mirror of https://github.com/lammps/lammps.git
move MLIAP potential files to potentials folder and replace with symlinks
This commit is contained in:
parent
06a0b3331a
commit
fefdd3dd9a
|
@ -1,19 +0,0 @@
|
|||
# DATE: 2020-06-01 UNITS: metal CONTRIBUTOR: Mary Alice Cusentino mcusent@sandia.gov CITATION: M.A. Cusentino, M. A. Wood, and A.P. Thompson, "Explicit Multi-element Extension of the Spectral Neighbor Analysis Potential for Chemically Complex Systems", J. Phys. Chem. A, xxxxxx (2020)
|
||||
|
||||
# Definition of SNAP+ZBL potential.
|
||||
|
||||
variable zblcutinner index 4
|
||||
variable zblcutouter index 4.2
|
||||
variable zblz1 index 49
|
||||
variable zblz2 index 15
|
||||
|
||||
# Specify hybrid with SNAP and ZBL
|
||||
|
||||
pair_style hybrid/overlay &
|
||||
zbl ${zblcutinner} ${zblcutouter} &
|
||||
mliap model linear InP_JCPA2020.mliap.model descriptor sna InP_JCPA2020.mliap.descriptor
|
||||
pair_coeff 1 1 zbl ${zblz1} ${zblz1}
|
||||
pair_coeff 1 2 zbl ${zblz1} ${zblz2}
|
||||
pair_coeff 2 2 zbl ${zblz2} ${zblz2}
|
||||
pair_coeff * * mliap In P
|
||||
|
|
@ -0,0 +1 @@
|
|||
../../potentials/InP_JCPA2020.mliap
|
|
@ -1,20 +0,0 @@
|
|||
# DATE: 2020-06-01 UNITS: metal CONTRIBUTOR: Mary Alice Cusentino mcusent@sandia.gov CITATION: M.A. Cusentino, M. A. Wood, and A.P. Thompson, "Explicit Multi-element Extension of the Spectral Neighbor Analysis Potential for Chemically Complex Systems", J. Phys. Chem. A, xxxxxx (2020)
|
||||
|
||||
# required
|
||||
rcutfac 1.0
|
||||
twojmax 6
|
||||
|
||||
# elements
|
||||
|
||||
nelems 2
|
||||
elems In P
|
||||
radelems 3.81205 3.82945
|
||||
welems 1 0.929316
|
||||
|
||||
# optional
|
||||
rfac0 0.99363
|
||||
rmin0 0.0
|
||||
bzeroflag 1
|
||||
wselfallflag 1
|
||||
chemflag 1
|
||||
bnormflag 1
|
|
@ -0,0 +1 @@
|
|||
../../potentials/InP_JCPA2020.mliap.descriptor
|
|
@ -1,485 +0,0 @@
|
|||
# DATE: 2020-06-01 UNITS: metal CONTRIBUTOR: Mary Alice Cusentino mcusent@sandia.gov CITATION: M.A. Cusentino, M. A. Wood, and A.P. Thompson, "Explicit Multi-element Extension of the Spectral Neighbor Analysis Potential for Chemically Complex Systems", J. Phys. Chem. A, xxxxxx (2020)
|
||||
|
||||
2 241
|
||||
0.000000000000 # B[0] Block = 1 Type = In
|
||||
-0.000666721868 # B[1, 0, 0, 0] Block = 1 Type = In
|
||||
0.032408881964 # B[2, 1, 0, 1] Block = 1 Type = In
|
||||
0.182277739455 # B[3, 1, 1, 2] Block = 1 Type = In
|
||||
0.001455902168 # B[4, 2, 0, 2] Block = 1 Type = In
|
||||
0.086259367737 # B[5, 2, 1, 3] Block = 1 Type = In
|
||||
-0.044840628371 # B[6, 2, 2, 2] Block = 1 Type = In
|
||||
-0.175973261191 # B[7, 2, 2, 4] Block = 1 Type = In
|
||||
-0.052429169415 # B[8, 3, 0, 3] Block = 1 Type = In
|
||||
0.195529228497 # B[9, 3, 1, 4] Block = 1 Type = In
|
||||
0.078718744520 # B[10, 3, 2, 3] Block = 1 Type = In
|
||||
-0.688127658121 # B[11, 3, 2, 5] Block = 1 Type = In
|
||||
0.059084058400 # B[12, 3, 3, 4] Block = 1 Type = In
|
||||
0.006795099274 # B[13, 3, 3, 6] Block = 1 Type = In
|
||||
-0.043061553886 # B[14, 4, 0, 4] Block = 1 Type = In
|
||||
-0.046619800530 # B[15, 4, 1, 5] Block = 1 Type = In
|
||||
-0.117451659827 # B[16, 4, 2, 4] Block = 1 Type = In
|
||||
-0.233615100720 # B[17, 4, 2, 6] Block = 1 Type = In
|
||||
0.015358771114 # B[18, 4, 3, 5] Block = 1 Type = In
|
||||
0.022474133984 # B[19, 4, 4, 4] Block = 1 Type = In
|
||||
0.002165850235 # B[20, 4, 4, 6] Block = 1 Type = In
|
||||
0.003458938546 # B[21, 5, 0, 5] Block = 1 Type = In
|
||||
-0.053507775670 # B[22, 5, 1, 6] Block = 1 Type = In
|
||||
0.120989101467 # B[23, 5, 2, 5] Block = 1 Type = In
|
||||
0.092637875162 # B[24, 5, 3, 6] Block = 1 Type = In
|
||||
0.071459233521 # B[25, 5, 4, 5] Block = 1 Type = In
|
||||
0.086291858607 # B[26, 5, 5, 6] Block = 1 Type = In
|
||||
0.006749966752 # B[27, 6, 0, 6] Block = 1 Type = In
|
||||
0.144917284093 # B[28, 6, 2, 6] Block = 1 Type = In
|
||||
0.055178211309 # B[29, 6, 4, 6] Block = 1 Type = In
|
||||
-0.005619133266 # B[30, 6, 6, 6] Block = 1 Type = In
|
||||
0.005430513632 # B[1, 0, 0, 0] Block = 2 Type = In
|
||||
0.057269488101 # B[2, 1, 0, 1] Block = 2 Type = In
|
||||
0.320412300575 # B[3, 1, 1, 2] Block = 2 Type = In
|
||||
0.035481869944 # B[4, 2, 0, 2] Block = 2 Type = In
|
||||
0.111076763087 # B[5, 2, 1, 3] Block = 2 Type = In
|
||||
0.039770598731 # B[6, 2, 2, 2] Block = 2 Type = In
|
||||
0.141315510383 # B[7, 2, 2, 4] Block = 2 Type = In
|
||||
0.067792661762 # B[8, 3, 0, 3] Block = 2 Type = In
|
||||
-0.080858457946 # B[9, 3, 1, 4] Block = 2 Type = In
|
||||
0.258942062632 # B[10, 3, 2, 3] Block = 2 Type = In
|
||||
0.061756985062 # B[11, 3, 2, 5] Block = 2 Type = In
|
||||
-0.112424676196 # B[12, 3, 3, 4] Block = 2 Type = In
|
||||
0.168376857205 # B[13, 3, 3, 6] Block = 2 Type = In
|
||||
-0.029743698629 # B[14, 4, 0, 4] Block = 2 Type = In
|
||||
-0.093967263289 # B[15, 4, 1, 5] Block = 2 Type = In
|
||||
0.137229827290 # B[16, 4, 2, 4] Block = 2 Type = In
|
||||
0.056897919200 # B[17, 4, 2, 6] Block = 2 Type = In
|
||||
0.095137344320 # B[18, 4, 3, 5] Block = 2 Type = In
|
||||
-0.008598816416 # B[19, 4, 4, 4] Block = 2 Type = In
|
||||
0.038890602482 # B[20, 4, 4, 6] Block = 2 Type = In
|
||||
-0.034624751006 # B[21, 5, 0, 5] Block = 2 Type = In
|
||||
-0.282625695473 # B[22, 5, 1, 6] Block = 2 Type = In
|
||||
0.103089891872 # B[23, 5, 2, 5] Block = 2 Type = In
|
||||
-0.024380802146 # B[24, 5, 3, 6] Block = 2 Type = In
|
||||
-0.063847809434 # B[25, 5, 4, 5] Block = 2 Type = In
|
||||
-0.024896682749 # B[26, 5, 5, 6] Block = 2 Type = In
|
||||
0.000464369553 # B[27, 6, 0, 6] Block = 2 Type = In
|
||||
0.082229290277 # B[28, 6, 2, 6] Block = 2 Type = In
|
||||
-0.008875503360 # B[29, 6, 4, 6] Block = 2 Type = In
|
||||
-0.009039017094 # B[30, 6, 6, 6] Block = 2 Type = In
|
||||
0.005430513686 # B[1, 0, 0, 0] Block = 3 Type = In
|
||||
-0.004352445887 # B[2, 1, 0, 1] Block = 3 Type = In
|
||||
0.149882860704 # B[3, 1, 1, 2] Block = 3 Type = In
|
||||
-0.015528472583 # B[4, 2, 0, 2] Block = 3 Type = In
|
||||
0.558662861756 # B[5, 2, 1, 3] Block = 3 Type = In
|
||||
0.039770598731 # B[6, 2, 2, 2] Block = 3 Type = In
|
||||
0.179060667136 # B[7, 2, 2, 4] Block = 3 Type = In
|
||||
0.034759981675 # B[8, 3, 0, 3] Block = 3 Type = In
|
||||
0.603083480153 # B[9, 3, 1, 4] Block = 3 Type = In
|
||||
0.176946655350 # B[10, 3, 2, 3] Block = 3 Type = In
|
||||
0.165639632803 # B[11, 3, 2, 5] Block = 3 Type = In
|
||||
0.055627509305 # B[12, 3, 3, 4] Block = 3 Type = In
|
||||
0.049782791218 # B[13, 3, 3, 6] Block = 3 Type = In
|
||||
0.036078617029 # B[14, 4, 0, 4] Block = 3 Type = In
|
||||
0.064493563641 # B[15, 4, 1, 5] Block = 3 Type = In
|
||||
0.149250535822 # B[16, 4, 2, 4] Block = 3 Type = In
|
||||
-0.060208330201 # B[17, 4, 2, 6] Block = 3 Type = In
|
||||
0.105119833648 # B[18, 4, 3, 5] Block = 3 Type = In
|
||||
-0.008598816416 # B[19, 4, 4, 4] Block = 3 Type = In
|
||||
0.041210118888 # B[20, 4, 4, 6] Block = 3 Type = In
|
||||
-0.002705345469 # B[21, 5, 0, 5] Block = 3 Type = In
|
||||
0.170191392493 # B[22, 5, 1, 6] Block = 3 Type = In
|
||||
0.226897293272 # B[23, 5, 2, 5] Block = 3 Type = In
|
||||
0.013009034793 # B[24, 5, 3, 6] Block = 3 Type = In
|
||||
-0.020734586320 # B[25, 5, 4, 5] Block = 3 Type = In
|
||||
-0.018139074523 # B[26, 5, 5, 6] Block = 3 Type = In
|
||||
-0.016001848874 # B[27, 6, 0, 6] Block = 3 Type = In
|
||||
0.016663324316 # B[28, 6, 2, 6] Block = 3 Type = In
|
||||
-0.024245533697 # B[29, 6, 4, 6] Block = 3 Type = In
|
||||
-0.009039017094 # B[30, 6, 6, 6] Block = 3 Type = In
|
||||
-0.005654800687 # B[1, 0, 0, 0] Block = 4 Type = In
|
||||
-0.071064263981 # B[2, 1, 0, 1] Block = 4 Type = In
|
||||
-0.009868049046 # B[3, 1, 1, 2] Block = 4 Type = In
|
||||
-0.061297753855 # B[4, 2, 0, 2] Block = 4 Type = In
|
||||
-0.239682636759 # B[5, 2, 1, 3] Block = 4 Type = In
|
||||
0.015954956116 # B[6, 2, 2, 2] Block = 4 Type = In
|
||||
0.176005610703 # B[7, 2, 2, 4] Block = 4 Type = In
|
||||
-0.081125948095 # B[8, 3, 0, 3] Block = 4 Type = In
|
||||
-0.170847987084 # B[9, 3, 1, 4] Block = 4 Type = In
|
||||
0.242239715395 # B[10, 3, 2, 3] Block = 4 Type = In
|
||||
0.082507688294 # B[11, 3, 2, 5] Block = 4 Type = In
|
||||
0.247785108978 # B[12, 3, 3, 4] Block = 4 Type = In
|
||||
-0.008194303016 # B[13, 3, 3, 6] Block = 4 Type = In
|
||||
0.014786217107 # B[14, 4, 0, 4] Block = 4 Type = In
|
||||
-0.096877379511 # B[15, 4, 1, 5] Block = 4 Type = In
|
||||
0.164908528605 # B[16, 4, 2, 4] Block = 4 Type = In
|
||||
0.151575252604 # B[17, 4, 2, 6] Block = 4 Type = In
|
||||
0.099757230122 # B[18, 4, 3, 5] Block = 4 Type = In
|
||||
0.035047662350 # B[19, 4, 4, 4] Block = 4 Type = In
|
||||
0.007150552805 # B[20, 4, 4, 6] Block = 4 Type = In
|
||||
0.019198319779 # B[21, 5, 0, 5] Block = 4 Type = In
|
||||
-0.127113932870 # B[22, 5, 1, 6] Block = 4 Type = In
|
||||
0.114478010571 # B[23, 5, 2, 5] Block = 4 Type = In
|
||||
0.050915227324 # B[24, 5, 3, 6] Block = 4 Type = In
|
||||
0.096853268510 # B[25, 5, 4, 5] Block = 4 Type = In
|
||||
0.067894750884 # B[26, 5, 5, 6] Block = 4 Type = In
|
||||
-0.002405537661 # B[27, 6, 0, 6] Block = 4 Type = In
|
||||
0.058549926350 # B[28, 6, 2, 6] Block = 4 Type = In
|
||||
0.009481237049 # B[29, 6, 4, 6] Block = 4 Type = In
|
||||
-0.008649958571 # B[30, 6, 6, 6] Block = 4 Type = In
|
||||
0.005430513686 # B[1, 0, 0, 0] Block = 5 Type = In
|
||||
0.057269488102 # B[2, 1, 0, 1] Block = 5 Type = In
|
||||
0.149882860704 # B[3, 1, 1, 2] Block = 5 Type = In
|
||||
0.035481869944 # B[4, 2, 0, 2] Block = 5 Type = In
|
||||
0.378916788823 # B[5, 2, 1, 3] Block = 5 Type = In
|
||||
0.039770598731 # B[6, 2, 2, 2] Block = 5 Type = In
|
||||
0.179060667136 # B[7, 2, 2, 4] Block = 5 Type = In
|
||||
0.067792661762 # B[8, 3, 0, 3] Block = 5 Type = In
|
||||
0.272613304171 # B[9, 3, 1, 4] Block = 5 Type = In
|
||||
0.258942062632 # B[10, 3, 2, 3] Block = 5 Type = In
|
||||
0.100130474069 # B[11, 3, 2, 5] Block = 5 Type = In
|
||||
0.055627509305 # B[12, 3, 3, 4] Block = 5 Type = In
|
||||
0.049782791218 # B[13, 3, 3, 6] Block = 5 Type = In
|
||||
-0.029743698629 # B[14, 4, 0, 4] Block = 5 Type = In
|
||||
-0.013420300314 # B[15, 4, 1, 5] Block = 5 Type = In
|
||||
0.137229827290 # B[16, 4, 2, 4] Block = 5 Type = In
|
||||
-0.034447269506 # B[17, 4, 2, 6] Block = 5 Type = In
|
||||
-0.033847124314 # B[18, 4, 3, 5] Block = 5 Type = In
|
||||
-0.008598816416 # B[19, 4, 4, 4] Block = 5 Type = In
|
||||
0.041210118888 # B[20, 4, 4, 6] Block = 5 Type = In
|
||||
-0.034624751006 # B[21, 5, 0, 5] Block = 5 Type = In
|
||||
0.041662678638 # B[22, 5, 1, 6] Block = 5 Type = In
|
||||
0.103089891872 # B[23, 5, 2, 5] Block = 5 Type = In
