lammps/doc/html/pair_vashishta.html

410 lines
18 KiB
HTML

<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>pair_style vashishta command &mdash; LAMMPS documentation</title>
<link rel="stylesheet" href="_static/css/theme.css" type="text/css" />
<link rel="stylesheet" href="_static/sphinxcontrib-images/LightBox2/lightbox2/css/lightbox.css" type="text/css" />
<link rel="top" title="LAMMPS documentation" href="index.html"/>
<script src="_static/js/modernizr.min.js"></script>
</head>
<body class="wy-body-for-nav" role="document">
<div class="wy-grid-for-nav">
<nav data-toggle="wy-nav-shift" class="wy-nav-side">
<div class="wy-side-nav-search">
<a href="Manual.html" class="icon icon-home"> LAMMPS
</a>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="search.html" method="get">
<input type="text" name="q" placeholder="Search docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div>
<div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
<ul>
<li class="toctree-l1"><a class="reference internal" href="Section_intro.html">1. Introduction</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_start.html">2. Getting Started</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_commands.html">3. Commands</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_packages.html">4. Packages</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_accelerate.html">5. Accelerating LAMMPS performance</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_howto.html">6. How-to discussions</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_example.html">7. Example problems</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_perf.html">8. Performance &amp; scalability</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_tools.html">9. Additional tools</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_modify.html">10. Modifying &amp; extending LAMMPS</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_python.html">11. Python interface to LAMMPS</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_errors.html">12. Errors</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_history.html">13. Future and history</a></li>
</ul>
</div>
&nbsp;
</nav>
<section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">
<nav class="wy-nav-top" role="navigation" aria-label="top navigation">
<i data-toggle="wy-nav-top" class="fa fa-bars"></i>
<a href="Manual.html">LAMMPS</a>
</nav>
<div class="wy-nav-content">
<div class="rst-content">
<div role="navigation" aria-label="breadcrumbs navigation">
<ul class="wy-breadcrumbs">
<li><a href="Manual.html">Docs</a> &raquo;</li>
<li>pair_style vashishta command</li>
<li class="wy-breadcrumbs-aside">
<a href="http://lammps.sandia.gov">Website</a>
<a href="Section_commands.html#comm">Commands</a>
</li>
</ul>
<hr/>
</div>
<div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
<div itemprop="articleBody">
<div class="section" id="pair-style-vashishta-command">
<span id="index-0"></span><h1>pair_style vashishta command</h1>
</div>
<div class="section" id="pair-style-vashishta-omp-command">
<h1>pair_style vashishta/omp command</h1>
</div>
<div class="section" id="pair-style-vashishta-table-command">
<h1>pair_style vashishta/table command</h1>
</div>
<div class="section" id="pair-style-vashishta-table-omp-command">
<h1>pair_style vashishta/table/omp command</h1>
<div class="section" id="syntax">
<h2>Syntax</h2>
<pre class="literal-block">
pair_style style args
</pre>
<ul class="simple">
<li>style = <em>vashishta</em> or <em>vashishta/table</em> or <em>vashishta/omp</em> or <em>vashishta/table/omp</em></li>
<li>args = list of arguments for a particular style</li>
</ul>
<pre class="literal-block">
<em>vashishta</em> or <em>vashishta/omp</em> args = none
<em>vashishta/table</em> or <em>vashishta/table/omp</em> args = Ntable cutinner
Ntable = # of tabulation points
cutinner = tablulate from cutinner to cutoff
</pre>
</div>
<div class="section" id="examples">
<h2>Examples</h2>
<pre class="literal-block">
pair_style vashishta
pair_coeff * * SiC.vashishta Si C
</pre>
<pre class="literal-block">
pair_style vashishta/table 100000 0.2
pair_coeff * * SiC.vashishta Si C
</pre>
</div>
<div class="section" id="description">
<h2>Description</h2>
<p>The <em>vashishta</em> and <em>vashishta/table</em> styles compute the combined
2-body and 3-body family of potentials developed in the group of Priya
Vashishta and collaborators. By combining repulsive, screened
Coulombic, screened charge-dipole, and dispersion interactions with a
bond-angle energy based on the Stillinger-Weber potential, this
potential has been used to describe a variety of inorganic compounds,
including SiO2 <a class="reference internal" href="#vashishta1990"><span class="std std-ref">Vashishta1990</span></a>, SiC
<a class="reference internal" href="#vashishta2007"><span class="std std-ref">Vashishta2007</span></a>, and InP <a class="reference internal" href="#branicio2009"><span class="std std-ref">Branicio2009</span></a>.</p>
<p>The potential for the energy U of a system of atoms is</p>
<img alt="_images/pair_vashishta.jpg" class="align-center" src="_images/pair_vashishta.jpg" />
<p>where we follow the notation used in <a class="reference internal" href="#branicio2009"><span class="std std-ref">Branicio2009</span></a>.
