lammps/lib/cuda/domain_kernel.cu

270 lines
6.4 KiB
Plaintext

/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
Original Version:
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
See the README file in the top-level LAMMPS directory.
-----------------------------------------------------------------------
USER-CUDA Package and associated modifications:
https://sourceforge.net/projects/lammpscuda/
Christian Trott, christian.trott@tu-ilmenau.de
Lars Winterfeld, lars.winterfeld@tu-ilmenau.de
Theoretical Physics II, University of Technology Ilmenau, Germany
See the README file in the USER-CUDA directory.
This software is distributed under the GNU General Public License.
------------------------------------------------------------------------- */
extern __shared__ X_FLOAT sharedmem[];
#define BIG 1e10
__global__ void Domain_PBC_Kernel(int deform_remap,int deform_groupbit,int box_change)
{
int idim,otherdims;
int i=(blockIdx.x*gridDim.y+blockIdx.y)*blockDim.x+threadIdx.x;
X_FLOAT lo[3];
X_FLOAT hi[3];
X_FLOAT* period;
if (_triclinic == 0) {
lo[0] = _boxlo[0];
lo[1] = _boxlo[1];
lo[2] = _boxlo[2];
hi[0] = _boxhi[0];
hi[1] = _boxhi[1];
hi[2] = _boxhi[2];
period = _prd;
} else {
lo[0] = _boxlo_lamda[0];
lo[1] = _boxlo_lamda[1];
lo[2] = _boxlo_lamda[2];
hi[0] = _boxhi_lamda[0];
hi[1] = _boxhi_lamda[1];
hi[2] = _boxhi_lamda[2];
period = _prd_lamda;
}
X_FLOAT tmpx=X_F(0.5)*(hi[0]+lo[0]);
X_FLOAT tmpy=X_F(0.5)*(hi[1]+lo[1]);
X_FLOAT tmpz=X_F(0.5)*(hi[2]+lo[2]);
X_FLOAT* buf=(X_FLOAT*) _buffer;
buf+=blockIdx.x*gridDim.y+blockIdx.y;
buf[0]=tmpx;
buf+=gridDim.x*gridDim.y;
buf[0]=tmpx;
buf+=gridDim.x*gridDim.y;
buf[0]=tmpy;
buf+=gridDim.x*gridDim.y;
buf[0]=tmpy;
buf+=gridDim.x*gridDim.y;
buf[0]=tmpz;
buf+=gridDim.x*gridDim.y;
buf[0]=tmpz;
if(i<_nlocal)
{
if (_periodicity[0]) {
if (_x[i] < lo[0]) {
_x[i] += period[0];
if (deform_remap && _mask[i] & deform_groupbit) _v[i] += _h_rate[0];
idim = _image[i] & 1023;
otherdims = _image[i] ^ idim;
idim--;
idim &= 1023;
_image[i] = otherdims | idim;
}
if (_x[i] >= hi[0]) {
_x[i] -= period[0];
_x[i] = MAX(_x[i],lo[0]);
if (deform_remap && _mask[i] & deform_groupbit) _v[i] -= _h_rate[0];
idim = _image[i] & 1023;
otherdims = _image[i] ^ idim;
idim++;
idim &= 1023;
_image[i] = otherdims | idim;
}
}
if (_periodicity[1]) {
if (_x[i+_nmax] < lo[1]) {
_x[i+_nmax] += period[1];
if (deform_remap && _mask[i] & deform_groupbit) {
_v[i] += _h_rate[5];
_v[i+_nmax] += _h_rate[1];
}
idim = (_image[i] >> 10) & 1023;
otherdims = _image[i] ^ (idim << 10);
idim--;
idim &= 1023;
_image[i] = otherdims | (idim << 10);
}
if (_x[i+_nmax] >= hi[1]) {
_x[i+_nmax] -= period[1];
_x[i+_nmax] = MAX(_x[i+_nmax],lo[1]);
if (deform_remap && _mask[i] & deform_groupbit) {
_v[i] -= _h_rate[5];
_v[i+_nmax] -= _h_rate[1];
}
idim = (_image[i] >> 10) & 1023;
otherdims = _image[i] ^ (idim << 10);
idim++;
idim &= 1023;
_image[i] = otherdims | (idim << 10);
}
}