|
||||
-0.044572198386 # B[24, 5, 3, 6] Block = 5 Type = In
|
||||
-0.063847809434 # B[25, 5, 4, 5] Block = 5 Type = In
|
||||
-0.018139074523 # B[26, 5, 5, 6] Block = 5 Type = In
|
||||
0.000464369553 # B[27, 6, 0, 6] Block = 5 Type = In
|
||||
0.082229290277 # B[28, 6, 2, 6] Block = 5 Type = In
|
||||
-0.008875503360 # B[29, 6, 4, 6] Block = 5 Type = In
|
||||
-0.009039017094 # B[30, 6, 6, 6] Block = 5 Type = In
|
||||
-0.005654800687 # B[1, 0, 0, 0] Block = 6 Type = In
|
||||
-0.001217874195 # B[2, 1, 0, 1] Block = 6 Type = In
|
||||
-0.009868049046 # B[3, 1, 1, 2] Block = 6 Type = In
|
||||
-0.092827766060 # B[4, 2, 0, 2] Block = 6 Type = In
|
||||
0.439274283244 # B[5, 2, 1, 3] Block = 6 Type = In
|
||||
0.015954956116 # B[6, 2, 2, 2] Block = 6 Type = In
|
||||
0.176005610703 # B[7, 2, 2, 4] Block = 6 Type = In
|
||||
0.102468480364 # B[8, 3, 0, 3] Block = 6 Type = In
|
||||
0.674122225402 # B[9, 3, 1, 4] Block = 6 Type = In
|
||||
0.072529538087 # B[10, 3, 2, 3] Block = 6 Type = In
|
||||
0.330711171466 # B[11, 3, 2, 5] Block = 6 Type = In
|
||||
0.247785108978 # B[12, 3, 3, 4] Block = 6 Type = In
|
||||
-0.008194303016 # B[13, 3, 3, 6] Block = 6 Type = In
|
||||
0.052250780232 # B[14, 4, 0, 4] Block = 6 Type = In
|
||||
0.374231060518 # B[15, 4, 1, 5] Block = 6 Type = In
|
||||
0.326667869620 # B[16, 4, 2, 4] Block = 6 Type = In
|
||||
0.079031873518 # B[17, 4, 2, 6] Block = 6 Type = In
|
||||
0.224004472527 # B[18, 4, 3, 5] Block = 6 Type = In
|
||||
0.035047662350 # B[19, 4, 4, 4] Block = 6 Type = In
|
||||
0.007150552805 # B[20, 4, 4, 6] Block = 6 Type = In
|
||||
0.040682917098 # B[21, 5, 0, 5] Block = 6 Type = In
|
||||
0.046855927526 # B[22, 5, 1, 6] Block = 6 Type = In
|
||||
0.219695071346 # B[23, 5, 2, 5] Block = 6 Type = In
|
||||
-0.001426581661 # B[24, 5, 3, 6] Block = 6 Type = In
|
||||
0.028514699601 # B[25, 5, 4, 5] Block = 6 Type = In
|
||||
0.067894750884 # B[26, 5, 5, 6] Block = 6 Type = In
|
||||
-0.049888149225 # B[27, 6, 0, 6] Block = 6 Type = In
|
||||
0.009259151039 # B[28, 6, 2, 6] Block = 6 Type = In
|
||||
0.003868002128 # B[29, 6, 4, 6] Block = 6 Type = In
|
||||
-0.008649958571 # B[30, 6, 6, 6] Block = 6 Type = In
|
||||
-0.005654800692 # B[1, 0, 0, 0] Block = 7 Type = In
|
||||
-0.071064263981 # B[2, 1, 0, 1] Block = 7 Type = In
|
||||
-0.085085203640 # B[3, 1, 1, 2] Block = 7 Type = In
|
||||
-0.061297753855 # B[4, 2, 0, 2] Block = 7 Type = In
|
||||
0.223668616358 # B[5, 2, 1, 3] Block = 7 Type = In
|
||||
0.015954956116 # B[6, 2, 2, 2] Block = 7 Type = In
|
||||
0.033706085249 # B[7, 2, 2, 4] Block = 7 Type = In
|
||||
-0.081125948095 # B[8, 3, 0, 3] Block = 7 Type = In
|
||||
-0.005054494008 # B[9, 3, 1, 4] Block = 7 Type = In
|
||||
0.242239715395 # B[10, 3, 2, 3] Block = 7 Type = In
|
||||
-0.000886414104 # B[11, 3, 2, 5] Block = 7 Type = In
|
||||
0.059178212190 # B[12, 3, 3, 4] Block = 7 Type = In
|
||||
0.008498646326 # B[13, 3, 3, 6] Block = 7 Type = In
|
||||
0.014786217107 # B[14, 4, 0, 4] Block = 7 Type = In
|
||||
-0.178665293356 # B[15, 4, 1, 5] Block = 7 Type = In
|
||||
0.164908528605 # B[16, 4, 2, 4] Block = 7 Type = In
|
||||
-0.117717485069 # B[17, 4, 2, 6] Block = 7 Type = In
|
||||
0.146739677531 # B[18, 4, 3, 5] Block = 7 Type = In
|
||||
0.035047662350 # B[19, 4, 4, 4] Block = 7 Type = In
|
||||
0.088770688382 # B[20, 4, 4, 6] Block = 7 Type = In
|
||||
0.019198319779 # B[21, 5, 0, 5] Block = 7 Type = In
|
||||
-0.148162265312 # B[22, 5, 1, 6] Block = 7 Type = In
|
||||
0.114478010571 # B[23, 5, 2, 5] Block = 7 Type = In
|
||||
0.114731400461 # B[24, 5, 3, 6] Block = 7 Type = In
|
||||
0.096853268510 # B[25, 5, 4, 5] Block = 7 Type = In
|
||||
0.031183854107 # B[26, 5, 5, 6] Block = 7 Type = In
|
||||
-0.002405537661 # B[27, 6, 0, 6] Block = 7 Type = In
|
||||
0.058549926350 # B[28, 6, 2, 6] Block = 7 Type = In
|
||||
0.009481237049 # B[29, 6, 4, 6] Block = 7 Type = In
|
||||
-0.008649958571 # B[30, 6, 6, 6] Block = 7 Type = In
|
||||
0.017733403092 # B[1, 0, 0, 0] Block = 8 Type = In
|
||||
0.015168905151 # B[2, 1, 0, 1] Block = 8 Type = In
|
||||
-0.212358294308 # B[3, 1, 1, 2] Block = 8 Type = In
|
||||
0.115608035432 # B[4, 2, 0, 2] Block = 8 Type = In
|
||||
0.128621845177 # B[5, 2, 1, 3] Block = 8 Type = In
|
||||
-0.055682216710 # B[6, 2, 2, 2] Block = 8 Type = In
|
||||
0.168986321733 # B[7, 2, 2, 4] Block = 8 Type = In
|
||||
-0.087186888529 # B[8, 3, 0, 3] Block = 8 Type = In
|
||||
0.378810692322 # B[9, 3, 1, 4] Block = 8 Type = In
|
||||
0.036128510376 # B[10, 3, 2, 3] Block = 8 Type = In
|
||||
0.179888488204 # B[11, 3, 2, 5] Block = 8 Type = In
|
||||
-0.001405954437 # B[12, 3, 3, 4] Block = 8 Type = In
|
||||
0.010551104009 # B[13, 3, 3, 6] Block = 8 Type = In
|
||||
-0.059381370200 # B[14, 4, 0, 4] Block = 8 Type = In
|
||||
0.475432753620 # B[15, 4, 1, 5] Block = 8 Type = In
|
||||
0.095868282640 # B[16, 4, 2, 4] Block = 8 Type = In
|
||||
0.106524975238 # B[17, 4, 2, 6] Block = 8 Type = In
|
||||
0.058941182257 # B[18, 4, 3, 5] Block = 8 Type = In
|
||||
0.012512778321 # B[19, 4, 4, 4] Block = 8 Type = In
|
||||
0.080549204239 # B[20, 4, 4, 6] Block = 8 Type = In
|
||||
-0.068536821891 # B[21, 5, 0, 5] Block = 8 Type = In
|
||||
0.089459777664 # B[22, 5, 1, 6] Block = 8 Type = In
|
||||
0.163187761880 # B[23, 5, 2, 5] Block = 8 Type = In
|
||||
0.139719330200 # B[24, 5, 3, 6] Block = 8 Type = In
|
||||
0.145095171389 # B[25, 5, 4, 5] Block = 8 Type = In
|
||||
0.074157391376 # B[26, 5, 5, 6] Block = 8 Type = In
|
||||
0.018646775951 # B[27, 6, 0, 6] Block = 8 Type = In
|
||||
0.035882498943 # B[28, 6, 2, 6] Block = 8 Type = In
|
||||
0.050420424420 # B[29, 6, 4, 6] Block = 8 Type = In
|
||||
0.009994821144 # B[30, 6, 6, 6] Block = 8 Type = In
|
||||
0.000000000000 # B[0] Block = 1 Type = P
|
||||
-0.002987589706 # B[1, 0, 0, 0] Block = 1 Type = P
|
||||
-0.072158389412 # B[2, 1, 0, 1] Block = 1 Type = P
|
||||
-0.025322250603 # B[3, 1, 1, 2] Block = 1 Type = P
|
||||
-0.030241379192 # B[4, 2, 0, 2] Block = 1 Type = P
|
||||
-0.676287334962 # B[5, 2, 1, 3] Block = 1 Type = P
|
||||
-0.172216278028 # B[6, 2, 2, 2] Block = 1 Type = P
|
||||
-0.246535097343 # B[7, 2, 2, 4] Block = 1 Type = P
|
||||
-0.035782528462 # B[8, 3, 0, 3] Block = 1 Type = P
|
||||
-0.560641780823 # B[9, 3, 1, 4] Block = 1 Type = P
|
||||
-0.549579515296 # B[10, 3, 2, 3] Block = 1 Type = P
|
||||
-0.016920837991 # B[11, 3, 2, 5] Block = 1 Type = P
|
||||
-0.288447245376 # B[12, 3, 3, 4] Block = 1 Type = P
|
||||
0.069076859372 # B[13, 3, 3, 6] Block = 1 Type = P
|
||||
-0.052298717507 # B[14, 4, 0, 4] Block = 1 Type = P
|
||||
-0.434250953671 # B[15, 4, 1, 5] Block = 1 Type = P
|
||||
-0.322043860507 # B[16, 4, 2, 4] Block = 1 Type = P
|
||||
-0.096837010372 # B[17, 4, 2, 6] Block = 1 Type = P
|
||||
-0.213169352789 # B[18, 4, 3, 5] Block = 1 Type = P
|
||||
-0.019566740546 # B[19, 4, 4, 4] Block = 1 Type = P
|
||||
-0.029415128740 # B[20, 4, 4, 6] Block = 1 Type = P
|
||||
-0.036591077655 # B[21, 5, 0, 5] Block = 1 Type = P
|
||||
-0.300384511072 # B[22, 5, 1, 6] Block = 1 Type = P
|
||||
-0.111126537447 # B[23, 5, 2, 5] Block = 1 Type = P
|
||||
-0.000209831053 # B[24, 5, 3, 6] Block = 1 Type = P
|
||||
-0.000023632674 # B[25, 5, 4, 5] Block = 1 Type = P
|
||||
0.009497323905 # B[26, 5, 5, 6] Block = 1 Type = P
|
||||
-0.042287705828 # B[27, 6, 0, 6] Block = 1 Type = P
|
||||
-0.113311457350 # B[28, 6, 2, 6] Block = 1 Type = P
|
||||
0.029574563913 # B[29, 6, 4, 6] Block = 1 Type = P
|
||||
-0.027748295426 # B[30, 6, 6, 6] Block = 1 Type = P
|
||||
-0.001747658243 # B[1, 0, 0, 0] Block = 2 Type = P
|
||||
-0.026182047943 # B[2, 1, 0, 1] Block = 2 Type = P
|
||||
0.089481157533 # B[3, 1, 1, 2] Block = 2 Type = P
|
||||
-0.076525139004 # B[4, 2, 0, 2] Block = 2 Type = P
|
||||
-0.107925591359 # B[5, 2, 1, 3] Block = 2 Type = P
|
||||
-0.059117110271 # B[6, 2, 2, 2] Block = 2 Type = P
|
||||
-0.256324252168 # B[7, 2, 2, 4] Block = 2 Type = P
|
||||
-0.020755324452 # B[8, 3, 0, 3] Block = 2 Type = P
|
||||
-0.337284108142 # B[9, 3, 1, 4] Block = 2 Type = P
|
||||
-0.073956723908 # B[10, 3, 2, 3] Block = 2 Type = P
|
||||
-0.149119927857 # B[11, 3, 2, 5] Block = 2 Type = P
|
||||
0.047627781519 # B[12, 3, 3, 4] Block = 2 Type = P
|
||||
0.061394929126 # B[13, 3, 3, 6] Block = 2 Type = P
|
||||
-0.082660360252 # B[14, 4, 0, 4] Block = 2 Type = P
|
||||
-0.183225932285 # B[15, 4, 1, 5] Block = 2 Type = P
|
||||
-0.046981555049 # B[16, 4, 2, 4] Block = 2 Type = P
|
||||
-0.046846685850 # B[17, 4, 2, 6] Block = 2 Type = P
|
||||
-0.014388943769 # B[18, 4, 3, 5] Block = 2 Type = P
|
||||
0.012133725790 # B[19, 4, 4, 4] Block = 2 Type = P
|
||||
0.085321452425 # B[20, 4, 4, 6] Block = 2 Type = P
|
||||
-0.034945525448 # B[21, 5, 0, 5] Block = 2 Type = P
|
||||
-0.028326642109 # B[22, 5, 1, 6] Block = 2 Type = P
|
||||
-0.085701075837 # B[23, 5, 2, 5] Block = 2 Type = P
|
||||
0.108257997015 # B[24, 5, 3, 6] Block = 2 Type = P
|
||||
0.045837409910 # B[25, 5, 4, 5] Block = 2 Type = P
|
||||
-0.014180512722 # B[26, 5, 5, 6] Block = 2 Type = P
|
||||
0.010756044042 # B[27, 6, 0, 6] Block = 2 Type = P
|
||||
0.023429477590 # B[28, 6, 2, 6] Block = 2 Type = P
|
||||
-0.007794133717 # B[29, 6, 4, 6] Block = 2 Type = P
|
||||
0.002019828318 # B[30, 6, 6, 6] Block = 2 Type = P
|
||||
-0.001747658242 # B[1, 0, 0, 0] Block = 3 Type = P
|
||||
0.047070626642 # B[2, 1, 0, 1] Block = 3 Type = P
|
||||
-0.126595340298 # B[3, 1, 1, 2] Block = 3 Type = P
|
||||
0.022286899829 # B[4, 2, 0, 2] Block = 3 Type = P
|
||||
-0.483695340547 # B[5, 2, 1, 3] Block = 3 Type = P
|
||||
-0.059117110271 # B[6, 2, 2, 2] Block = 3 Type = P
|
||||
-0.067694089340 # B[7, 2, 2, 4] Block = 3 Type = P
|
||||
0.034974727122 # B[8, 3, 0, 3] Block = 3 Type = P
|
||||
-0.226290583408 # B[9, 3, 1, 4] Block = 3 Type = P
|
||||
-0.184699579267 # B[10, 3, 2, 3] Block = 3 Type = P
|
||||
0.063122270285 # B[11, 3, 2, 5] Block = 3 Type = P
|
||||
0.041271206739 # B[12, 3, 3, 4] Block = 3 Type = P
|
||||
-0.004229157928 # B[13, 3, 3, 6] Block = 3 Type = P
|
||||
0.050689134214 # B[14, 4, 0, 4] Block = 3 Type = P
|
||||
-0.138276744014 # B[15, 4, 1, 5] Block = 3 Type = P
|
||||
0.097985494164 # B[16, 4, 2, 4] Block = 3 Type = P
|
||||
-0.083537235645 # B[17, 4, 2, 6] Block = 3 Type = P
|
||||
0.098390585361 # B[18, 4, 3, 5] Block = 3 Type = P
|
||||
0.012133725790 # B[19, 4, 4, 4] Block = 3 Type = P
|
||||
-0.038067814334 # B[20, 4, 4, 6] Block = 3 Type = P
|
||||
0.029636266108 # B[21, 5, 0, 5] Block = 3 Type = P
|
||||
-0.157117938354 # B[22, 5, 1, 6] Block = 3 Type = P
|
||||
-0.027712542047 # B[23, 5, 2, 5] Block = 3 Type = P
|
||||