U2 is a two-body term and U3 is a three-body term. The
summation over two-body terms is over all neighbors J within
a cutoff distance = <em>rc</em>. The twobody terms are shifted and
tilted by a linear function so that the energy and force are
both zero at <em>rc</em>. The summation over three-body terms
is over all neighbors J and K within a cut-off distance = <em>r0</em>,
where the exponential screening function becomes zero.</p>
<p>The <em>vashishta</em> style computes these formulas analytically. The
<em>vashishta/table</em> style tabulates the analytic values for <em>Ntable</em>
points from cutinner to the cutoff of the potential. The points are
equally spaced in R^2 space from cutinner^2 to cutoff^2. For the
two-body term in the above equation, a linear interpolation for each
pairwise distance between adjacent points in the table. In practice
the tabulated version can run 3-5x faster than the analytic version
with with moderate to little loss of accuracy for Ntable values
between 10000 and 1000000. It is not recommended to use less than
5000 tabulation points.</p>
<p>Only a single pair_coeff command is used with either style which
specifies a Vashishta potential file with parameters for all needed
elements. These are mapped to LAMMPS atom types by specifying N
additional arguments after the filename in the pair_coeff command,
where N is the number of LAMMPS atom types:</p>
<ul class="simple">
<li>filename</li>
<li>N element names = mapping of Vashishta elements to atom types</li>
</ul>
<p>See the <a class="reference internal" href="pair_coeff.html"><span class="doc">pair_coeff</span></a> doc page for alternate ways
to specify the path for the potential file.</p>
<p>As an example, imagine a file SiC.vashishta has parameters for
Si and C. If your LAMMPS simulation has 4 atoms types and you want
the 1st 3 to be Si, and the 4th to be C, you would use the following
pair_coeff command:</p>
<pre class="literal-block">
pair_coeff * * SiC.vashishta Si Si Si C
</pre>
<p>The 1st 2 arguments must be * * so as to span all LAMMPS atom types.
The first three Si arguments map LAMMPS atom types 1,2,3 to the Si
element in the file. The final C argument maps LAMMPS atom type 4
to the C element in the file. If a mapping value is specified as
NULL, the mapping is not performed. This can be used when a <em>vashishta</em>
potential is used as part of the <em>hybrid</em> pair style. The NULL values
are placeholders for atom types that will be used with other
potentials.</p>
<p>Vashishta files in the <em>potentials</em> directory of the LAMMPS
distribution have a &#8221;.vashishta&#8221; suffix. Lines that are not blank or
comments (starting with #) define parameters for a triplet of
elements. The parameters in a single entry correspond to the two-body
and three-body coefficients in the formulae above:</p>
<ul class="simple">
<li>element 1 (the center atom in a 3-body interaction)</li>
<li>element 2</li>
<li>element 3</li>
<li>H (energy units)</li>
<li>eta</li>
<li>Zi (electron charge units)</li>
<li>Zj (electron charge units)</li>
<li>lambda1 (distance units)</li>
<li>D (energy units)</li>
<li>lambda4 (distance units)</li>
<li>W (energy units)</li>
<li>rc (distance units)</li>
<li>B (energy units)</li>
<li>gamma</li>
<li>r0 (distance units)</li>
<li>C</li>
<li>costheta0</li>
</ul>
<p>The non-annotated parameters are unitless. The Vashishta potential
file must contain entries for all the elements listed in the
pair_coeff command. It can also contain entries for additional
elements not being used in a particular simulation; LAMMPS ignores
those entries. For a single-element simulation, only a single entry
is required (e.g. SiSiSi). For a two-element simulation, the file
must contain 8 entries (for SiSiSi, SiSiC, SiCSi, SiCC, CSiSi, CSiC,
CCSi, CCC), that specify parameters for all permutations of the two
elements interacting in three-body configurations. Thus for 3
elements, 27 entries would be required, etc.</p>
<p>Depending on the particular version of the Vashishta potential, the
values of these parameters may be keyed to the identities of zero,
one, two, or three elements. In order to make the input file format
unambiguous, general, and simple to code, LAMMPS uses a slightly
confusing method for specifying parameters. All parameters are
divided into two classes: two-body and three-body. Two-body and
three-body parameters are handled differently, as described below.