if (_periodicity[2]) {
if (_x[i+2*_nmax] < lo[2]) {
_x[i+2*_nmax] += period[2];
if (deform_remap && _mask[i] & deform_groupbit) {
_v[i] += _h_rate[4];
_v[i+_nmax] += _h_rate[3];
_v[i+2*_nmax] += _h_rate[2];
}
idim = _image[i] >> 20;
otherdims = _image[i] ^ (idim << 20);
idim--;
idim &= 1023;
_image[i] = otherdims | (idim << 20);
}
if (_x[i+2*_nmax] >= hi[2]) {
_x[i+2*_nmax] -= period[2];
_x[i+2*_nmax] = MAX(_x[i+2*_nmax],lo[2]);
if (deform_remap && _mask[i] & deform_groupbit) {
_v[i] -= _h_rate[4];
_v[i+_nmax] -= _h_rate[3];
_v[i+2*_nmax] -= _h_rate[2];
}
idim = _image[i] >> 20;
otherdims = _image[i] ^ (idim << 20);
idim++;
idim &= 1023;
_image[i] = otherdims | (idim << 20);
}
}
if(box_change)
{
tmpx=_x[i];
tmpy=_x[i+_nmax];
tmpz=_x[i+2*_nmax];
}
}
__syncthreads();
if(box_change)
{
X_FLOAT minx=BIG;
X_FLOAT maxx=-BIG;
X_FLOAT miny=BIG;
X_FLOAT maxy=-BIG;
X_FLOAT minz=BIG;
X_FLOAT maxz=-BIG;
if (not _periodicity[0]) {
sharedmem[threadIdx.x]=tmpx;
minOfBlock(sharedmem);
minx=sharedmem[0];
__syncthreads();
sharedmem[threadIdx.x]=tmpx;
maxOfBlock(sharedmem);
maxx=sharedmem[0];
__syncthreads();
}
else {minx=lo[0];maxx=hi[0];}
if (not _periodicity[1]) {
sharedmem[threadIdx.x]=tmpy;
minOfBlock(sharedmem);
miny=sharedmem[0];
__syncthreads();
sharedmem[threadIdx.x]=tmpy;
maxOfBlock(sharedmem);
maxy=sharedmem[0];
__syncthreads();
}
else {minx=lo[1];maxx=hi[1];}
if (not _periodicity[2]) {
sharedmem[threadIdx.x]=tmpz;
minOfBlock(sharedmem);
minz=sharedmem[0];
__syncthreads();
sharedmem[threadIdx.x]=tmpz;
maxOfBlock(sharedmem);
maxz=sharedmem[0];
__syncthreads();
}
else {minz=lo[2];maxz=hi[2];}
if(threadIdx.x==0)
{
buf=(X_FLOAT*) _buffer;
buf+=blockIdx.x*gridDim.y+blockIdx.y;
buf[0]=minx;
buf+=gridDim.x*gridDim.y;
buf[0]=maxx;
buf+=gridDim.x*gridDim.y;
buf[0]=miny;
buf+=gridDim.x*gridDim.y;
buf[0]=maxy;
buf+=gridDim.x*gridDim.y;
buf[0]=minz;
buf+=gridDim.x*gridDim.y;
buf[0]=maxz;
}
}
}
__global__ void Domain_reduceBoxExtent(double* extent,int n)
{
X_FLOAT* buf=(X_FLOAT*) _buffer;
buf+=blockIdx.x*n;
copyGlobToShared(buf,sharedmem,n);
if(blockIdx.x%2==0)
minOfData(sharedmem,n);
else
maxOfData(sharedmem,n);
extent[blockIdx.x]=sharedmem[0];
}
__global__ void Domain_lamda2x_Kernel(int n)
{
int i=(blockIdx.x*gridDim.y+blockIdx.y)*blockDim.x+threadIdx.x;
if(i<n)
{
X_FLOAT ytmp = _x[i+_nmax];
X_FLOAT ztmp = _x[i+2*_nmax];
_x[i] = _h[0]*_x[i] + _h[5]*ytmp + _h[4]*ztmp + _boxlo[0];
_x[i+_nmax] = _h[1]*ytmp + _h[3]*ztmp + _boxlo[1];
_x[i+2*_nmax] = _h[2]*ztmp + _boxlo[2];
}
}
__global__ void Domain_x2lamda_Kernel(int n)
{
int i=(blockIdx.x*gridDim.y+blockIdx.y)*blockDim.x+threadIdx.x;
X_FLOAT delta[3];
if(i<n)
{
delta[0] = _x[i] - _boxlo[0];
delta[1] = _x[i+_nmax] - _boxlo[1];
delta[2] = _x[i+2*_nmax] - _boxlo[2];
_x[i] = _h_inv[0]*delta[0] + _h_inv[5]*delta[1] + _h_inv[4]*delta[2];
_x[i+_nmax] = _h_inv[1]*delta[1] + _h_inv[3]*delta[2];
_x[i+2*_nmax] = _h_inv[2]*delta[2];
}
}