0.084730212710 # B[24, 5, 3, 6] Block = 3 Type = P
|
||||
0.023437407693 # B[25, 5, 4, 5] Block = 3 Type = P
|
||||
0.017747856995 # B[26, 5, 5, 6] Block = 3 Type = P
|
||||
0.050161344183 # B[27, 6, 0, 6] Block = 3 Type = P
|
||||
-0.098577816149 # B[28, 6, 2, 6] Block = 3 Type = P
|
||||
-0.046997533090 # B[29, 6, 4, 6] Block = 3 Type = P
|
||||
0.002019828318 # B[30, 6, 6, 6] Block = 3 Type = P
|
||||
-0.003152987881 # B[1, 0, 0, 0] Block = 4 Type = P
|
||||
0.014621850469 # B[2, 1, 0, 1] Block = 4 Type = P
|
||||
0.098860641022 # B[3, 1, 1, 2] Block = 4 Type = P
|
||||
0.069546644549 # B[4, 2, 0, 2] Block = 4 Type = P
|
||||
0.180804700658 # B[5, 2, 1, 3] Block = 4 Type = P
|
||||
0.034244852922 # B[6, 2, 2, 2] Block = 4 Type = P
|
||||
0.044579888557 # B[7, 2, 2, 4] Block = 4 Type = P
|
||||
0.001526239292 # B[8, 3, 0, 3] Block = 4 Type = P
|
||||
0.203861850923 # B[9, 3, 1, 4] Block = 4 Type = P
|
||||
0.021679218740 # B[10, 3, 2, 3] Block = 4 Type = P
|
||||
0.185899872703 # B[11, 3, 2, 5] Block = 4 Type = P
|
||||
-0.063472862380 # B[12, 3, 3, 4] Block = 4 Type = P
|
||||
-0.015662648111 # B[13, 3, 3, 6] Block = 4 Type = P
|
||||
0.076209869795 # B[14, 4, 0, 4] Block = 4 Type = P
|
||||
-0.050213789331 # B[15, 4, 1, 5] Block = 4 Type = P
|
||||
0.038175316256 # B[16, 4, 2, 4] Block = 4 Type = P
|
||||
0.041946424186 # B[17, 4, 2, 6] Block = 4 Type = P
|
||||
-0.023902281235 # B[18, 4, 3, 5] Block = 4 Type = P
|
||||
0.008537822812 # B[19, 4, 4, 4] Block = 4 Type = P
|
||||
0.039989757491 # B[20, 4, 4, 6] Block = 4 Type = P
|
||||
0.022210126714 # B[21, 5, 0, 5] Block = 4 Type = P
|
||||
0.010855258243 # B[22, 5, 1, 6] Block = 4 Type = P
|
||||
0.021570527219 # B[23, 5, 2, 5] Block = 4 Type = P
|
||||
-0.119983534986 # B[24, 5, 3, 6] Block = 4 Type = P
|
||||
-0.019726935513 # B[25, 5, 4, 5] Block = 4 Type = P
|
||||
-0.015720476443 # B[26, 5, 5, 6] Block = 4 Type = P
|
||||
-0.024522109113 # B[27, 6, 0, 6] Block = 4 Type = P
|
||||
-0.051478859538 # B[28, 6, 2, 6] Block = 4 Type = P
|
||||
0.017216285614 # B[29, 6, 4, 6] Block = 4 Type = P
|
||||
-0.003565797401 # B[30, 6, 6, 6] Block = 4 Type = P
|
||||
-0.001747658242 # B[1, 0, 0, 0] Block = 5 Type = P
|
||||
-0.026182047943 # B[2, 1, 0, 1] Block = 5 Type = P
|
||||
-0.126595340298 # B[3, 1, 1, 2] Block = 5 Type = P
|
||||
-0.076525139004 # B[4, 2, 0, 2] Block = 5 Type = P
|
||||
-0.157814129312 # B[5, 2, 1, 3] Block = 5 Type = P
|
||||
-0.059117110271 # B[6, 2, 2, 2] Block = 5 Type = P
|
||||
-0.067694089340 # B[7, 2, 2, 4] Block = 5 Type = P
|
||||
-0.020755324452 # B[8, 3, 0, 3] Block = 5 Type = P
|
||||
-0.216746420586 # B[9, 3, 1, 4] Block = 5 Type = P
|
||||
-0.073956723908 # B[10, 3, 2, 3] Block = 5 Type = P
|
||||
-0.263593571569 # B[11, 3, 2, 5] Block = 5 Type = P
|
||||
0.041271206739 # B[12, 3, 3, 4] Block = 5 Type = P
|
||||
-0.004229157928 # B[13, 3, 3, 6] Block = 5 Type = P
|
||||
-0.082660360252 # B[14, 4, 0, 4] Block = 5 Type = P
|
||||
-0.305032662779 # B[15, 4, 1, 5] Block = 5 Type = P
|
||||
-0.046981555049 # B[16, 4, 2, 4] Block = 5 Type = P
|
||||
-0.187955078269 # B[17, 4, 2, 6] Block = 5 Type = P
|
||||
-0.121808447372 # B[18, 4, 3, 5] Block = 5 Type = P
|
||||
0.012133725790 # B[19, 4, 4, 4] Block = 5 Type = P
|
||||
-0.038067814334 # B[20, 4, 4, 6] Block = 5 Type = P
|
||||
-0.034945525448 # B[21, 5, 0, 5] Block = 5 Type = P
|
||||
-0.226555787648 # B[22, 5, 1, 6] Block = 5 Type = P
|
||||
-0.085701075837 # B[23, 5, 2, 5] Block = 5 Type = P
|
||||
-0.121081797087 # B[24, 5, 3, 6] Block = 5 Type = P
|
||||
0.045837409910 # B[25, 5, 4, 5] Block = 5 Type = P
|
||||
0.017747856995 # B[26, 5, 5, 6] Block = 5 Type = P
|
||||
0.010756044042 # B[27, 6, 0, 6] Block = 5 Type = P
|
||||
0.023429477590 # B[28, 6, 2, 6] Block = 5 Type = P
|
||||
-0.007794133717 # B[29, 6, 4, 6] Block = 5 Type = P
|
||||
0.002019828318 # B[30, 6, 6, 6] Block = 5 Type = P
|
||||
-0.003152987881 # B[1, 0, 0, 0] Block = 6 Type = P
|
||||
-0.003431824919 # B[2, 1, 0, 1] Block = 6 Type = P
|
||||
0.098860641022 # B[3, 1, 1, 2] Block = 6 Type = P
|
||||
-0.049867192647 # B[4, 2, 0, 2] Block = 6 Type = P
|
||||
0.130247785083 # B[5, 2, 1, 3] Block = 6 Type = P
|
||||
0.034244852922 # B[6, 2, 2, 2] Block = 6 Type = P
|
||||
0.044579888557 # B[7, 2, 2, 4] Block = 6 Type = P
|
||||
0.051064338359 # B[8, 3, 0, 3] Block = 6 Type = P
|
||||
-0.034769100897 # B[9, 3, 1, 4] Block = 6 Type = P
|
||||
-0.055923569507 # B[10, 3, 2, 3] Block = 6 Type = P
|
||||
0.101065442824 # B[11, 3, 2, 5] Block = 6 Type = P
|
||||
-0.063472862380 # B[12, 3, 3, 4] Block = 6 Type = P
|
||||
-0.015662648111 # B[13, 3, 3, 6] Block = 6 Type = P
|
||||
-0.020942037301 # B[14, 4, 0, 4] Block = 6 Type = P
|
||||
0.057686438719 # B[15, 4, 1, 5] Block = 6 Type = P
|
||||
0.061281723131 # B[16, 4, 2, 4] Block = 6 Type = P
|
||||
0.041003214284 # B[17, 4, 2, 6] Block = 6 Type = P
|
||||
0.104968889582 # B[18, 4, 3, 5] Block = 6 Type = P
|
||||
0.008537822812 # B[19, 4, 4, 4] Block = 6 Type = P
|
||||
0.039989757491 # B[20, 4, 4, 6] Block = 6 Type = P
|
||||
0.058310887739 # B[21, 5, 0, 5] Block = 6 Type = P
|
||||
0.043642228702 # B[22, 5, 1, 6] Block = 6 Type = P
|
||||
0.119827018636 # B[23, 5, 2, 5] Block = 6 Type = P
|
||||
-0.017878741482 # B[24, 5, 3, 6] Block = 6 Type = P
|
||||
0.013615249763 # B[25, 5, 4, 5] Block = 6 Type = P
|
||||
-0.015720476443 # B[26, 5, 5, 6] Block = 6 Type = P
|
||||
0.028210503571 # B[27, 6, 0, 6] Block = 6 Type = P
|
||||
0.138982983531 # B[28, 6, 2, 6] Block = 6 Type = P
|
||||
0.020848948259 # B[29, 6, 4, 6] Block = 6 Type = P
|
||||
-0.003565797401 # B[30, 6, 6, 6] Block = 6 Type = P
|
||||
-0.003152987876 # B[1, 0, 0, 0] Block = 7 Type = P
|
||||
0.014621850469 # B[2, 1, 0, 1] Block = 7 Type = P
|
||||
0.136917412546 # B[3, 1, 1, 2] Block = 7 Type = P
|
||||
0.069546644549 # B[4, 2, 0, 2] Block = 7 Type = P
|
||||
0.134471034367 # B[5, 2, 1, 3] Block = 7 Type = P
|
||||
0.034244852922 # B[6, 2, 2, 2] Block = 7 Type = P
|
||||
0.073714102880 # B[7, 2, 2, 4] Block = 7 Type = P
|
||||
0.001526239292 # B[8, 3, 0, 3] Block = 7 Type = P
|
||||
0.029314077312 # B[9, 3, 1, 4] Block = 7 Type = P
|
||||
0.021679218740 # B[10, 3, 2, 3] Block = 7 Type = P
|
||||
0.005384023182 # B[11, 3, 2, 5] Block = 7 Type = P
|
||||
0.029912954139 # B[12, 3, 3, 4] Block = 7 Type = P
|
||||
0.036308629380 # B[13, 3, 3, 6] Block = 7 Type = P
|
||||
0.076209869795 # B[14, 4, 0, 4] Block = 7 Type = P
|
||||
-0.095659211777 # B[15, 4, 1, 5] Block = 7 Type = P
|
||||
0.038175316256 # B[16, 4, 2, 4] Block = 7 Type = P
|
||||
-0.054559433157 # B[17, 4, 2, 6] Block = 7 Type = P
|
||||
-0.079205893849 # B[18, 4, 3, 5] Block = 7 Type = P
|
||||
0.008537822812 # B[19, 4, 4, 4] Block = 7 Type = P
|
||||
0.072688459278 # B[20, 4, 4, 6] Block = 7 Type = P
|
||||
0.022210126714 # B[21, 5, 0, 5] Block = 7 Type = P
|
||||
0.032318678024 # B[22, 5, 1, 6] Block = 7 Type = P
|
||||
0.021570527219 # B[23, 5, 2, 5] Block = 7 Type = P
|
||||
0.038881258714 # B[24, 5, 3, 6] Block = 7 Type = P
|
||||
-0.019726935513 # B[25, 5, 4, 5] Block = 7 Type = P
|
||||
0.030961312127 # B[26, 5, 5, 6] Block = 7 Type = P
|
||||
-0.024522109113 # B[27, 6, 0, 6] Block = 7 Type = P
|
||||
-0.051478859538 # B[28, 6, 2, 6] Block = 7 Type = P
|
||||
0.017216285614 # B[29, 6, 4, 6] Block = 7 Type = P
|
||||
-0.003565797401 # B[30, 6, 6, 6] Block = 7 Type = P
|
||||
0.000279543258 # B[1, 0, 0, 0] Block = 8 Type = P
|
||||
0.031561006068 # B[2, 1, 0, 1] Block = 8 Type = P
|
||||
0.164297477481 # B[3, 1, 1, 2] Block = 8 Type = P
|
||||
0.020394103829 # B[4, 2, 0, 2] Block = 8 Type = P
|
||||
-0.136924810031 # B[5, 2, 1, 3] Block = 8 Type = P
|
||||
0.011488762740 # B[6, 2, 2, 2] Block = 8 Type = P
|
||||
-0.174577132596 # B[7, 2, 2, 4] Block = 8 Type = P
|
||||
-0.104272988787 # B[8, 3, 0, 3] Block = 8 Type = P
|
||||
-0.126737159959 # B[9, 3, 1, 4] Block = 8 Type = P
|
||||
0.006355291540 # B[10, 3, 2, 3] Block = 8 Type = P
|
||||
-0.116847920709 # B[11, 3, 2, 5] Block = 8 Type = P
|
||||
0.093716628094 # B[12, 3, 3, 4] Block = 8 Type = P
|
||||
-0.015327516258 # B[13, 3, 3, 6] Block = 8 Type = P
|
||||
-0.015071645969 # B[14, 4, 0, 4] Block = 8 Type = P
|
||||
0.054380965184 # B[15, 4, 1, 5] Block = 8 Type = P
|
||||
0.113826098444 # B[16, 4, 2, 4] Block = 8 Type = P
|
||||
0.012970945123 # B[17, 4, 2, 6] Block = 8 Type = P
|
||||
-0.047881183904 # B[18, 4, 3, 5] Block = 8 Type = P
|
||||
-0.010520024430 # B[19, 4, 4, 4] Block = 8 Type = P
|
||||
-0.077321883428 # B[20, 4, 4, 6] Block = 8 Type = P
|
||||
-0.087378280220 # B[21, 5, 0, 5] Block = 8 Type = P
|
||||
-0.221370705680 # B[22, 5, 1, 6] Block = 8 Type = P
|
||||
0.004554405520 # B[23, 5, 2, 5] Block = 8 Type = P
|
||||
-0.164836672985 # B[24, 5, 3, 6] Block = 8 Type = P
|
||||
-0.015080843808 # B[25, 5, 4, 5] Block = 8 Type = P
|
||||
-0.010907038616 # B[26, 5, 5, 6] Block = 8 Type = P
|
||||
-0.022228801431 # B[27, 6, 0, 6] Block = 8 Type = P
|
||||
-0.055154587470 # B[28, 6, 2, 6] Block = 8 Type = P
|
||||
0.007347917376 # B[29, 6, 4, 6] Block = 8 Type = P
|
||||
-0.009369956559 # B[30, 6, 6, 6] Block = 8 Type = P
|
|
@ -0,0 +1 @@
|
|||
../../potentials/InP_JCPA2020.mliap.model
|
|
@ -1,17 +0,0 @@
|
|||
# DATE: 2014-09-05 UNITS: metal CONTRIBUTOR: Aidan Thompson athomps@sandia.gov CITATION: Thompson, Swiler, Trott, Foiles and Tucker, arxiv.org, 1409.3880 (2014)
|
||||
|
||||
# Definition of SNAP potential Ta_Cand06A
|
||||
# Assumes 1 LAMMPS atom type
|
||||
|
||||
variable zblcutinner equal 4
|
||||
variable zblcutouter equal 4.8
|
||||
variable zblz equal 73
|
||||
|
||||
# Specify hybrid with SNAP, ZBL
|
||||
|
||||
pair_style hybrid/overlay &
|
||||
zbl ${zblcutinner} ${zblcutouter} &
|
||||
mliap model linear Ta06A.mliap.model descriptor sna Ta06A.mliap.descriptor
|
||||
pair_coeff 1 1 zbl ${zblz} ${zblz}
|
||||
pair_coeff * * mliap Ta
|
||||
|
|
@ -0,0 +1 @@
|
|||
../../potentials/Ta06A.mliap
|
|
@ -1,21 +0,0 @@
|
|||
# DATE: 2014-09-05 UNITS: metal CONTRIBUTOR: Aidan Thompson athomps@sandia.gov CITATION: Thompson, Swiler, Trott, Foiles and Tucker, arxiv.org, 1409.3880 (2014)
|
||||
|
||||
# LAMMPS SNAP parameters for Ta_Cand06A
|
||||
|
||||
# required
|
||||
rcutfac 4.67637
|
||||
twojmax 6
|
||||
|
||||
# elements
|
||||
|
||||
nelems 1
|
||||
elems Ta
|
||||
radelems 0.5
|
||||
welems 1
|
||||
|
||||
# optional
|
||||
|
||||
rfac0 0.99363
|
||||
rmin0 0
|
||||
bzeroflag 0
|
||||
|
|
@ -0,0 +1 @@
|
|||
../../potentials/Ta06A.mliap.descriptor
|
|
@ -1,37 +0,0 @@
|
|||
# DATE: 2014-09-05 UNITS: metal CONTRIBUTOR: Aidan Thompson athomps@sandia.gov CITATION: Thompson, Swiler, Trott, Foiles and Tucker, arxiv.org, 1409.3880 (2014)