The two-body parameters are H, eta, lambda1, D, lambda4, W, rc, gamma,
and r0. They appear in the above formulae with two subscripts. The
parameters Zi and Zj are also classified as two-body parameters, even
though they only have 1 subscript. The three-body parameters are B,
C, costheta0. They appear in the above formulae with three
subscripts. Two-body and three-body parameters are handled
differently, as described below.</p>
<p>The first element in each entry is the center atom in a three-body
interaction, while the second and third elements are two neighbor
atoms. Three-body parameters for a central atom I and two neighbors J
and K are taken from the IJK entry. Note that even though three-body
parameters do not depend on the order of J and K, LAMMPS stores
three-body parameters for both IJK and IKJ. The user must ensure that
these values are equal. Two-body parameters for an atom I interacting
with atom J are taken from the IJJ entry, where the 2nd and 3rd
elements are the same. Thus the two-body parameters for Si interacting
with C come from the SiCC entry. Note that even though two-body
parameters (except possibly gamma and r0 in U3) do not depend on the
order of the two elements, LAMMPS will get the Si-C value from the
SiCC entry and the C-Si value from the CSiSi entry. The user must
ensure that these values are equal. Two-body parameters appearing in
entries where the 2nd and 3rd elements are different are stored but
never used. It is good practice to enter zero for these values. Note
that the three-body function U3 above contains the two-body parameters
gamma and r0. So U3 for a central C atom bonded to an Si atom and a
second C atom will take three-body parameters from the CSiC entry, but
two-body parameters from the CCC and CSiSi entries.</p>
<hr class="docutils" />
<p>Styles with a <em>gpu</em>, <em>intel</em>, <em>kk</em>, <em>omp</em>, or <em>opt</em> suffix are
functionally the same as the corresponding style without the suffix.
