||
---|---|---|
.. | ||
README | ||
in.eam | ||
in.eam.titan | ||
in.lj | ||
in.lj.titan | ||
in.rhodo | ||
in.rhodo.scaled.titan | ||
in.rhodo.split.titan |
README
These are input scripts used to run versions of several of the benchmarks in the top-level bench directory using the GPU and USER-CUDA accelerator packages. The results of running these scripts on two different machines (a desktop with 2 Tesla GPUs and the ORNL Titan supercomputer) are shown on the "GPU (Fermi)" section of the Benchmark page of the LAMMPS WWW site: lammps.sandia.gov/bench. Examples are shown below of how to run these scripts. This assumes you have built 3 executables with both the GPU and USER-CUDA packages installed, e.g. lmp_linux_single lmp_linux_mixed lmp_linux_double The precision (single, mixed, double) refers to the GPU and USER-CUDA pacakge precision. See the README files in the lib/gpu and lib/cuda directories for instructions on how to build the packages with different precisions. The GPU and USER-CUDA sub-sections of the doc/Section_accelerate.html file also describes this process. Make.py -d ~/lammps -j 16 -p #all orig -m linux -o cpu -a exe Make.py -d ~/lammps -j 16 -p #all opt orig -m linux -o opt -a exe Make.py -d ~/lammps -j 16 -p #all omp orig -m linux -o omp -a exe Make.py -d ~/lammps -j 16 -p #all gpu orig -m linux \ -gpu mode=double arch=20 -o gpu_double -a libs exe Make.py -d ~/lammps -j 16 -p #all gpu orig -m linux \ -gpu mode=mixed arch=20 -o gpu_mixed -a libs exe Make.py -d ~/lammps -j 16 -p #all gpu orig -m linux \ -gpu mode=single arch=20 -o gpu_single -a libs exe Make.py -d ~/lammps -j 16 -p #all cuda orig -m linux \ -cuda mode=double arch=20 -o cuda_double -a libs exe Make.py -d ~/lammps -j 16 -p #all cuda orig -m linux \ -cuda mode=mixed arch=20 -o cuda_mixed -a libs exe Make.py -d ~/lammps -j 16 -p #all cuda orig -m linux \ -cuda mode=single arch=20 -o cuda_single -a libs exe Make.py -d ~/lammps -j 16 -p #all intel orig -m linux -o intel_cpu -a exe Make.py -d ~/lammps -j 16 -p #all kokkos orig -m linux -o kokkos_omp -a exe Make.py -d ~/lammps -j 16 -p #all kokkos orig -kokkos cuda arch=20 \ -m cuda -o kokkos_cuda -a exe Make.py -d ~/lammps -j 16 -p #all opt omp gpu cuda intel kokkos orig \ -gpu mode=double arch=20 -cuda mode=double arch=20 -m linux \ -o all -a libs exe Make.py -d ~/lammps -j 16 -p #all opt omp gpu cuda intel kokkos orig \ -kokkos cuda arch=20 -gpu mode=double arch=20 \ -cuda mode=double arch=20 -m cuda -o all_cuda -a libs exe ------------------------------------------------------------------------ To run on just CPUs (without using the GPU or USER-CUDA styles), do something like the following: mpirun -np 1 lmp_linux_double -v x 8 -v y 8 -v z 8 -v t 100 < in.lj mpirun -np 12 lmp_linux_double -v x 16 -v y 16 -v z 16 -v t 100 < in.eam The "xyz" settings determine the problem size. The "t" setting determines the number of timesteps. These mpirun commands run on a single node. To run on multiple nodes, scale up the "-np" setting. ------------------------------------------------------------------------ To run with the GPU package, do something like the following: mpirun -np 12 lmp_linux_single -sf gpu -v x 32 -v y 32 -v z 64 -v t 100 < in.lj mpirun -np 8 lmp_linux_mixed -sf gpu -pk gpu 2 -v x 32 -v y 32 -v z 64 -v t 100 < in.eam The "xyz" settings determine the problem size. The "t" setting determines the number of timesteps. The "np" setting determines how many MPI tasks (per node) the problem will run on. The numeric argument to the "-pk" setting is the number of GPUs (per node); 1 GPU is the default. Note that you can use more MPI tasks than GPUs (per node) with the GPU package. These mpirun commands run on a single node. To run on multiple nodes, scale up the "-np" setting, and control the number of MPI tasks per node via a "-ppn" setting. ------------------------------------------------------------------------ To run with the USER-CUDA package, do something like the following: mpirun -np 1 lmp_linux_single -c on -sf cuda -v x 16 -v y 16 -v z 16 -v t 100 < in.lj mpirun -np 2 lmp_linux_double -c on -sf cuda -pk cuda 2 -v x 32 -v y 64 -v z 64 -v t 100 < in.eam The "xyz" settings determine the problem size. The "t" setting determines the number of timesteps. The "np" setting determines how many MPI tasks (per node) the problem will run on. The numeric argument to the "-pk" setting is the number of GPUs (per node); 1 GPU is the default. Note that the number of MPI tasks must equal the number of GPUs (both per node) with the USER-CUDA package. These mpirun commands run on a single node. To run on multiple nodes, scale up the "-np" setting, and control the number of MPI tasks per node via a "-ppn" setting. ------------------------------------------------------------------------ If the script has "titan" in its name, it was run on the Titan supercomputer at ORNL.