|
||||
|
||||
# LAMMPS SNAP coefficients for Ta_Cand06A
|
||||
|
||||
# nelements ncoeff
|
||||
1 31
|
||||
-2.92477
|
||||
-0.01137
|
||||
-0.00775
|
||||
-0.04907
|
||||
-0.15047
|
||||
0.09157
|
||||
0.05590
|
||||
0.05785
|
||||
-0.11615
|
||||
-0.17122
|
||||
-0.10583
|
||||
0.03941
|
||||
-0.11284
|
||||
0.03939
|
||||
-0.07331
|
||||
-0.06582
|
||||
-0.09341
|
||||
-0.10587
|
||||
-0.15497
|
||||
0.04820
|
||||
0.00205
|
||||
0.00060
|
||||
-0.04898
|
||||
-0.05084
|
||||
-0.03371
|
||||
-0.01441
|
||||
-0.01501
|
||||
-0.00599
|
||||
-0.06373
|
||||
0.03965
|
||||
0.01072
|
|
@ -0,0 +1 @@
|
|||
../../potentials/Ta06A.mliap.model
|
|
@ -1,15 +0,0 @@
|
|||
# DATE: 2020-06-21 UNITS: metal CONTRIBUTOR: Aidan Thompson athomps@sandia.gov CITATION: none
|
||||
|
||||
# Definition of SNAP+ZBL potential.
|
||||
variable zblcutinner equal 4
|
||||
variable zblcutouter equal 4.8
|
||||
variable zblz equal 74
|
||||
|
||||
# Specify hybrid with SNAP and ZBL
|
||||
|
||||
pair_style hybrid/overlay &
|
||||
zbl ${zblcutinner} ${zblcutouter} &
|
||||
mliap model quadratic W.quadratic.mliap.model descriptor sna W.quadratic.mliap.descriptor
|
||||
pair_coeff 1 1 zbl ${zblz} ${zblz}
|
||||
pair_coeff * * mliap W
|
||||
|
|
@ -0,0 +1 @@
|
|||
../../potentials/W.quadratic.mliap
|
|
@ -1,20 +0,0 @@
|
|||
# DATE: 2020-06-21 UNITS: metal CONTRIBUTOR: Aidan Thompson athomps@sandia.gov CITATION: none
|
||||
|
||||
# required
|
||||
|
||||
rcutfac 4.73442
|
||||
twojmax 6
|
||||
|
||||
# elements
|
||||
|
||||
nelems 1
|
||||
elems W
|
||||
radelems 0.5
|
||||
welems 1
|
||||
|
||||
# optional
|
||||
|
||||
rfac0 0.99363
|
||||
rmin0 0
|
||||
bzeroflag 1
|
||||
|
|
@ -0,0 +1 @@
|
|||
../../potentials/W.quadratic.mliap.descriptor
|
|
@ -1,502 +0,0 @@
|
|||
# DATE: 2020-06-21 UNITS: metal CONTRIBUTOR: Aidan Thompson athomps@sandia.gov CITATION: none
|
||||
|
||||
# LAMMPS SNAP coefficients for Quadratic W
|
||||
|
||||
# nelements ncoeff
|
||||
1 496
|
||||
0.000000000000
|
||||
-0.000019342340
|
||||
0.000039964908
|
||||
-0.000450771142
|
||||
-0.000233498664
|
||||
-0.000519872659
|
||||
-0.000089734174
|
||||
-0.000106353291
|
||||
-0.000035475344
|
||||
-0.000254116041
|
||||
-0.000520021242
|
||||
0.000065038801
|
||||
-0.000304498225
|
||||
-0.000032230341
|
||||
-0.000007420702
|
||||
-0.000159369530
|
||||
-0.000144907916
|
||||
0.000078858361
|
||||
-0.000238070583
|
||||
-0.000050556167
|
||||
-0.000008662153
|
||||
0.000017439967
|
||||
-0.000028764863
|
||||
0.000022504717
|
||||
0.000001821340
|
||||
-0.000089967846
|
||||
-0.000106392838
|
||||
0.000013771852
|
||||
0.000070228097
|
||||
-0.000024152909
|
||||
-0.000006036274
|
||||
-4.2551325e-05
|
||||
0.0001982986695
|
||||
5.4994526e-05
|
||||
0.0001760061375
|
||||
0.0005287969295
|
||||
-0.00045677476
|
||||
-0.007136016296
|
||||
0.0003868434375
|
||||
-0.0006071085215
|
||||
-0.000554512177
|
||||
-0.0006596292555
|
||||
-0.0007585367005
|
||||
7.62333015e-05
|
||||
0.0002137614635
|
||||
0.000379897335
|
||||
0.0005441952125
|
||||
0.000128413515
|
||||
5.74706545e-05
|
||||
0.0002303380555
|
||||
-0.0005759952885
|
||||
-0.0001530888095
|
||||
-0.0001614394285
|
||||
-3.80386335e-05
|
||||
-0.0006390699265
|
||||
-2.44191e-05
|
||||
-0.000627990564
|
||||
-0.000199645294
|
||||
-3.63524105e-05
|
||||
-0.0004350939225
|
||||
-0.000230192872
|
||||
-0.000456462716
|
||||
-0.00096561205
|
||||
-0.0016793622125
|
||||
0.008264605054
|
||||
0.005768043843
|
||||
0.0259523273965
|
||||
0.002379667484
|
||||
0.001798185681
|
||||
0.001411261095
|
||||
0.0046629902735
|
||||
-0.001249069583
|
||||
-0.003518728846
|
||||
-0.00152218625
|
||||
-0.0005803019955
|
||||
-0.002443813614
|
||||
0.003302653151
|
||||
-0.0035163183225
|
||||
0.005378221661
|
||||
-0.0005157550285
|
||||
0.0005802384085
|
||||
-8.4625189e-05
|
||||
-0.0003100449505
|
||||
0.0016035457395
|
||||
-0.006841896086
|
||||
0.00327970803
|
||||
0.000517873278
|
||||
0.000462624598
|
||||
0.001556398782
|
||||
0.000629663951
|
||||
0.004036847861
|
||||
0.000410623118
|
||||
0.0033671740175
|
||||
0.0060744662315
|
||||
0.0460285453095
|
||||
0.0106979441315
|
||||
0.006457375952
|
||||
-0.0043000712405
|
||||
-0.0196789547465
|
||||
-0.009589713549
|
||||
-0.0152983426785
|
||||
0.003041488452
|
||||
-0.0032366707575
|
||||
-0.0119067345335
|
||||
0.0049313311815
|
||||
-0.0030034838505
|
||||
8.7700383e-05
|
||||
0.0007061505055
|
||||
0.0097234329625
|
||||
0.007217090323
|
||||
0.000235882459
|
||||
-0.0033595857445
|
||||
-0.0168665065145
|
||||
0.017786509719
|
||||
0.001877013067
|
||||
0.0006351836775
|
||||
0.004600906728
|
||||
0.012509628713
|
||||
-0.003427408333
|
||||
-0.0014640751665
|
||||
-0.003888408385
|
||||
-0.0062058291515
|
||||
-0.001642104699
|
||||
-0.00105774282
|
||||
-0.0059780195505
|
||||
-0.001753939287
|
||||
0.000479345105
|
||||
-0.0019904699045
|
||||
4.98541965e-05
|
||||
-0.0041212491675
|
||||
-0.0042906641465
|
||||
-0.002351418317
|
||||
-0.0106697325275
|
||||
-0.000648222198
|
||||
-0.002286882867
|
||||
-0.000626754824
|
||||
-0.00073748291
|
||||
0.0016922435575
|
||||
0.0037496719655
|
||||
0.004656851048
|
||||
-0.0002176673305
|
||||
-0.0006739876965
|
||||
-0.0006208869175
|
||||
7.61738615e-05
|
||||
0.0019258401385
|
||||
0.005690172208
|
||||
0.007318906809
|
||||
-0.035200169396
|
||||
0.009167226287
|
||||
-0.000404285392
|
||||
-0.00348855982
|
||||
-0.0024229238155
|
||||
0.0022336200925
|
||||
-0.012584737991
|
||||
0.0016262069595
|
||||
0.0048016592015
|
||||
0.0004657340115
|
||||
0.0025051890895
|
||||
-0.0104101829395
|
||||
0.016176490711
|
||||
-0.0094539511845
|
||||
-0.002289487018
|
||||
-0.0002052188655
|
||||
-0.007085549731
|
||||
0.02162608233
|
||||
-0.002238154953
|
||||
0.0190676087705
|
||||
0.0002139442795
|
||||
0.0010403767345
|
||||
0.003360683249
|
||||
0.003153376576
|
||||
-0.001249764819
|
||||
-0.068537163077
|
||||
0.0023354667295
|
||||
0.001767860664
|
||||
-0.0033006265215
|
||||
0.0146223252485
|
||||
-0.003180595809
|
||||
0.0069092040305
|
||||
0.0010583439885
|
||||
-0.003447267898
|
||||
-0.001106713702
|
||||
0.00523272471
|
||||
-0.010758599437
|
||||
-0.001822397317
|
||||
0.018487732527
|
||||
-0.0024400507145
|
||||
-0.007514714512
|
||||
-0.003947742615
|
||||
0.012413627732
|
||||
0.003092235017
|
||||
0.018069399047
|
||||
-0.0035369320715
|
||||
0.0011168541665
|
||||
-0.0014980962775
|
||||
-1.2944254e-05
|
||||
-0.041955689351
|
||||
0.0023033776335
|
||||
-0.040725631204
|
||||
-0.0693632023935
|
||||
0.020674975135
|
||||
-0.0341006922645
|
||||
-0.006059344895
|
||||
0.002385437006
|
||||
-0.004177512167
|
||||
-0.0146544701995
|
||||
-0.0008310261785
|
||||
-0.010934674355
|
||||
0.006492824537
|
||||
-0.014812643723
|
||||
0.004033748718
|
||||
-0.004155996547
|
||||
-0.013113411806
|
||||
-0.0088014221285
|
||||
0.0037541341
|
||||
-0.000805304258
|
||||
0.006318190602
|
||||
0.012552958042
|
||||
0.004200553135
|
||||
-0.00681355806
|
||||
-0.001852228976
|
||||
0.0017381476065
|
||||
-0.002643779529
|
||||
0.0049358851655
|
||||
0.001522146164
|
||||
0.002260955858
|
||||
-0.000839707664
|
||||
0.0008487292955
|
||||
0.002671028789
|
||||
-0.000193952538
|
||||
0.003111368392
|
||||
0.0007482047125
|
||||
0.0020401970905
|
||||
0.000530116057
|
||||
-0.0022777656015
|
||||
-0.0045238154695
|
||||
0.0018290760485
|
||||
-0.0003309336725
|
||||
0.00293571563
|
||||
0.000172269209
|
||||
0.001414752092
|
||||
0.0005614625055
|
||||
0.000441310903
|
||||
-0.002473120026
|
||||
-0.015420836338
|
||||
-0.0058494470115
|
||||
-0.013440044608
|
||||
-0.009774364656
|
||||
-0.0019064948385
|
||||
-1.70476245e-05
|
||||
0.0049669399345
|
||||
-0.0050880033155
|
||||
0.001600486319
|
||||
-0.0018417989075
|
||||
-0.0111031210975
|
||||
0.0007780738275
|
||||
-0.004930202896
|
||||
-0.002537539117
|
||||
-0.0090246084865
|
||||
-0.002694202287
|
||||
-0.0062002945005
|
||||
0.0031924710865
|
||||
0.0021120090085
|
||||
-0.003067483203
|
||||
-0.0002847253785
|
||||
-0.016407568729
|
||||
-0.0012875748665
|
||||
-0.0136223073595
|
||||
-0.00152438356
|
||||
0.0012803681485
|
||||
-0.002216406572
|
||||
-0.001518786423
|
||||
-0.004453055438
|
||||
-0.0078894618465
|
||||
0.001421143537
|
||||
-0.0050288776725
|
||||
0.001199592632
|
||||
-0.002661588749
|
||||
-0.004357715347
|
||||
0.009525078378
|
||||
0.0026286979515
|
||||
0.0043289788665
|
||||
0.0004994005155
|
||||
0.003791227565
|
||||
0.0004056536255
|
||||
0.0033347889035
|
||||
-0.000464347336
|
||||
-0.0069517390965
|
||||
-0.0079588750315
|
||||
-0.004154738239
|
||||
0.006620101338
|
||||
0.008608842617
|
||||
0.0056131740625
|
||||
0.0011860229985
|
||||
0.007580086232
|
||||
0.003260306951
|
||||
0.000979553031
|
||||
-0.0044626742655
|
||||
-0.005235925737
|
||||
-0.0161268610495
|
||||
-0.0069229581565
|
||||
0.003724916317
|
||||
0.0023613845
|
||||
0.0013633397005
|
||||
0.001433661889
|
||||
-0.0009859245845
|
||||
-0.019516619562
|
||||
-0.0051345232355
|
||||
-0.0003792145305
|
||||
-0.009160883563
|
||||
-0.0052408213305
|
||||
-0.000837343292
|
||||
-0.010077898583
|
||||
-0.000297970588
|
||||
-0.000858261403
|
||||
-0.0001092992995
|
||||
-0.002443805024
|
||||
-0.0025107490965
|
||||
-0.0062944996435
|
||||
0.0026546548665
|
||||
0.0006955853785
|
||||
0.000103592795
|
||||
0.000708964143
|
||||
0.0019193670325
|
||||
-0.0001578612265
|
||||
-0.005585721575
|
||||
-0.000421551186
|
||||
0.0022745774245
|
||||
-0.004927140737
|
||||
0.0004199419505
|
||||
-0.0037407737345
|
||||
0.002130170551
|
||||
-0.0030979189135
|
||||
-0.0019395201255
|
||||
0.0067944948975
|
||||
-0.000359694345
|
||||
-0.0002144026575
|
||||
0.0025529098515
|
||||
0.0001917158465
|
||||
-0.000540725939
|
||||
0.001239653721
|
||||
0.00159659403
|
||||
-5.5652017e-05
|
||||
4.5092483e-05
|
||||
0.002495602056
|
||||
-0.0035351180395
|
||||
0.0009665743545
|
||||
-0.0023236857675
|
||||
-0.0014564171785
|
||||
-0.0008165505935
|
||||
-0.000118027852
|
||||
0.002536872662
|
||||
0.0009829535115
|
||||
0.0019442113705
|
||||
0.000664158062
|
||||
0.000326715061
|
||||
0.00019900621
|
||||
0.0004767582395
|
||||
0.000900303081
|
||||
-2.91049685e-05
|
||||
-0.004411179905
|
||||
-0.004064521081
|
||||
0.00692497271
|
||||
-0.005195674108
|
||||
-0.006544598492
|
||||
0.0029896960935
|
||||
0.000425073164
|
||||
-8.0017505e-05
|
||||
0.000846844414
|
||||
0.003287511416
|
||||
-0.009662064447
|
||||
0.0014047560985
|
||||
-0.0008689313915
|
||||
0.0009517570465
|
||||
0.000152017235
|
||||
1.6514158e-05
|
||||
0.00066355894
|
||||
0.0067775973265
|
||||
0.0021844858475
|
||||
0.0056757292145
|
||||
0.0054950676515
|
||||
0.0002498690125
|
||||
-0.006315915302
|
||||
-0.0059966827865
|
||||
-0.0034483171305
|
||||
0.0073702392255
|
||||
0.007591193081
|
||||
0.0004062066825
|
||||
0.000913827769
|
||||
0.000622164767
|
||||
0.0002438011115
|
||||
0.01119218957
|
||||
0.010457943327
|
||||
-0.002352405766
|
||||
-0.000761350789
|
||||
0.000146360756
|
||||
-0.00052151391
|
||||
-0.001421163661
|
||||
-0.0098259784665
|
||||
-0.001387664408
|
||||
-0.0010876399735
|
||||
0.000794093996
|
||||
0.003036965154
|
||||
-0.0017118732635
|
||||
-0.0015837318195
|
||||
-0.006679253783
|
||||
0.000882488727
|
||||
0.0093074758655
|
||||
0.0013319314085
|
||||
-0.011547004122
|
||||
-0.003864301947
|
||||
-0.007112747006
|
||||
-0.00330951085
|
||||
-0.0007122545915
|
||||
-0.001201815256
|
||||
0.0041789351005
|
||||
-0.0001805522685
|
||||
-0.0007465084205
|
||||
0.008838667361
|
||||
0.0048153576585
|
||||
-9.8403371e-05
|
||||
-0.010102205467
|
||||
-0.0090783851625
|
||||
-0.0014465915755
|
||||
0.0056402904815
|
||||
0.004713889865
|
||||
-0.000958685828
|
||||
0.002844420936
|
||||
0.000886932857
|
||||
0.0002483938575
|
||||
0.000144967791
|
||||
-0.0012477036845
|
||||
0.004783753466
|
||||
-0.0076604636325
|
||||
0.00091901227
|
||||
0.0010552043375
|
||||
0.0013117699705
|
||||
-0.000302204736
|
||||
0.002096120671
|
||||
-0.0002417090715
|
||||
0.0008896279815
|
||||
8.3058685e-05
|
||||
0.002360101467
|
||||
0.003364314747
|
||||
0.0008746445705
|
||||
-0.0011215585125
|
||||
-0.0003387424825
|
||||
0.0005632970265
|
||||
-0.0006617281215
|
||||
0.0003733063965
|
||||
0.0002623090815
|
||||
0.004593469114
|
||||
0.0040372304995
|
||||
-0.001688451935
|
||||
-0.003686908717
|
||||
-0.004326202128
|
||||
-0.000870929915
|
||||
-0.0001854711995
|
||||
0.0002189774835
|
||||
0.00071865135
|
||||
0.007416398218
|
||||
0.0020460979
|
||||
-0.008020256566
|
||||
-0.016722806328
|
||||
0.001376213073
|
||||
0.000347513599
|
||||
0.0016684763755
|
||||
-0.000874786219
|
||||
0.001891181919
|
||||
-0.000534904311
|
||||
0.000846430852
|
||||
-0.000641433051
|
||||
0.0007377551475
|
||||
0.001358126396
|
||||
-0.000866748663
|
||||
0.011124487718
|
||||
0.005228666165
|
||||
-0.001490438881
|
||||
-0.0008813532175
|
||||
-0.0001303988565
|
||||
0.0007163794045
|
||||
0.004674505138
|
||||
-0.000722641184
|
||||
-0.002023585289
|
||||
0.001547283689
|
||||
0.000753938405
|
||||
0.000470918236
|
||||
-0.0003316097225
|
||||
-0.0002293860925
|
||||
6.90841455e-05
|
||||
-0.001301344263
|
||||
-0.0004029179255
|
||||
6.69084325e-05
|
||||
-0.000142497889
|
||||
0.0002207077485
|
||||
-0.000201523756
|
|
@ -0,0 +1 @@
|
|||
../../potentials/W.quadratic.mliap.model
|
|
@ -1,16 +0,0 @@
|
|||
# DATE: 2019-09-18 UNITS: metal CONTRIBUTOR: Mary Alice Cusentino mcusent@sandia.gov CITATION: M.A. Wood, M.A. Cusentino, B.D. Wirth, and A.P. Thompson, "Data-driven material models for atomistic simulation", Physical Review B 99, 184305 (2019)