They have been optimized to run faster, depending on your available
hardware, as discussed in <a class="reference internal" href="Section_accelerate.html"><span class="doc">Section_accelerate</span></a>
of the manual. The accelerated styles take the same arguments and
should produce the same results, except for round-off and precision
issues.</p>
<p>These accelerated styles are part of the GPU, USER-INTEL, KOKKOS,
USER-OMP and OPT packages, respectively. They are only enabled if
LAMMPS was built with those packages. See the <a class="reference internal" href="Section_start.html#start-3"><span class="std std-ref">Making LAMMPS</span></a> section for more info.</p>
<p>You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the <a class="reference internal" href="Section_start.html#start-7"><span class="std std-ref">-suffix command-line switch</span></a> when you invoke LAMMPS, or you can
use the <a class="reference internal" href="suffix.html"><span class="doc">suffix</span></a> command in your input script.</p>
<p>See <a class="reference internal" href="Section_accelerate.html"><span class="doc">Section_accelerate</span></a> of the manual for
more instructions on how to use the accelerated styles effectively.</p>
<hr class="docutils" />
<p><strong>Mixing, shift, table, tail correction, restart, rRESPA info</strong>:</p>
<p>For atom type pairs I,J and I != J, where types I and J correspond to
two different element types, mixing is performed by LAMMPS as
described above from values in the potential file.</p>
<p>This pair style does not support the <a class="reference internal" href="pair_modify.html"><span class="doc">pair_modify</span></a>
shift, table, and tail options.</p>
<p>This pair style does not write its information to <a class="reference internal" href="restart.html"><span class="doc">binary restart files</span></a>, since it is stored in potential files. Thus, you
need to re-specify the pair_style and pair_coeff commands in an input
script that reads a restart file.</p>
<p>This pair style can only be used via the <em>pair</em> keyword of the
<a class="reference internal" href="run_style.html"><span class="doc">run_style respa</span></a> command. It does not support the
<em>inner</em>, <em>middle</em>, <em>outer</em> keywords.</p>
</div>
<hr class="docutils" />
<div class="section" id="restrictions">
<h2>Restrictions</h2>
<p>These pair style are part of the MANYBODY package. They is only
enabled if LAMMPS was built with that package (which it is by
default). See the <a class="reference internal" href="Section_start.html#start-3"><span class="std std-ref">Making LAMMPS</span></a> section
for more info.</p>
<p>These pair styles requires the <a class="reference internal" href="newton.html"><span class="doc">newton</span></a> setting to be &#8220;on&#8221;
for pair interactions.</p>
<p>The Vashishta potential files provided with LAMMPS (see the potentials
directory) are parameterized for metal <a class="reference internal" href="units.html"><span class="doc">units</span></a>. You can
use the Vashishta potential with any LAMMPS units, but you would need
to create your own potential file with coefficients listed in the
appropriate units if your simulation doesn&#8217;t use &#8220;metal&#8221; units.</p>
</div>
<div class="section" id="related-commands">
<h2>Related commands</h2>
<p><a class="reference internal" href="pair_coeff.html"><span class="doc">pair_coeff</span></a></p>
<p><strong>Default:</strong> none</p>
<hr class="docutils" />
<p id="vashishta1990"><strong>(Vashishta1990)</strong> P. Vashishta, R. K. Kalia, J. P. Rino, Phys. Rev. B
41, 12197 (1990).</p>
<p id="vashishta2007"><strong>(Vashishta2007)</strong> P. Vashishta, R. K. Kalia, A. Nakano,
J. P. Rino. J. Appl. Phys. 101, 103515 (2007).</p>
<p id="branicio2009"><strong>(Branicio2009)</strong> Branicio, Rino, Gan and Tsuzuki, J. Phys Condensed
Matter 21 (2009) 095002</p>
</div>
</div>
</div>
</div>
<footer>
<hr/>
<div role="contentinfo">
<p>
&copy; Copyright 2013 Sandia Corporation.
</p>
</div>
Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
</footer>
</div>
</div>
</section>
</div>
<script type="text/javascript">
var DOCUMENTATION_OPTIONS = {
URL_ROOT:'./',
VERSION:'',
COLLAPSE_INDEX:false,
FILE_SUFFIX:'.html',
HAS_SOURCE: true
};
</script>
<script type="text/javascript" src="_static/jquery.js"></script>
<script type="text/javascript" src="_static/underscore.js"></script>
<script type="text/javascript" src="_static/doctools.js"></script>
<script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
<script type="text/javascript" src="_static/sphinxcontrib-images/LightBox2/lightbox2/js/jquery-1.11.0.min.js"></script>
<script type="text/javascript" src="_static/sphinxcontrib-images/LightBox2/lightbox2/js/lightbox.min.js"></script>
<script type="text/javascript" src="_static/sphinxcontrib-images/LightBox2/lightbox2-customize/jquery-noconflict.js"></script>
<script type="text/javascript" src="_static/js/theme.js"></script>
<script type="text/javascript">
jQuery(function () {
SphinxRtdTheme.StickyNav.enable();
});
</script>
</body>
</html>