lammps/bench/FERMI
sjplimp db1cdb53f5 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@12917 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2015-01-09 16:16:10 +00:00
..
README git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@12917 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2015-01-09 16:16:10 +00:00
in.eam git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@12487 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2014-09-11 16:05:10 +00:00
in.eam.titan git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@12391 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2014-09-04 14:28:10 +00:00
in.lj git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@12487 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2014-09-11 16:05:10 +00:00
in.lj.titan git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@12391 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2014-09-04 14:28:10 +00:00
in.rhodo git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@12487 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2014-09-11 16:05:10 +00:00
in.rhodo.scaled.titan git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@12391 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2014-09-04 14:28:10 +00:00
in.rhodo.split.titan git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@12391 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2014-09-04 14:28:10 +00:00

README

These are input scripts used to run versions of several of the
benchmarks in the top-level bench directory using the GPU and
USER-CUDA accelerator packages.  The results of running these scripts
on two different machines (a desktop with 2 Tesla GPUs and the ORNL
Titan supercomputer) are shown on the "GPU (Fermi)" section of the
Benchmark page of the LAMMPS WWW site: lammps.sandia.gov/bench.

Examples are shown below of how to run these scripts.  This assumes
you have built 3 executables with both the GPU and USER-CUDA packages
installed, e.g.

lmp_linux_single
lmp_linux_mixed
lmp_linux_double

The precision (single, mixed, double) refers to the GPU and USER-CUDA
pacakge precision.  See the README files in the lib/gpu and lib/cuda
directories for instructions on how to build the packages with
different precisions.  The GPU and USER-CUDA sub-sections of the
doc/Section_accelerate.html file also describes this process.

Make.py -d ~/lammps -j 16 -p #all orig -m linux -o cpu -a exe
Make.py -d ~/lammps -j 16 -p #all opt orig -m linux -o opt -a exe
Make.py -d ~/lammps -j 16 -p #all omp orig -m linux -o omp -a exe
Make.py -d ~/lammps -j 16 -p #all gpu orig -m linux \
        -gpu mode=double arch=20 -o gpu_double -a libs exe
Make.py -d ~/lammps -j 16 -p #all gpu orig -m linux \
        -gpu mode=mixed arch=20 -o gpu_mixed -a libs exe
Make.py -d ~/lammps -j 16 -p #all gpu orig -m linux \
        -gpu mode=single arch=20 -o gpu_single -a libs exe
Make.py -d ~/lammps -j 16 -p #all cuda orig -m linux \
        -cuda mode=double arch=20 -o cuda_double -a libs exe
Make.py -d ~/lammps -j 16 -p #all cuda orig -m linux \
        -cuda mode=mixed arch=20 -o cuda_mixed -a libs exe
Make.py -d ~/lammps -j 16 -p #all cuda orig -m linux \
        -cuda mode=single arch=20 -o cuda_single -a libs exe
Make.py -d ~/lammps -j 16 -p #all intel orig -m linux -o intel_cpu -a exe
Make.py -d ~/lammps -j 16 -p #all kokkos orig -m linux -o kokkos_omp -a exe
Make.py -d ~/lammps -j 16 -p #all kokkos orig -kokkos cuda arch=20 \
        -m cuda -o kokkos_cuda -a exe

Make.py -d ~/lammps -j 16 -p #all opt omp gpu cuda intel kokkos orig \
        -gpu mode=double arch=20 -cuda mode=double arch=20 -m linux \
        -o all -a libs exe

Make.py -d ~/lammps -j 16 -p #all opt omp gpu cuda intel kokkos orig \
        -kokkos cuda arch=20 -gpu mode=double arch=20 \
        -cuda mode=double arch=20 -m cuda -o all_cuda -a libs exe

------------------------------------------------------------------------

To run on just CPUs (without using the GPU or USER-CUDA styles),
do something like the following:

mpirun -np 1 lmp_linux_double -v x 8 -v y 8 -v z 8 -v t 100 < in.lj
mpirun -np 12 lmp_linux_double -v x 16 -v y 16 -v z 16 -v t 100 < in.eam

The "xyz" settings determine the problem size.  The "t" setting
determines the number of timesteps.

These mpirun commands run on a single node.  To run on multiple
nodes, scale up the "-np" setting.

------------------------------------------------------------------------

To run with the GPU package, do something like the following:

mpirun -np 12 lmp_linux_single -sf gpu -v x 32 -v y 32 -v z 64 -v t 100 < in.lj
mpirun -np 8 lmp_linux_mixed -sf gpu -pk gpu 2 -v x 32 -v y 32 -v z 64 -v t 100 < in.eam

The "xyz" settings determine the problem size.  The "t" setting
determines the number of timesteps.  The "np" setting determines how
many MPI tasks (per node) the problem will run on.  The numeric
argument to the "-pk" setting is the number of GPUs (per node); 1 GPU
is the default.  Note that you can use more MPI tasks than GPUs (per
node) with the GPU package.

These mpirun commands run on a single node.  To run on multiple nodes,
scale up the "-np" setting, and control the number of MPI tasks per
node via a "-ppn" setting.

------------------------------------------------------------------------

To run with the USER-CUDA package, do something like the following:

mpirun -np 1 lmp_linux_single -c on -sf cuda -v x 16 -v y 16 -v z 16 -v t 100 < in.lj
mpirun -np 2 lmp_linux_double -c on -sf cuda -pk cuda 2 -v x 32 -v y 64 -v z 64 -v t 100 < in.eam

The "xyz" settings determine the problem size.  The "t" setting
determines the number of timesteps.  The "np" setting determines how
many MPI tasks (per node) the problem will run on.  The numeric
argument to the "-pk" setting is the number of GPUs (per node); 1 GPU
is the default.  Note that the number of MPI tasks must equal the
number of GPUs (both per node) with the USER-CUDA package.

These mpirun commands run on a single node.  To run on multiple nodes,
scale up the "-np" setting, and control the number of MPI tasks per
node via a "-ppn" setting.

------------------------------------------------------------------------

If the script has "titan" in its name, it was run on the Titan
supercomputer at ORNL.