|
||||
# Definition of SNAP+ZBL potential.
|
||||
variable zblcutinner equal 4
|
||||
variable zblcutouter equal 4.8
|
||||
variable zblz1 equal 74
|
||||
variable zblz2 equal 4
|
||||
|
||||
# Specify hybrid with SNAP and ZBL
|
||||
|
||||
pair_style hybrid/overlay zbl ${zblcutinner} ${zblcutouter} &
|
||||
mliap model linear WBe_Wood_PRB2019.mliap.model descriptor sna WBe_Wood_PRB2019.mliap.descriptor
|
||||
pair_coeff 1 1 zbl ${zblz1} ${zblz1}
|
||||
pair_coeff 1 2 zbl ${zblz1} ${zblz2}
|
||||
pair_coeff 2 2 zbl ${zblz2} ${zblz2}
|
||||
pair_coeff * * mliap W Be
|
||||
|
|
@ -0,0 +1 @@
|
|||
../../potentials/WBe_Wood_PRB2019.mliap
|
|
@ -1,20 +0,0 @@
|
|||
# DATE: 2019-09-18 UNITS: metal CONTRIBUTOR: Mary Alice Cusentino mcusent@sandia.gov CITATION: M.A. Wood, M.A. Cusentino, B.D. Wirth, and A.P. Thompson, "Data-driven material models for atomistic simulation", Physical Review B 99, 184305 (2019)
|
||||
|
||||
# required
|
||||
|
||||
rcutfac 4.8123
|
||||
twojmax 8
|
||||
|
||||
# elements
|
||||
|
||||
nelems 2
|
||||
elems W Be
|
||||
radelems 0.5 0.417932
|
||||
welems 1 0.959049
|
||||
|
||||
# optional
|
||||
|
||||
rfac0 0.99363
|
||||
rmin0 0
|
||||
bzeroflag 1
|
||||
|
|
@ -0,0 +1 @@
|
|||
../../potentials/WBe_Wood_PRB2019.mliap.descriptor
|
|
@ -1,117 +0,0 @@
|
|||
# DATE: 2019-09-18 UNITS: metal CONTRIBUTOR: Mary Alice Cusentino mcusent@sandia.gov CITATION: M.A. Wood, M.A. Cusentino, B.D. Wirth, and A.P. Thompson, "Data-driven material models for atomistic simulation", Physical Review B 99, 184305 (2019)
|
||||
# LAMMPS SNAP coefficients for WBe
|
||||
|
||||
# nelements ncoeff
|
||||
2 56
|
||||
-0.000000000000 # B[0]
|
||||
-0.001487061994 # B[1, 0, 0, 0]
|
||||
0.075808306870 # B[2, 1, 0, 1]
|
||||
0.538735683870 # B[3, 1, 1, 2]
|
||||
-0.074148039366 # B[4, 2, 0, 2]
|
||||
0.602629813770 # B[5, 2, 1, 3]
|
||||
-0.147022424344 # B[6, 2, 2, 2]
|
||||
0.117756828488 # B[7, 2, 2, 4]
|
||||
-0.026490439049 # B[8, 3, 0, 3]
|
||||
-0.035162708767 # B[9, 3, 1, 4]
|
||||
0.064315385091 # B[10, 3, 2, 3]
|
||||
-0.131936948089 # B[11, 3, 2, 5]
|
||||
-0.021272860272 # B[12, 3, 3, 4]
|
||||
-0.091171134054 # B[13, 3, 3, 6]
|
||||
-0.024396224398 # B[14, 4, 0, 4]
|
||||
-0.059813132803 # B[15, 4, 1, 5]
|
||||
0.069585393203 # B[16, 4, 2, 4]
|
||||
-0.085344044181 # B[17, 4, 2, 6]
|
||||
-0.155425254597 # B[18, 4, 3, 5]
|
||||
-0.117031758367 # B[19, 4, 3, 7]
|
||||
-0.040956258020 # B[20, 4, 4, 4]
|
||||
-0.084465000389 # B[21, 4, 4, 6]
|
||||
-0.020367513630 # B[22, 4, 4, 8]
|
||||
-0.010730484318 # B[23, 5, 0, 5]
|
||||
-0.054777575658 # B[24, 5, 1, 6]
|
||||
0.050742893747 # B[25, 5, 2, 5]
|
||||
-0.004686334611 # B[26, 5, 2, 7]
|
||||
-0.116372907121 # B[27, 5, 3, 6]
|
||||
0.005542497708 # B[28, 5, 3, 8]
|
||||
-0.126526795635 # B[29, 5, 4, 5]
|
||||
-0.080163926221 # B[30, 5, 4, 7]
|
||||
-0.082426250179 # B[31, 5, 5, 6]
|
||||
-0.010558777281 # B[32, 5, 5, 8]
|
||||
-0.001939058038 # B[33, 6, 0, 6]
|
||||
-0.027907949962 # B[34, 6, 1, 7]
|
||||
0.049483908476 # B[35, 6, 2, 6]
|
||||
0.005103754385 # B[36, 6, 2, 8]
|
||||
-0.054751505141 # B[37, 6, 3, 7]
|
||||
-0.055556071011 # B[38, 6, 4, 6]
|
||||
-0.006026917619 # B[39, 6, 4, 8]
|
||||
-0.060889030109 # B[40, 6, 5, 7]
|
||||
-0.029977673973 # B[41, 6, 6, 6]
|
||||
-0.014987527280 # B[42, 6, 6, 8]
|
||||
-0.006697686658 # B[43, 7, 0, 7]
|
||||
0.017369624409 # B[44, 7, 1, 8]
|
||||
0.047864358817 # B[45, 7, 2, 7]
|
||||
-0.001989812679 # B[46, 7, 3, 8]
|
||||
0.000153530925 # B[47, 7, 4, 7]
|
||||
-0.003862356345 # B[48, 7, 5, 8]
|
||||
-0.009754314198 # B[49, 7, 6, 7]
|
||||
0.000777958970 # B[50, 7, 7, 8]
|
||||
-0.003031424287 # B[51, 8, 0, 8]
|
||||
0.015612715209 # B[52, 8, 2, 8]
|
||||
0.003210129646 # B[53, 8, 4, 8]
|
||||
-0.013088799947 # B[54, 8, 6, 8]
|
||||
0.001465970755 # B[55, 8, 8, 8]
|
||||
0.000000000000 # B[0]
|
||||
-0.000112143918 # B[1, 0, 0, 0]
|
||||
0.002449805180 # B[2, 1, 0, 1]
|
||||
0.189705916830 # B[3, 1, 1, 2]
|
||||
-0.019967429692 # B[4, 2, 0, 2]
|
||||
0.286015704682 # B[5, 2, 1, 3]
|
||||
0.072864063124 # B[6, 2, 2, 2]
|
||||
0.108748154196 # B[7, 2, 2, 4]
|
||||
-0.005203284351 # B[8, 3, 0, 3]
|
||||
0.043948598532 # B[9, 3, 1, 4]
|
||||
0.105425889093 # B[10, 3, 2, 3]
|
||||
0.060460134045 # B[11, 3, 2, 5]
|
||||
-0.003406205141 # B[12, 3, 3, 4]
|
||||
0.002306765306 # B[13, 3, 3, 6]
|
||||
-0.003845115174 # B[14, 4, 0, 4]
|
||||
0.029471162073 # B[15, 4, 1, 5]
|
||||
0.054901130330 # B[16, 4, 2, 4]
|
||||
0.010910192753 # B[17, 4, 2, 6]
|
||||
0.033885210622 # B[18, 4, 3, 5]
|
||||
0.008053439551 # B[19, 4, 3, 7]
|
||||
-0.001432298168 # B[20, 4, 4, 4]
|
||||
0.017478027729 # B[21, 4, 4, 6]
|
||||
-0.003402034990 # B[22, 4, 4, 8]
|
||||
-0.002655339820 # B[23, 5, 0, 5]
|
||||
0.012668749892 # B[24, 5, 1, 6]
|
||||
0.037521561888 # B[25, 5, 2, 5]
|
||||
-0.000682693314 # B[26, 5, 2, 7]
|
||||
0.008525913627 # B[27, 5, 3, 6]
|
||||
0.008977936348 # B[28, 5, 3, 8]
|
||||
0.006922732235 # B[29, 5, 4, 5]
|
||||
0.003031883044 # B[30, 5, 4, 7]
|
||||
-0.000345577975 # B[31, 5, 5, 6]
|
||||
-0.001041600679 # B[32, 5, 5, 8]
|
||||
-0.001407625493 # B[33, 6, 0, 6]
|
||||
0.004211558640 # B[34, 6, 1, 7]
|
||||
0.014450875461 # B[35, 6, 2, 6]
|
||||
-0.007033326252 # B[36, 6, 2, 8]
|
||||
0.004998742185 # B[37, 6, 3, 7]
|
||||
-0.002824617682 # B[38, 6, 4, 6]
|
||||
0.003831871934 # B[39, 6, 4, 8]
|
||||
-0.005700892700 # B[40, 6, 5, 7]
|
||||
0.000184422409 # B[41, 6, 6, 6]
|
||||
0.001592696824 # B[42, 6, 6, 8]
|
||||
-0.000804927645 # B[43, 7, 0, 7]
|
||||
0.008465358642 # B[44, 7, 1, 8]
|
||||
0.005460531160 # B[45, 7, 2, 7]
|
||||
-0.000639605094 # B[46, 7, 3, 8]
|
||||
-0.002403948393 # B[47, 7, 4, 7]
|
||||
-0.001267042453 # B[48, 7, 5, 8]
|
||||
0.003836940623 # B[49, 7, 6, 7]
|
||||
0.002333141437 # B[50, 7, 7, 8]
|
||||
-0.000665360637 # B[51, 8, 0, 8]
|
||||
-0.003460637865 # B[52, 8, 2, 8]
|
||||
-0.001598726043 # B[53, 8, 4, 8]
|
||||
0.001478744304 # B[54, 8, 6, 8]
|
||||
0.000806643203 # B[55, 8, 8, 8]
|
|
@ -0,0 +1 @@
|
|||
../../potentials/WBe_Wood_PRB2019.mliap.model
|
|
@ -0,0 +1,19 @@
|
|||
# DATE: 2020-06-01 UNITS: metal CONTRIBUTOR: Mary Alice Cusentino mcusent@sandia.gov CITATION: M.A. Cusentino, M. A. Wood, and A.P. Thompson, "Explicit Multi-element Extension of the Spectral Neighbor Analysis Potential for Chemically Complex Systems", J. Phys. Chem. A, xxxxxx (2020)
|
||||
|
||||
# Definition of SNAP+ZBL potential.
|
||||
|
||||
variable zblcutinner index 4
|
||||
variable zblcutouter index 4.2
|
||||
variable zblz1 index 49
|
||||
variable zblz2 index 15
|
||||
|
||||
# Specify hybrid with SNAP and ZBL
|
||||
|
||||
pair_style hybrid/overlay &
|
||||
zbl ${zblcutinner} ${zblcutouter} &
|
||||
mliap model linear InP_JCPA2020.mliap.model descriptor sna InP_JCPA2020.mliap.descriptor
|
||||
pair_coeff 1 1 zbl ${zblz1} ${zblz1}
|
||||
pair_coeff 1 2 zbl ${zblz1} ${zblz2}
|
||||
pair_coeff 2 2 zbl ${zblz2} ${zblz2}
|
||||
pair_coeff * * mliap In P
|
||||
|
|
@ -0,0 +1,20 @@
|
|||
# DATE: 2020-06-01 UNITS: metal CONTRIBUTOR: Mary Alice Cusentino mcusent@sandia.gov CITATION: M.A. Cusentino, M. A. Wood, and A.P. Thompson, "Explicit Multi-element Extension of the Spectral Neighbor Analysis Potential for Chemically Complex Systems", J. Phys. Chem. A, xxxxxx (2020)
|
||||
|
||||
# required
|
||||
rcutfac 1.0
|
||||
twojmax 6
|
||||
|
||||
# elements
|
||||
|
||||
nelems 2
|
||||
elems In P
|
||||
radelems 3.81205 3.82945
|
||||
welems 1 0.929316
|
||||
|
||||
# optional
|
||||
rfac0 0.99363
|
||||
rmin0 0.0
|
||||
bzeroflag 1
|
||||
wselfallflag 1
|
||||
chemflag 1
|
||||
bnormflag 1
|
|
@ -0,0 +1,485 @@
|
|||
# DATE: 2020-06-01 UNITS: metal CONTRIBUTOR: Mary Alice Cusentino mcusent@sandia.gov CITATION: M.A. Cusentino, M. A. Wood, and A.P. Thompson, "Explicit Multi-element Extension of the Spectral Neighbor Analysis Potential for Chemically Complex Systems", J. Phys. Chem. A, xxxxxx (2020)
|
||||
|
||||
2 241
|
||||
0.000000000000 # B[0] Block = 1 Type = In
|
||||
-0.000666721868 # B[1, 0, 0, 0] Block = 1 Type = In
|
||||
0.032408881964 # B[2, 1, 0, 1] Block = 1 Type = In
|
||||
0.182277739455 # B[3, 1, 1, 2] Block = 1 Type = In
|
||||
0.001455902168 # B[4, 2, 0, 2] Block = 1 Type = In
|
||||
0.086259367737 # B[5, 2, 1, 3] Block = 1 Type = In
|
||||
-0.044840628371 # B[6, 2, 2, 2] Block = 1 Type = In
|
||||
-0.175973261191 # B[7, 2, 2, 4] Block = 1 Type = In
|
||||
-0.052429169415 # B[8, 3, 0, 3] Block = 1 Type = In
|
||||
0.195529228497 # B[9, 3, 1, 4] Block = 1 Type = In
|
||||
0.078718744520 # B[10, 3, 2, 3] Block = 1 Type = In
|
||||
-0.688127658121 # B[11, 3, 2, 5] Block = 1 Type = In
|
||||
0.059084058400 # B[12, 3, 3, 4] Block = 1 Type = In
|
||||
0.006795099274 # B[13, 3, 3, 6] Block = 1 Type = In
|
||||
-0.043061553886 # B[14, 4, 0, 4] Block = 1 Type = In
|
||||
-0.046619800530 # B[15, 4, 1, 5] Block = 1 Type = In
|
||||
-0.117451659827 # B[16, 4, 2, 4] Block = 1 Type = In
|
||||
-0.233615100720 # B[17, 4, 2, 6] Block = 1 Type = In
|
||||
0.015358771114 # B[18, 4, 3, 5] Block = 1 Type = In
|
||||
0.022474133984 # B[19, 4, 4, 4] Block = 1 Type = In
|
||||
0.002165850235 # B[20, 4, 4, 6] Block = 1 Type = In
|
||||
0.003458938546 # B[21, 5, 0, 5] Block = 1 Type = In
|
||||
-0.053507775670 # B[22, 5, 1, 6] Block = 1 Type = In
|
||||
0.120989101467 # B[23, 5, 2, 5] Block = 1 Type = In
|
||||
0.092637875162 # B[24, 5, 3, 6] Block = 1 Type = In
|
||||
0.071459233521 # B[25, 5, 4, 5] Block = 1 Type = In
|
||||
0.086291858607 # B[26, 5, 5, 6] Block = 1 Type = In
|
||||
0.006749966752 # B[27, 6, 0, 6] Block = 1 Type = In
|
||||
0.144917284093 # B[28, 6, 2, 6] Block = 1 Type = In
|
||||
0.055178211309 # B[29, 6, 4, 6] Block = 1 Type = In
|
||||
-0.005619133266 # B[30, 6, 6, 6] Block = 1 Type = In
|
||||
0.005430513632 # B[1, 0, 0, 0] Block = 2 Type = In
|
||||
0.057269488101 # B[2, 1, 0, 1] Block = 2 Type = In
|
||||
0.320412300575 # B[3, 1, 1, 2] Block = 2 Type = In
|
||||
0.035481869944 # B[4, 2, 0, 2] Block = 2 Type = In
|
||||
0.111076763087 # B[5, 2, 1, 3] Block = 2 Type = In
|
||||
0.039770598731 # B[6, 2, 2, 2] Block = 2 Type = In
|
||||
0.141315510383 # B[7, 2, 2, 4] Block = 2 Type = In
|
||||
0.067792661762 # B[8, 3, 0, 3] Block = 2 Type = In
|
||||
-0.080858457946 # B[9, 3, 1, 4] Block = 2 Type = In
|
||||
0.258942062632 # B[10, 3, 2, 3] Block = 2 Type = In
|
||||
0.061756985062 # B[11, 3, 2, 5] Block = 2 Type = In
|
||||
-0.112424676196 # B[12, 3, 3, 4] Block = 2 Type = In
|
||||
0.168376857205 # B[13, 3, 3, 6] Block = 2 Type = In
|
||||
-0.029743698629 # B[14, 4, 0, 4] Block = 2 Type = In
|
||||
-0.093967263289 # B[15, 4, 1, 5] Block = 2 Type = In
|
||||
0.137229827290 # B[16, 4, 2, 4] Block = 2 Type = In
|
||||
0.056897919200 # B[17, 4, 2, 6] Block = 2 Type = In
|
||||
0.095137344320 # B[18, 4, 3, 5] Block = 2 Type = In
|
||||
-0.008598816416 # B[19, 4, 4, 4] Block = 2 Type = In
|
||||
0.038890602482 # B[20, 4, 4, 6] Block = 2 Type = In
|
||||
-0.034624751006 # B[21, 5, 0, 5] Block = 2 Type = In
|
||||
-0.282625695473 # B[22, 5, 1, 6] Block = 2 Type = In
|
||||
0.103089891872 # B[23, 5, 2, 5] Block = 2 Type = In
|
||||
-0.024380802146 # B[24, 5, 3, 6] Block = 2 Type = In
|
||||
-0.063847809434 # B[25, 5, 4, 5] Block = 2 Type = In
|
||||
-0.024896682749 # B[26, 5, 5, 6] Block = 2 Type = In
|
||||
0.000464369553 # B[27, 6, 0, 6] Block = 2 Type = In
|
||||
0.082229290277 # B[28, 6, 2, 6] Block = 2 Type = In
|
||||
-0.008875503360 # B[29, 6, 4, 6] Block = 2 Type = In
|
||||
-0.009039017094 # B[30, 6, 6, 6] Block = 2 Type = In
|
||||
0.005430513686 # B[1, 0, 0, 0] Block = 3 Type = In
|
||||
-0.004352445887 # B[2, 1, 0, 1] Block = 3 Type = In
|
||||
0.149882860704 # B[3, 1, 1, 2] Block = 3 Type = In
|
||||
-0.015528472583 # B[4, 2, 0, 2] Block = 3 Type = In
|
||||
0.558662861756 # B[5, 2, 1, 3] Block = 3 Type = In
|
||||
0.039770598731 # B[6, 2, 2, 2] Block = 3 Type = In
|
||||
0.179060667136 # B[7, 2, 2, 4] Block = 3 Type = In
|
||||
0.034759981675 # B[8, 3, 0, 3] Block = 3 Type = In
|
||||
0.603083480153 # B[9, 3, 1, 4] Block = 3 Type = In
|
||||
0.176946655350 # B[10, 3, 2, 3] Block = 3 Type = In
|
||||
0.165639632803 # B[11, 3, 2, 5] Block = 3 Type = In
|
||||
0.055627509305 # B[12, 3, 3, 4] Block = 3 Type = In
|
||||
0.049782791218 # B[13, 3, 3, 6] Block = 3 Type = In
|
||||
0.036078617029 # B[14, 4, 0, 4] Block = 3 Type = In
|
||||
0.064493563641 # B[15, 4, 1, 5] Block = 3 Type = In
|
||||
0.149250535822 # B[16, 4, 2, 4] Block = 3 Type = In
|
||||
-0.060208330201 # B[17, 4, 2, 6] Block = 3 Type = In
|
||||
0.105119833648 # B[18, 4, 3, 5] Block = 3 Type = In
|
||||
-0.008598816416 # B[19, 4, 4, 4] Block = 3 Type = In
|
||||
0.041210118888 # B[20, 4, 4, 6] Block = 3 Type = In
|
||||
-0.002705345469 # B[21, 5, 0, 5] Block = 3 Type = In
|
||||
0.170191392493 # B[22, 5, 1, 6] Block = 3 Type = In
|
||||
0.226897293272 # B[23, 5, 2, 5] Block = 3 Type = In
|
||||
0.013009034793 # B[24, 5, 3, 6] Block = 3 Type = In
|
||||
-0.020734586320 # B[25, 5, 4, 5] Block = 3 Type = In
|
||||
-0.018139074523 # B[26, 5, 5, 6] Block = 3 Type = In
|
||||
-0.016001848874 # B[27, 6, 0, 6] Block = 3 Type = In
|
||||
0.016663324316 # B[28, 6, 2, 6] Block = 3 Type = In
|
||||
-0.024245533697 # B[29, 6, 4, 6] Block = 3 Type = In
|
||||
-0.009039017094 # B[30, 6, 6, 6] Block = 3 Type = In
|
||||
-0.005654800687 # B[1, 0, 0, 0] Block = 4 Type = In
|
||||
-0.071064263981 # B[2, 1, 0, 1] Block = 4 Type = In
|
||||
-0.009868049046 # B[3, 1, 1, 2] Block = 4 Type = In
|
||||
-0.061297753855 # B[4, 2, 0, 2] Block = 4 Type = In
|
||||
-0.239682636759 # B[5, 2, 1, 3] Block = 4 Type = In
|
||||
0.015954956116 # B[6, 2, 2, 2] Block = 4 Type = In
|
||||
0.176005610703 # B[7, 2, 2, 4] Block = 4 Type = In
|
||||
-0.081125948095 # B[8, 3, 0, 3] Block = 4 Type = In
|
||||
-0.170847987084 # B[9, 3, 1, 4] Block = 4 Type = In
|
||||
0.242239715395 # B[10, 3, 2, 3] Block = 4 Type = In
|
||||
0.082507688294 # B[11, 3, 2, 5] Block = 4 Type = In
|
||||
0.247785108978 # B[12, 3, 3, 4] Block = 4 Type = In
|
||||
-0.008194303016 # B[13, 3, 3, 6] Block = 4 Type = In
|
||||
0.014786217107 # B[14, 4, 0, 4] Block = 4 Type = In
|
||||
-0.096877379511 # B[15, 4, 1, 5] Block = 4 Type = In
|
||||
0.164908528605 # B[16, 4, 2, 4] Block = 4 Type = In
|
||||
0.151575252604 # B[17, 4, 2, 6] Block = 4 Type = In
|
||||
0.099757230122 # B[18, 4, 3, 5] Block = 4 Type = In
|
||||
0.035047662350 # B[19, 4, 4, 4] Block = 4 Type = In
|
||||
0.007150552805 # B[20, 4, 4, 6] Block = 4 Type = In
|
||||
0.019198319779 # B[21, 5, 0, 5] Block = 4 Type = In
|
||||
-0.127113932870 # B[22, 5, 1, 6] Block = 4 Type = In
|
||||
0.114478010571 # B[23, 5, 2, 5] Block = 4 Type = In
|
||||
0.050915227324 # B[24, 5, 3, 6] Block = 4 Type = In
|
||||
0.096853268510 # B[25, 5, 4, 5] Block = 4 Type = In
|
||||
0.067894750884 # B[26, 5, 5, 6] Block = 4 Type = In
|
||||
-0.002405537661 # B[27, 6, 0, 6] Block = 4 Type = In
|
||||
0.058549926350 # B[28, 6, 2, 6] Block = 4 Type = In
|
||||
0.009481237049 # B[29, 6, 4, 6] Block = 4 Type = In
|
||||
-0.008649958571 # B[30, 6, 6, 6] Block = 4 Type = In
|
||||
0.005430513686 # B[1, 0, 0, 0] Block = 5 Type = In
|
||||
0.057269488102 # B[2, 1, 0, 1] Block = 5 Type = In
|
||||
0.149882860704 # B[3, 1, 1, 2] Block = 5 Type = In
|
||||
0.035481869944 # B[4, 2, 0, 2] Block = 5 Type = In
|
||||
0.378916788823 # B[5, 2, 1, 3] Block = 5 Type = In
|
||||
0.039770598731 # B[6, 2, 2, 2] Block = 5 Type = In
|
||||
0.179060667136 # B[7, 2, 2, 4] Block = 5 Type = In
|
||||
0.067792661762 # B[8, 3, 0, 3] Block = 5 Type = In
|
||||
0.272613304171 # B[9, 3, 1, 4] Block = 5 Type = In
|
||||
0.258942062632 # B[10, 3, 2, 3] Block = 5 Type = In
|
||||
0.100130474069 # B[11, 3, 2, 5] Block = 5 Type = In
|
||||
0.055627509305 # B[12, 3, 3, 4] Block = 5 Type = In
|
||||
0.049782791218 # B[13, 3, 3, 6] Block = 5 Type = In
|
||||
-0.029743698629 # B[14, 4, 0, 4] Block = 5 Type = In
|
||||
-0.013420300314 # B[15, 4, 1, 5] Block = 5 Type = In
|
||||
0.137229827290 # B[16, 4, 2, 4] Block = 5 Type = In
|
||||
-0.034447269506 # B[17, 4, 2, 6] Block = 5 Type = In
|
||||
-0.033847124314 # B[18, 4, 3, 5] Block = 5 Type = In
|
||||
-0.008598816416 # B[19, 4, 4, 4] Block = 5 Type = In
|
||||
0.041210118888 # B[20, 4, 4, 6] Block = 5 Type = In
|
||||
-0.034624751006 # B[21, 5, 0, 5] Block = 5 Type = In
|
||||
0.041662678638 # B[22, 5, 1, 6] Block = 5 Type = In
|
||||
0.103089891872 # B[23, 5, 2, 5] Block = 5 Type = In
|
||||
-0.044572198386 # B[24, 5, 3, 6] Block = 5 Type = In
|
||||
-0.063847809434 # B[25, 5, 4, 5] Block = 5 Type = In
|
||||
-0.018139074523 # B[26, 5, 5, 6] Block = 5 Type = In
|
||||
0.000464369553 # B[27, 6, 0, 6] Block = 5 Type = In
|
||||
0.082229290277 # B[28, 6, 2, 6] Block = 5 Type = In
|
||||
-0.008875503360 # B[29, 6, 4, 6] Block = 5 Type = In
|
||||
-0.009039017094 # B[30, 6, 6, 6] Block = 5 Type = In
|
||||
-0.005654800687 # B[1, 0, 0, 0] Block = 6 Type = In
|
||||
-0.001217874195 # B[2, 1, 0, 1] Block = 6 Type = In
|
||||
-0.009868049046 # B[3, 1, 1, 2] Block = 6 Type = In
|
||||
-0.092827766060 # B[4, 2, 0, 2] Block = 6 Type = In
|
||||
0.439274283244 # B[5, 2, 1, 3] Block = 6 Type = In
|
||||
0.015954956116 # B[6, 2, 2, 2] Block = 6 Type = In
|
||||
0.176005610703 # B[7, 2, 2, 4] Block = 6 Type = In
|
||||
0.102468480364 # B[8, 3, 0, 3] Block = 6 Type = In
|
||||
0.674122225402 # B[9, 3, 1, 4] Block = 6 Type = In
|
||||
0.072529538087 # B[10, 3, 2, 3] Block = 6 Type = In
|
||||
0.330711171466 # B[11, 3, 2, 5] Block = 6 Type = In
|
||||
0.247785108978 # B[12, 3, 3, 4] Block = 6 Type = In
|
||||
-0.008194303016 # B[13, 3, 3, 6] Block = 6 Type = In
|
||||
0.052250780232 # B[14, 4, 0, 4] Block = 6 Type = In
|
||||
0.374231060518 # B[15, 4, 1, 5] Block = 6 Type = In
|
||||
0.326667869620 # B[16, 4, 2, 4] Block = 6 Type = In
|
||||
0.079031873518 # B[17, 4, 2, 6] Block = 6 Type = In
|
||||
0.224004472527 # B[18, 4, 3, 5] Block = 6 Type = In
|
||||
0.035047662350 # B[19, 4, 4, 4] Block = 6 Type = In
|
||||
0.007150552805 # B[20, 4, 4, 6] Block = 6 Type = In
|
||||
0.040682917098 # B[21, 5, 0, 5] Block = 6 Type = In
|
||||
0.046855927526 # B[22, 5, 1, 6] Block = 6 Type = In
|
||||
0.219695071346 # B[23, 5, 2, 5] Block = 6 Type = In
|
||||
-0.001426581661 # B[24, 5, 3, 6] Block = 6 Type = In
|
||||
0.028514699601 # B[25, 5, 4, 5] Block = 6 Type = In
|
||||
0.067894750884 # B[26, 5, 5, 6] Block = 6 Type = In
|
||||
-0.049888149225 # B[27, 6, 0, 6] Block = 6 Type = In
|
||||
0.009259151039 # B[28, 6, 2, 6] Block = 6 Type = In
|
||||
0.003868002128 # B[29, 6, 4, 6] Block = 6 Type = In
|
||||
-0.008649958571 # B[30, 6, 6, 6] Block = 6 Type = In
|
||||
-0.005654800692 # B[1, 0, 0, 0] Block = 7 Type = In
|
||||
-0.071064263981 # B[2, 1, 0, 1] Block = 7 Type = In
|
||||
-0.085085203640 # B[3, 1, 1, 2] Block = 7 Type = In
|
||||
-0.061297753855 # B[4, 2, 0, 2] Block = 7 Type = In
|
||||
0.223668616358 # B[5, 2, 1, 3] Block = 7 Type = In
|
||||
0.015954956116 # B[6, 2, 2, 2] Block = 7 Type = In
|
||||
0.033706085249 # B[7, 2, 2, 4] Block = 7 Type = In
|
||||
-0.081125948095 # B[8, 3, 0, 3] Block = 7 Type = In
|
||||
-0.005054494008 # B[9, 3, 1, 4] Block = 7 Type = In
|
||||
0.242239715395 # B[10, 3, 2, 3] Block = 7 Type = In
|
||||
-0.000886414104 # B[11, 3, 2, 5] Block = 7 Type = In
|
||||
0.059178212190 # B[12, 3, 3, 4] Block = 7 Type = In
|
||||
0.008498646326 # B[13, 3, 3, 6] Block = 7 Type = In
|
||||
0.014786217107 # B[14, 4, 0, 4] Block = 7 Type = In
|
||||
-0.178665293356 # B[15, 4, 1, 5] Block = 7 Type = In
|
||||
0.164908528605 # B[16, 4, 2, 4] Block = 7 Type = In
|
||||
-0.117717485069 # B[17, 4, 2, 6] Block = 7 Type = In
|
||||
0.146739677531 # B[18, 4, 3, 5] Block = 7 Type = In
|
||||
0.035047662350 # B[19, 4, 4, 4] Block = 7 Type = In
|
||||
0.088770688382 # B[20, 4, 4, 6] Block = 7 Type = In
|
||||
0.019198319779 # B[21, 5, 0, 5] Block = 7 Type = In
|
||||
-0.148162265312 # B[22, 5, 1, 6] Block = 7 Type = In
|
||||
0.114478010571 # B[23, 5, 2, 5] Block = 7 Type = In
|
||||
0.114731400461 # B[24, 5, 3, 6] Block = 7 Type = In
|
||||
0.096853268510 # B[25, 5, 4, 5] Block = 7 Type = In
|
||||
0.031183854107 # B[26, 5, 5, 6] Block = 7 Type = In
|
||||
-0.002405537661 # B[27, 6, 0, 6] Block = 7 Type = In
|
||||
0.058549926350 # B[28, 6, 2, 6] Block = 7 Type = In
|
||||
0.009481237049 # B[29, 6, 4, 6] Block = 7 Type = In
|
||||
-0.008649958571 # B[30, 6, 6, 6] Block = 7 Type = In
|
||||
0.017733403092 # B[1, 0, 0, 0] Block = 8 Type = In
|
||||
0.015168905151 # B[2, 1, 0, 1] Block = 8 Type = In
|
||||
-0.212358294308 # B[3, 1, 1, 2] Block = 8 Type = In
|
||||
0.115608035432 # B[4, 2, 0, 2] Block = 8 Type = In
|
||||
0.128621845177 # B[5, 2, 1, 3] Block = 8 Type = In
|
||||
-0.055682216710 # B[6, 2, 2, 2] Block = 8 Type = In
|
||||
0.168986321733 # B[7, 2, 2, 4] Block = 8 Type = In
|
||||
-0.087186888529 # B[8, 3, 0, 3] Block = 8 Type = In
|
||||
0.378810692322 # B[9, 3, 1, 4] Block = 8 Type = In
|
||||
0.036128510376 # B[10, 3, 2, 3] Block = 8 Type = In
|
||||
0.179888488204 # B[11, 3, 2, 5] Block = 8 Type = In
|
||||
-0.001405954437 # B[12, 3, 3, 4] Block = 8 Type = In
|
||||
0.010551104009 # B[13, 3, 3, 6] Block = 8 Type = In
|
||||
-0.059381370200 # B[14, 4, 0, 4] Block = 8 Type = In
|
||||
0.475432753620 # B[15, 4, 1, 5] Block = 8 Type = In
|
||||
0.095868282640 # B[16, 4, 2, 4] Block = 8 Type = In
|
||||
0.106524975238 # B[17, 4, 2, 6] Block = 8 Type = In
|
||||
0.058941182257 # B[18, 4, 3, 5] Block = 8 Type = In
|
||||
0.012512778321 # B[19, 4, 4, 4] Block = 8 Type = In
|
||||
0.080549204239 # B[20, 4, 4, 6] Block = 8 Type = In
|
||||
-0.068536821891 # B[21, 5, 0, 5] Block = 8 Type = In
|
||||
0.089459777664 # B[22, 5, 1, 6] Block = 8 Type = In
|
||||
0.163187761880 # B[23, 5, 2, 5] Block = 8 Type = In
|
||||
0.139719330200 # B[24, 5, 3, 6] Block = 8 Type = In
|
||||
0.145095171389 # B[25, 5, 4, 5] Block = 8 Type = In
|
||||
0.074157391376 # B[26, 5, 5, 6] Block = 8 Type = In
|
||||
0.018646775951 # B[27, 6, 0, 6] Block = 8 Type = In
|
||||
0.035882498943 # B[28, 6, 2, 6] Block = 8 Type = In
|
||||
0.050420424420 # B[29, 6, 4, 6] Block = 8 Type = In
|
||||
0.009994821144 # B[30, 6, 6, 6] Block = 8 Type = In
|
||||
0.000000000000 # B[0] Block = 1 Type = P
|
||||
-0.002987589706 # B[1, 0, 0, 0] Block = 1 Type = P
|
||||
-0.072158389412 # B[2, 1, 0, 1] Block = 1 Type = P
|
||||
-0.025322250603 # B[3, 1, 1, 2] Block = 1 Type = P
|
||||
-0.030241379192 # B[4, 2, 0, 2] Block = 1 Type = P
|
||||
-0.676287334962 # B[5, 2, 1, 3] Block = 1 Type = P
|
||||
-0.172216278028 # B[6, 2, 2, 2] Block = 1 Type = P
|
||||
-0.246535097343 # B[7, 2, 2, 4] Block = 1 Type = P
|
||||
-0.035782528462 # B[8, 3, 0, 3] Block = 1 Type = P
|
||||
-0.560641780823 # B[9, 3, 1, 4] Block = 1 Type = P
|
||||
-0.549579515296 # B[10, 3, 2, 3] Block = 1 Type = P
|
||||
-0.016920837991 # B[11, 3, 2, 5] Block = 1 Type = P
|
||||
-0.288447245376 # B[12, 3, 3, 4] Block = 1 Type = P
|
||||
0.069076859372 # B[13, 3, 3, 6] Block = 1 Type = P
|
||||
-0.052298717507 # B[14, 4, 0, 4] Block = 1 Type = P
|
||||
-0.434250953671 # B[15, 4, 1, 5] Block = 1 Type = P
|
||||
-0.322043860507 # B[16, 4, 2, 4] Block = 1 Type = P
|
||||
-0.096837010372 # B[17, 4, 2, 6] Block = 1 Type = P
|
||||
-0.213169352789 # B[18, 4, 3, 5] Block = 1 Type = P
|
||||
-0.019566740546 # B[19, 4, 4, 4] Block = 1 Type = P
|
||||
-0.029415128740 # B[20, 4, 4, 6] Block = 1 Type = P
|
||||
-0.036591077655 # B[21, 5, 0, 5] Block = 1 Type = P
|
||||
-0.300384511072 # B[22, 5, 1, 6] Block = 1 Type = P
|
||||
-0.111126537447 # B[23, 5, 2, 5] Block = 1 Type = P
|
||||
-0.000209831053 # B[24, 5, 3, 6] Block = 1 Type = P
|
||||
-0.000023632674 # B[25, 5, 4, 5] Block = 1 Type = P
|
||||
0.009497323905 # B[26, 5, 5, 6] Block = 1 Type = P
|
||||
-0.042287705828 # B[27, 6, 0, 6] Block = 1 Type = P
|
||||
-0.113311457350 # B[28, 6, 2, 6] Block = 1 Type = P
|
||||
0.029574563913 # B[29, 6, 4, 6] Block = 1 Type = P
|
||||
-0.027748295426 # B[30, 6, 6, 6] Block = 1 Type = P
|
||||
-0.001747658243 # B[1, 0, 0, 0] Block = 2 Type = P
|
||||
-0.026182047943 # B[2, 1, 0, 1] Block = 2 Type = P
|
||||
0.089481157533 # B[3, 1, 1, 2] Block = 2 Type = P
|
||||
-0.076525139004 # B[4, 2, 0, 2] Block = 2 Type = P
|
||||
-0.107925591359 # B[5, 2, 1, 3] Block = 2 Type = P
|
||||
-0.059117110271 # B[6, 2, 2, 2] Block = 2 Type = P
|
||||
-0.256324252168 # B[7, 2, 2, 4] Block = 2 Type = P
|
||||
-0.020755324452 # B[8, 3, 0, 3] Block = 2 Type = P
|
||||
-0.337284108142 # B[9, 3, 1, 4] Block = 2 Type = P
|
||||
-0.073956723908 # B[10, 3, 2, 3] Block = 2 Type = P
|
||||
-0.149119927857 # B[11, 3, 2, 5] Block = 2 Type = P
|
||||
0.047627781519 # B[12, 3, 3, 4] Block = 2 Type = P
|
||||
0.061394929126 # B[13, 3, 3, 6] Block = 2 Type = P
|
||||
-0.082660360252 # B[14, 4, 0, 4] Block = 2 Type = P
|
||||
-0.183225932285 # B[15, 4, 1, 5] Block = 2 Type = P
|
||||
-0.046981555049 # B[16, 4, 2, 4] Block = 2 Type = P
|
||||
-0.046846685850 # B[17, 4, 2, 6] Block = 2 Type = P
|
||||
-0.014388943769 # B[18, 4, 3, 5] Block = 2 Type = P
|
||||
0.012133725790 # B[19, 4, 4, 4] Block = 2 Type = P
|
||||
0.085321452425 # B[20, 4, 4, 6] Block = 2 Type = P
|
||||
-0.034945525448 # B[21, 5, 0, 5] Block = 2 Type = P
|
||||
-0.028326642109 # B[22, 5, 1, 6] Block = 2 Type = P
|
||||
-0.085701075837 # B[23, 5, 2, 5] Block = 2 Type = P
|
||||
0.108257997015 # B[24, 5, 3, 6] Block = 2 Type = P
|
||||
0.045837409910 # B[25, 5, 4, 5] Block = 2 Type = P
|
||||
-0.014180512722 # B[26, 5, 5, 6] Block = 2 Type = P
|
||||
0.010756044042 # B[27, 6, 0, 6] Block = 2 Type = P
|
||||
0.023429477590 # B[28, 6, 2, 6] Block = 2 Type = P
|
||||
-0.007794133717 # B[29, 6, 4, 6] Block = 2 Type = P
|
||||
0.002019828318 # B[30, 6, 6, 6] Block = 2 Type = P
|
||||
-0.001747658242 # B[1, 0, 0, 0] Block = 3 Type = P
|
||||
0.047070626642 # B[2, 1, 0, 1] Block = 3 Type = P
|
||||
-0.126595340298 # B[3, 1, 1, 2] Block = 3 Type = P
|
||||
0.022286899829 # B[4, 2, 0, 2] Block = 3 Type = P
|
||||
-0.483695340547 # B[5, 2, 1, 3] Block = 3 Type = P
|
||||
-0.059117110271 # B[6, 2, 2, 2] Block = 3 Type = P
|
||||
-0.067694089340 # B[7, 2, 2, 4] Block = 3 Type = P
|
||||
0.034974727122 # B[8, 3, 0, 3] Block = 3 Type = P
|
||||
-0.226290583408 # B[9, 3, 1, 4] Block = 3 Type = P
|
||||
-0.184699579267 # B[10, 3, 2, 3] Block = 3 Type = P
|
||||
0.063122270285 # B[11, 3, 2, 5] Block = 3 Type = P
|
||||
0.041271206739 # B[12, 3, 3, 4] Block = 3 Type = P
|
||||
-0.004229157928 # B[13, 3, 3, 6] Block = 3 Type = P
|
||||
0.050689134214 # B[14, 4, 0, 4] Block = 3 Type = P
|
||||
-0.138276744014 # B[15, 4, 1, 5] Block = 3 Type = P
|
||||
0.097985494164 # B[16, 4, 2, 4] Block = 3 Type = P
|
||||
-0.083537235645 # B[17, 4, 2, 6] Block = 3 Type = P
|
||||
0.098390585361 # B[18, 4, 3, 5] Block = 3 Type = P
|
||||
0.012133725790 # B[19, 4, 4, 4] Block = 3 Type = P
|
||||
-0.038067814334 # B[20, 4, 4, 6] Block = 3 Type = P
|
||||
0.029636266108 # B[21, 5, 0, 5] Block = 3 Type = P
|
||||
-0.157117938354 # B[22, 5, 1, 6] Block = 3 Type = P
|
||||
-0.027712542047 # B[23, 5, 2, 5] Block = 3 Type = P
|
||||
0.084730212710 # B[24, 5, 3, 6] Block = 3 Type = P
|
||||
0.023437407693 # B[25, 5, 4, 5] Block = 3 Type = P
|
||||
0.017747856995 # B[26, 5, 5, 6] Block = 3 Type = P
|
||||
0.050161344183 # B[27, 6, 0, 6] Block = 3 Type = P
|
||||
-0.098577816149 # B[28, 6, 2, 6] Block = 3 Type = P
|
||||
-0.046997533090 # B[29, 6, 4, 6] Block = 3 Type = P
|
||||
0.002019828318 # B[30, 6, 6, 6] Block = 3 Type = P
|
||||
-0.003152987881 # B[1, 0, 0, 0] Block = 4 Type = P
|
||||
0.014621850469 # B[2, 1, 0, 1] Block = 4 Type = P
|
||||
0.098860641022 # B[3, 1, 1, 2] Block = 4 Type = P
|
||||
0.069546644549 # B[4, 2, 0, 2] Block = 4 Type = P
|
||||
0.180804700658 # B[5, 2, 1, 3] Block = 4 Type = P
|
||||
0.034244852922 # B[6, 2, 2, 2] Block = 4 Type = P
|
||||
0.044579888557 # B[7, 2, 2, 4] Block = 4 Type = P
|
||||
0.001526239292 # B[8, 3, 0, 3] Block = 4 Type = P
|
||||
0.203861850923 # B[9, 3, 1, 4] Block = 4 Type = P
|
||||
0.021679218740 # B[10, 3, 2, 3] Block = 4 Type = P
|
||||
0.185899872703 # B[11, 3, 2, 5] Block = 4 Type = P
|
||||
-0.063472862380 # B[12, 3, 3, 4] Block = 4 Type = P
|
||||
-0.015662648111 # B[13, 3, 3, 6] Block = 4 Type = P
|
||||
0.076209869795 # B[14, 4, 0, 4] Block = 4 Type = P
|
||||
-0.050213789331 # B[15, 4, 1, 5] Block = 4 Type = P
|
||||
0.038175316256 # B[16, 4, 2, 4] Block = 4 Type = P
|
||||
0.041946424186 # B[17, 4, 2, 6] Block = 4 Type = P
|
||||
-0.023902281235 # B[18, 4, 3, 5] Block = 4 Type = P
|
||||
0.008537822812 # B[19, 4, 4, 4] Block = 4 Type = P
|
||||
0.039989757491 # B[20, 4, 4, 6] Block = 4 Type = P
|
||||
0.022210126714 # B[21, 5, 0, 5] Block = 4 Type = P
|
||||
0.010855258243 # B[22, 5, 1, 6] Block = 4 Type = P
|
||||
0.021570527219 # B[23, 5, 2, 5] Block = 4 Type = P
|
||||
-0.119983534986 # B[24, 5, 3, 6] Block = 4 Type = P
|
||||
-0.019726935513 # B[25, 5, 4, 5] Block = 4 Type = P
|
||||
-0.015720476443 # B[26, 5, 5, 6] Block = 4 Type = P
|
||||
-0.024522109113 # B[27, 6, 0, 6] Block = 4 Type = P
|
||||
-0.051478859538 # B[28, 6, 2, 6] Block = 4 Type = P
|
||||
0.017216285614 # B[29, 6, 4, 6] Block = 4 Type = P
|
||||
-0.003565797401 # B[30, 6, 6, 6] Block = 4 Type = P
|
||||
-0.001747658242 # B[1, 0, 0, 0] Block = 5 Type = P
|
||||
-0.026182047943 # B[2, 1, 0, 1] Block = 5 Type = P
|
||||
-0.126595340298 # B[3, 1, 1, 2] Block = 5 Type = P
|
||||
-0.076525139004 # B[4, 2, 0, 2] Block = 5 Type = P
|
||||
-0.157814129312 # B[5, 2, 1, 3] Block = 5 Type = P
|
||||
-0.059117110271 # B[6, 2, 2, 2] Block = 5 Type = P
|
||||
-0.067694089340 # B[7, 2, 2, 4] Block = 5 Type = P
|
||||
-0.020755324452 # B[8, 3, 0, 3] Block = 5 Type = P
|
||||
-0.216746420586 # B[9, 3, 1, 4] Block = 5 Type = P
|
||||
-0.073956723908 # B[10, 3, 2, 3] Block = 5 Type = P
|
||||
-0.263593571569 # B[11, 3, 2, 5] Block = 5 Type = P
|
||||
0.041271206739 # B[12, 3, 3, 4] Block = 5 Type = P
|
||||
-0.004229157928 # B[13, 3, 3, 6] Block = 5 Type = P
|
||||
-0.082660360252 # B[14, 4, 0, 4] Block = 5 Type = P
|
||||
-0.305032662779 # B[15, 4, 1, 5] Block = 5 Type = P
|
||||
-0.046981555049 # B[16, 4, 2, 4] Block = 5 Type = P
|
||||
-0.187955078269 # B[17, 4, 2, 6] Block = 5 Type = P
|
||||
-0.121808447372 # B[18, 4, 3, 5] Block = 5 Type = P
|
||||
0.012133725790 # B[19, 4, 4, 4] Block = 5 Type = P
|
||||
-0.038067814334 # B[20, 4, 4, 6] Block = 5 Type = P
|
||||
-0.034945525448 # B[21, 5, 0, 5] Block = 5 Type = P
|
||||
-0.226555787648 # B[22, 5, 1, 6] Block = 5 Type = P
|
||||
-0.085701075837 # B[23, 5, 2, 5] Block = 5 Type = P
|
||||
-0.121081797087 # B[24, 5, 3, 6] Block = 5 Type = P
|
||||
0.045837409910 # B[25, 5, 4, 5] Block = 5 Type = P
|
||||
0.017747856995 # B[26, 5, 5, 6] Block = 5 Type = P
|
||||
0.010756044042 # B[27, 6, 0, 6] Block = 5 Type = P
|
||||
0.023429477590 # B[28, 6, 2, 6] Block = 5 Type = P
|
||||
-0.007794133717 # B[29, 6, 4, 6] Block = 5 Type = P
|
||||
0.002019828318 # B[30, 6, 6, 6] Block = 5 Type = P
|
||||
-0.003152987881 # B[1, 0, 0, 0] Block = 6 Type = P
|
||||
-0.003431824919 # B[2, 1, 0, 1] Block = 6 Type = P
|
||||
0.098860641022 # B[3, 1, 1, 2] Block = 6 Type = P
|
||||
-0.049867192647 # B[4, 2, 0, 2] Block = 6 Type = P
|
||||
0.130247785083 # B[5, 2, 1, 3] Block = 6 Type = P
|
||||
0.034244852922 # B[6, 2, 2, 2] Block = 6 Type = P
|
||||
0.044579888557 # B[7, 2, 2, 4] Block = 6 Type = P
|
||||
0.051064338359 # B[8, 3, 0, 3] Block = 6 Type = P
|
||||
-0.034769100897 # B[9, 3, 1, 4] Block = 6 Type = P
|
||||
-0.055923569507 # B[10, 3, 2, 3] Block = 6 Type = P
|
||||
0.101065442824 # B[11, 3, 2, 5] Block = 6 Type = P
|
||||
-0.063472862380 # B[12, 3, 3, 4] Block = 6 Type = P
|
||||
-0.015662648111 # B[13, 3, 3, 6] Block = 6 Type = P
|
||||
-0.020942037301 # B[14, 4, 0, 4] Block = 6 Type = P
|
||||
0.057686438719 # B[15, 4, 1, 5] Block = 6 Type = P
|
||||
0.061281723131 # B[16, 4, 2, 4] Block = 6 Type = P
|
||||
0.041003214284 # B[17, 4, 2, 6] Block = 6 Type = P
|
||||
0.104968889582 # B[18, 4, 3, 5] Block = 6 Type = P
|
||||
0.008537822812 # B[19, 4, 4, 4] Block = 6 Type = P
|
||||
0.039989757491 # B[20, 4, 4, 6] Block = 6 Type = P
|
||||
0.058310887739 # B[21, 5, 0, 5] Block = 6 Type = P
|
||||
0.043642228702 # B[22, 5, 1, 6] Block = 6 Type = P
|
||||
0.119827018636 # B[23, 5, 2, 5] Block = 6 Type = P
|
||||
-0.017878741482 # B[24, 5, 3, 6] Block = 6 Type = P
|
||||
0.013615249763 # B[25, 5, 4, 5] Block = 6 Type = P
|
||||
-0.015720476443 # B[26, 5, 5, 6] Block = 6 Type = P
|
||||
0.028210503571 # B[27, 6, 0, 6] Block = 6 Type = P
|
||||
0.138982983531 # B[28, 6, 2, 6] Block = 6 Type = P
|
||||
0.020848948259 # B[29, 6, 4, 6] Block = 6 Type = P
|
||||
-0.003565797401 # B[30, 6, 6, 6] Block = 6 Type = P
|
||||
-0.003152987876 # B[1, 0, 0, 0] Block = 7 Type = P
|
||||
0.014621850469 # B[2, 1, 0, 1] Block = 7 Type = P
|
||||
0.136917412546 # B[3, 1, 1, 2] Block = 7 Type = P
|
||||
0.069546644549 # B[4, 2, 0, 2] Block = 7 Type = P
|
||||
0.134471034367 # B[5, 2, 1, 3] Block = 7 Type = P
|
||||
0.034244852922 # B[6, 2, 2, 2] Block = 7 Type = P
|
||||
0.073714102880 # B[7, 2, 2, 4] Block = 7 Type = P
|
||||
0.001526239292 # B[8, 3, 0, 3] Block = 7 Type = P
|
||||
0.029314077312 # B[9, 3, 1, 4] Block = 7 Type = P
|
||||
0.021679218740 # B[10, 3, 2, 3] Block = 7 Type = P
|
||||
0.005384023182 # B[11, 3, 2, 5] Block = 7 Type = P
|
||||
0.029912954139 # B[12, 3, 3, 4] Block = 7 Type = P
|
||||
0.036308629380 # B[13, 3, 3, 6] Block = 7 Type = P
|
||||
0.076209869795 # B[14, 4, 0, 4] Block = 7 Type = P
|
||||
-0.095659211777 # B[15, 4, 1, 5] Block = 7 Type = P
|
||||
0.038175316256 # B[16, 4, 2, 4] Block = 7 Type = P
|
||||
-0.054559433157 # B[17, 4, 2, 6] Block = 7 Type = P
|
||||
-0.079205893849 # B[18, 4, 3, 5] Block = 7 Type = P
|
||||
0.008537822812 # B[19, 4, 4, 4] Block = 7 Type = P
|
||||
0.072688459278 # B[20, 4, 4, 6] Block = 7 Type = P
|
||||
0.022210126714 # B[21, 5, 0, 5] Block = 7 Type = P
|
||||
0.032318678024 # B[22, 5, 1, 6] Block = 7 Type = P
|
||||
0.021570527219 # B[23, 5, 2, 5] Block = 7 Type = P
|
||||
0.038881258714 # B[24, 5, 3, 6] Block = 7 Type = P
|
||||
-0.019726935513 # B[25, 5, 4, 5] Block = 7 Type = P
|
||||
0.030961312127 # B[26, 5, 5, 6] Block = 7 Type = P
|
||||
-0.024522109113 # B[27, 6, 0, 6] Block = 7 Type = P
|
||||
-0.051478859538 # B[28, 6, 2, 6] Block = 7 Type = P
|
||||
0.017216285614 # B[29, 6, 4, 6] Block = 7 Type = P
|
||||
-0.003565797401 # B[30, 6, 6, 6] Block = 7 Type = P
|
||||
0.000279543258 # B[1, 0, 0, 0] Block = 8 Type = P
|
||||
0.031561006068 # B[2, 1, 0, 1] Block = 8 Type = P
|
||||
0.164297477481 # B[3, 1, 1, 2] Block = 8 Type = P
|
||||
0.020394103829 # B[4, 2, 0, 2] Block = 8 Type = P
|
||||
-0.136924810031 # B[5, 2, 1, 3] Block = 8 Type = P
|
||||
0.011488762740 # B[6, 2, 2, 2] Block = 8 Type = P
|
||||
-0.174577132596 # B[7, 2, 2, 4] Block = 8 Type = P
|
||||
-0.104272988787 # B[8, 3, 0, 3] Block = 8 Type = P
|
||||
-0.126737159959 # B[9, 3, 1, 4] Block = 8 Type = P
|
||||
0.006355291540 # B[10, 3, 2, 3] Block = 8 Type = P
|
||||
-0.116847920709 # B[11, 3, 2, 5] Block = 8 Type = P
|
||||
0.093716628094 # B[12, 3, 3, 4] Block = 8 Type = P
|
||||
-0.015327516258 # B[13, 3, 3, 6] Block = 8 Type = P
|
||||
-0.015071645969 # B[14, 4, 0, 4] Block = 8 Type = P
|
||||
0.054380965184 # B[15, 4, 1, 5] Block = 8 Type = P
|
||||
0.113826098444 # B[16, 4, 2, 4] Block = 8 Type = P
|
||||
0.012970945123 # B[17, 4, 2, 6] Block = 8 Type = P
|
||||
-0.047881183904 # B[18, 4, 3, 5] Block = 8 Type = P
|
||||
-0.010520024430 # B[19, 4, 4, 4] Block = 8 Type = P
|
||||
-0.077321883428 # B[20, 4, 4, 6] Block = 8 Type = P
|
||||
-0.087378280220 # B[21, 5, 0, 5] Block = 8 Type = P
|
||||
-0.221370705680 # B[22, 5, 1, 6] Block = 8 Type = P
|
||||
0.004554405520 # B[23, 5, 2, 5] Block = 8 Type = P
|
||||
-0.164836672985 # B[24, 5, 3, 6] Block = 8 Type = P
|
||||
-0.015080843808 # B[25, 5, 4, 5] Block = 8 Type = P
|
||||
-0.010907038616 # B[26, 5, 5, 6] Block = 8 Type = P
|
||||
-0.022228801431 # B[27, 6, 0, 6] Block = 8 Type = P
|
||||
-0.055154587470 # B[28, 6, 2, 6] Block = 8 Type = P
|
||||
0.007347917376 # B[29, 6, 4, 6] Block = 8 Type = P
|
||||
-0.009369956559 # B[30, 6, 6, 6] Block = 8 Type = P
|
|
@ -0,0 +1,17 @@
|
|||
# DATE: 2014-09-05 UNITS: metal CONTRIBUTOR: Aidan Thompson athomps@sandia.gov CITATION: Thompson, Swiler, Trott, Foiles and Tucker, arxiv.org, 1409.3880 (2014)
|
||||
|
||||
# Definition of SNAP potential Ta_Cand06A
|
||||
# Assumes 1 LAMMPS atom type
|
||||
|
||||
variable zblcutinner equal 4
|
||||
variable zblcutouter equal 4.8
|
||||
variable zblz equal 73
|
||||
|
||||
# Specify hybrid with SNAP, ZBL
|
||||
|
||||
pair_style hybrid/overlay &
|
||||
zbl ${zblcutinner} ${zblcutouter} &
|
||||
mliap model linear Ta06A.mliap.model descriptor sna Ta06A.mliap.descriptor
|
||||
pair_coeff 1 1 zbl ${zblz} ${zblz}
|
||||
pair_coeff * * mliap Ta
|
||||
|
|
@ -0,0 +1,21 @@
|
|||
# DATE: 2014-09-05 UNITS: metal CONTRIBUTOR: Aidan Thompson athomps@sandia.gov CITATION: Thompson, Swiler, Trott, Foiles and Tucker, arxiv.org, 1409.3880 (2014)
|
||||
|
||||
# LAMMPS SNAP parameters for Ta_Cand06A
|
||||
|
||||
# required
|
||||
rcutfac 4.67637
|
||||
twojmax 6
|
||||
|
||||
# elements
|
||||
|
||||
nelems 1
|
||||
elems Ta
|
||||
radelems 0.5
|
||||
welems 1
|
||||
|
||||
# optional
|
||||
|
||||
rfac0 0.99363
|
||||
rmin0 0
|
||||
bzeroflag 0
|
||||
|
|
@ -0,0 +1,37 @@
|
|||
# DATE: 2014-09-05 UNITS: metal CONTRIBUTOR: Aidan Thompson athomps@sandia.gov CITATION: Thompson, Swiler, Trott, Foiles and Tucker, arxiv.org, 1409.3880 (2014)
|
||||
|
||||
# LAMMPS SNAP coefficients for Ta_Cand06A
|
||||
|
||||
# nelements ncoeff
|
||||
1 31
|
||||
-2.92477
|
||||
-0.01137
|
||||
-0.00775
|
||||
-0.04907
|
||||
-0.15047
|
||||
0.09157
|
||||
0.05590
|
||||
0.05785
|
||||
-0.11615
|
||||
-0.17122
|
||||
-0.10583
|
||||
0.03941
|
||||
-0.11284
|
||||
0.03939
|
||||
-0.07331
|
||||
-0.06582
|
||||
-0.09341
|
||||
-0.10587
|
||||
-0.15497
|
||||
0.04820
|
||||
0.00205
|
||||
0.00060
|
||||
-0.04898
|
||||
-0.05084
|
||||
-0.03371
|
||||
-0.01441
|
||||
-0.01501
|
||||
-0.00599
|
||||
-0.06373
|
||||
0.03965
|
||||
0.01072
|
|
@ -0,0 +1,15 @@
|
|||
# DATE: 2020-06-21 UNITS: metal CONTRIBUTOR: Aidan Thompson athomps@sandia.gov CITATION: none
|
||||
|
||||
# Definition of SNAP+ZBL potential.
|
||||
variable zblcutinner equal 4
|
||||
variable zblcutouter equal 4.8
|
||||
variable zblz equal 74
|
||||
|
||||
# Specify hybrid with SNAP and ZBL
|
||||
|
||||
pair_style hybrid/overlay &
|
||||
zbl ${zblcutinner} ${zblcutouter} &
|
||||
mliap model quadratic W.quadratic.mliap.model descriptor sna W.quadratic.mliap.descriptor
|
||||
pair_coeff 1 1 zbl ${zblz} ${zblz}
|
||||
pair_coeff * * mliap W
|
||||
|
|
@ -0,0 +1,20 @@
|
|||
# DATE: 2020-06-21 UNITS: metal CONTRIBUTOR: Aidan Thompson athomps@sandia.gov CITATION: none
|
||||
|
||||
# required
|
||||
|
||||
rcutfac 4.73442
|
||||
twojmax 6
|
||||
|
||||
# elements
|
||||
|
||||
nelems 1
|
||||
elems W
|
||||
radelems 0.5
|
||||
welems 1
|
||||
|
||||
# optional
|
||||
|
||||
rfac0 0.99363
|
||||
rmin0 0
|
||||
bzeroflag 1
|
||||
|
|
@ -0,0 +1,502 @@
|
|||
# DATE: 2020-06-21 UNITS: metal CONTRIBUTOR: Aidan Thompson athomps@sandia.gov CITATION: none
|
||||
|
||||
# LAMMPS SNAP coefficients for Quadratic W
|
||||
|
||||
# nelements ncoeff
|
||||
1 496
|
||||
0.000000000000
|
||||
-0.000019342340
|
||||
0.000039964908
|
||||
-0.000450771142
|
||||
-0.000233498664
|
||||
-0.000519872659
|
||||
-0.000089734174
|
||||
-0.000106353291
|
||||
-0.000035475344
|
||||
-0.000254116041
|
||||
-0.000520021242
|
||||
0.000065038801
|
||||
-0.000304498225
|
||||
-0.000032230341
|
||||
-0.000007420702
|
||||
-0.000159369530
|
||||
-0.000144907916
|
||||
0.000078858361
|
||||
-0.000238070583
|
||||
-0.000050556167
|
||||
-0.000008662153
|
||||
0.000017439967
|
||||
-0.000028764863
|
||||
0.000022504717
|
||||
0.000001821340
|
||||
-0.000089967846
|
||||
-0.000106392838
|
||||
0.000013771852
|
||||
0.000070228097
|
||||
-0.000024152909
|
||||
-0.000006036274
|
||||
-4.2551325e-05
|
||||
0.0001982986695
|
||||
5.4994526e-05
|
||||
0.0001760061375
|
||||
0.0005287969295
|
||||
-0.00045677476
|
||||
-0.007136016296
|
||||
0.0003868434375
|
||||
-0.0006071085215
|
||||
-0.000554512177
|
||||
-0.0006596292555
|
||||
-0.0007585367005
|
||||
7.62333015e-05
|
||||
0.0002137614635
|
||||
0.000379897335
|
||||
0.0005441952125
|
||||
0.000128413515
|
||||
5.74706545e-05
|
||||
0.0002303380555
|
||||
-0.0005759952885
|
||||
-0.0001530888095
|
||||
-0.0001614394285
|
||||
-3.80386335e-05
|
||||
-0.0006390699265
|
||||
-2.44191e-05
|
||||
-0.000627990564
|
||||
-0.000199645294
|
||||
-3.63524105e-05
|
||||
-0.0004350939225
|
||||
-0.000230192872
|
||||
-0.000456462716
|
||||
-0.00096561205
|
||||
-0.0016793622125
|
||||
0.008264605054
|
||||
0.005768043843
|
||||
0.0259523273965
|
||||
0.002379667484
|
||||
0.001798185681
|
||||
0.001411261095
|
||||
0.0046629902735
|
||||
-0.001249069583
|
||||
-0.003518728846
|
||||
-0.00152218625
|
||||
-0.0005803019955
|
||||
-0.002443813614
|
||||
0.003302653151
|
||||
-0.0035163183225
|
||||
0.005378221661
|
||||
-0.0005157550285
|
||||
0.0005802384085
|
||||
-8.4625189e-05
|
||||
-0.0003100449505
|
||||
0.0016035457395
|
||||
-0.006841896086
|
||||
0.00327970803
|
||||
0.000517873278
|
||||
0.000462624598
|
||||
0.001556398782
|
||||
0.000629663951
|
||||
0.004036847861
|
||||
0.000410623118
|
||||
0.0033671740175
|
||||
0.0060744662315
|
||||
0.0460285453095
|
||||
0.0106979441315
|
||||
0.006457375952
|
||||
-0.0043000712405
|
||||
-0.0196789547465
|
||||
-0.009589713549
|
||||
-0.0152983426785
|
||||
0.003041488452
|
||||
-0.0032366707575
|
||||
-0.0119067345335
|
||||
0.0049313311815
|
||||
-0.0030034838505
|
||||
8.7700383e-05
|
||||
0.0007061505055
|
||||
0.0097234329625
|
||||
0.007217090323
|
||||
0.000235882459
|
||||
-0.0033595857445
|
||||
-0.0168665065145
|
||||
0.017786509719
|
||||
0.001877013067
|
||||
0.0006351836775
|
||||
0.004600906728
|
||||
0.012509628713
|
||||
-0.003427408333
|
||||
-0.0014640751665
|
||||
-0.003888408385
|
||||
-0.0062058291515
|
||||
-0.001642104699
|
||||
-0.00105774282
|
||||
-0.0059780195505
|
||||
-0.001753939287
|
||||
0.000479345105
|
||||
-0.0019904699045
|
||||
4.98541965e-05
|
||||
-0.0041212491675
|
||||
-0.0042906641465
|
||||
-0.002351418317
|
||||
-0.0106697325275
|
||||
-0.000648222198
|
||||
-0.002286882867
|
||||
-0.000626754824
|
||||
-0.00073748291
|
||||
0.0016922435575
|
||||
0.0037496719655
|
||||
0.004656851048
|
||||
-0.0002176673305
|
||||
-0.0006739876965
|
||||
-0.0006208869175
|
||||
7.61738615e-05
|
||||
0.0019258401385
|
||||
0.005690172208
|
||||
0.007318906809
|
||||
-0.035200169396
|
||||
0.009167226287
|
||||
-0.000404285392
|
||||
-0.00348855982
|
||||
-0.0024229238155
|
||||
0.0022336200925
|
||||
-0.012584737991
|
||||
0.0016262069595
|
||||
0.0048016592015
|
||||
0.0004657340115
|
||||
0.0025051890895
|
||||
-0.0104101829395
|
||||
0.016176490711
|
||||
-0.0094539511845
|
||||
-0.002289487018
|
||||
-0.0002052188655
|
||||
-0.007085549731
|
||||
0.02162608233
|
||||
-0.002238154953
|
||||
0.0190676087705
|
||||
0.0002139442795
|
||||
0.0010403767345
|
||||
0.003360683249
|
||||
0.003153376576
|
||||
-0.001249764819
|
||||
-0.068537163077
|
||||
0.0023354667295
|
||||
0.001767860664
|
||||
-0.0033006265215
|
||||
0.0146223252485
|
||||
-0.003180595809
|
||||
0.0069092040305
|
||||
0.0010583439885
|
||||
-0.003447267898
|
||||
-0.001106713702
|
||||
0.00523272471
|
||||
-0.010758599437
|
||||
-0.001822397317
|
||||
0.018487732527
|
||||
-0.0024400507145
|
||||
-0.007514714512
|
||||
-0.003947742615
|
||||
0.012413627732
|
||||
0.003092235017
|
||||
0.018069399047
|
||||
-0.0035369320715
|
||||
0.0011168541665
|
||||
-0.0014980962775
|
||||
-1.2944254e-05
|
||||
-0.041955689351
|
||||
0.0023033776335
|
||||
-0.040725631204
|
||||
-0.0693632023935
|
||||
0.020674975135
|
||||
-0.0341006922645
|
||||
-0.006059344895
|
||||
0.002385437006
|
||||
-0.004177512167
|
||||
-0.0146544701995
|
||||
-0.0008310261785
|
||||
-0.010934674355
|
||||
0.006492824537
|
||||
-0.014812643723
|
||||
0.004033748718
|
||||
-0.004155996547
|
||||
-0.013113411806
|
||||
-0.0088014221285
|
||||
0.0037541341
|
||||
-0.000805304258
|
||||
0.006318190602
|
||||
0.012552958042
|
||||
0.004200553135
|
||||
-0.00681355806
|
||||
-0.001852228976
|
||||
0.0017381476065
|
||||
-0.002643779529
|
||||
0.0049358851655
|
||||
0.001522146164
|
||||
0.002260955858
|
||||
-0.000839707664
|
||||
0.0008487292955
|
||||
0.002671028789
|
||||
-0.000193952538
|
||||
0.003111368392
|
||||
0.0007482047125
|
||||
0.0020401970905
|
||||
0.000530116057
|
||||
-0.0022777656015
|
||||
-0.0045238154695
|
||||
0.0018290760485
|
||||
-0.0003309336725
|
||||
0.00293571563
|
||||
0.000172269209
|
||||
0.001414752092
|
||||
0.0005614625055
|
||||
0.000441310903
|
||||
-0.002473120026
|
||||
-0.015420836338
|
||||
-0.0058494470115
|
||||
-0.013440044608
|
||||
-0.009774364656
|
||||
-0.0019064948385
|
||||
-1.70476245e-05
|
||||
0.0049669399345
|
||||
-0.0050880033155
|
||||
0.001600486319
|
||||
-0.0018417989075
|
||||
-0.0111031210975
|
||||
0.0007780738275
|
||||
-0.004930202896
|
||||
-0.002537539117
|
||||
-0.0090246084865
|
||||
-0.002694202287
|
||||
-0.0062002945005
|
||||
0.0031924710865
|
||||
0.0021120090085
|
||||
-0.003067483203
|
||||
-0.0002847253785
|
||||
-0.016407568729
|
||||
-0.0012875748665
|
||||
-0.0136223073595
|
||||
-0.00152438356
|
||||
0.0012803681485
|
||||
-0.002216406572
|
||||
-0.001518786423
|
||||
-0.004453055438
|
||||
-0.0078894618465
|
||||
0.001421143537
|
||||
-0.0050288776725
|
||||
0.001199592632
|
||||
-0.002661588749
|
||||
-0.004357715347
|
||||
0.009525078378
|
||||
0.0026286979515
|
||||
0.0043289788665
|
||||
0.0004994005155
|
||||
0.003791227565
|
||||
0.0004056536255
|
||||
0.0033347889035
|
||||
-0.000464347336
|
||||
-0.0069517390965
|
||||
-0.0079588750315
|
||||
-0.004154738239
|
||||
0.006620101338
|
||||
0.008608842617
|
||||
0.0056131740625
|
||||
0.0011860229985
|
||||
0.007580086232
|
||||
0.003260306951
|
||||
0.000979553031
|
||||
-0.0044626742655
|
||||
-0.005235925737
|
||||
-0.0161268610495
|
||||
-0.0069229581565
|
||||
0.003724916317
|
||||
0.0023613845
|
||||
0.0013633397005
|
||||
0.001433661889
|
||||
-0.0009859245845
|
||||
-0.019516619562
|
||||
-0.0051345232355
|
||||
-0.0003792145305
|
||||
-0.009160883563
|
||||
-0.0052408213305
|
||||
-0.000837343292
|
||||
-0.010077898583
|
||||
-0.000297970588
|
||||
-0.000858261403
|
||||
-0.0001092992995
|
||||
-0.002443805024
|
||||
-0.0025107490965
|
||||
-0.0062944996435
|
||||
0.0026546548665
|
||||
0.0006955853785
|
||||
0.000103592795
|
||||
0.000708964143
|
||||
0.0019193670325
|
||||
-0.0001578612265
|
||||
-0.005585721575
|
||||
-0.000421551186
|
||||
0.0022745774245
|
||||
-0.004927140737
|
||||
0.0004199419505
|
||||
-0.0037407737345
|
||||
0.002130170551
|
||||
-0.0030979189135
|
||||
-0.0019395201255
|
||||
0.0067944948975
|
||||
-0.000359694345
|
||||
-0.0002144026575
|
||||
0.0025529098515
|
||||
0.0001917158465
|
||||
-0.000540725939
|
||||
0.001239653721
|
||||
0.00159659403
|
||||
-5.5652017e-05
|
||||
4.5092483e-05
|
||||
0.002495602056
|
||||
-0.0035351180395
|
||||
0.0009665743545
|
||||
-0.0023236857675
|
||||
-0.0014564171785
|
||||
-0.0008165505935
|
||||
-0.000118027852
|
||||
0.002536872662
|
||||
0.0009829535115
|
||||
0.0019442113705
|
||||
0.000664158062
|
||||
0.000326715061
|
||||
0.00019900621
|
||||
0.0004767582395
|
||||
0.000900303081
|
||||
-2.91049685e-05
|
||||
-0.004411179905
|
||||
-0.004064521081
|
||||
0.00692497271
|
||||
-0.005195674108
|
||||
-0.006544598492
|
||||
0.0029896960935
|
||||
0.000425073164
|
||||
-8.0017505e-05
|
||||
0.000846844414
|
||||
0.003287511416
|
||||
-0.009662064447
|
||||
0.0014047560985
|
||||
-0.0008689313915
|
||||
0.0009517570465
|
||||
0.000152017235
|
||||
1.6514158e-05
|
||||
0.00066355894
|
||||
0.0067775973265
|
||||
0.0021844858475
|
||||
0.0056757292145
|
||||
0.0054950676515
|
||||
0.0002498690125
|
||||
-0.006315915302
|
||||
-0.0059966827865
|
||||
-0.0034483171305
|
||||
0.0073702392255
|
||||
0.007591193081
|
||||
0.0004062066825
|
||||
0.000913827769
|
||||
0.000622164767
|
||||
0.0002438011115
|
||||
0.01119218957
|
||||
0.010457943327
|
||||
-0.002352405766
|
||||
-0.000761350789
|
||||
0.000146360756
|
||||
-0.00052151391
|
||||
-0.001421163661
|
||||
-0.0098259784665
|
||||
-0.001387664408
|
||||
-0.0010876399735
|
||||
0.000794093996
|
||||
0.003036965154
|
||||
-0.0017118732635
|
||||
-0.0015837318195
|
||||
-0.006679253783
|
||||
0.000882488727
|
||||
0.0093074758655
|
||||
0.0013319314085
|
||||
-0.011547004122
|
||||
-0.003864301947
|
||||
-0.007112747006
|
||||
-0.00330951085
|
||||
-0.0007122545915
|
||||
-0.001201815256
|
||||
0.0041789351005
|
||||
-0.0001805522685
|
||||
-0.0007465084205
|
||||
0.008838667361
|
||||
0.0048153576585
|
||||
-9.8403371e-05
|
||||
-0.010102205467
|
||||
-0.0090783851625
|
||||
-0.0014465915755
|
||||
0.0056402904815
|
||||
0.004713889865
|
||||
-0.000958685828
|
||||
0.002844420936
|
||||
0.000886932857
|
||||
0.0002483938575
|
||||
0.000144967791
|
||||
-0.0012477036845
|
||||
0.004783753466
|
||||
-0.0076604636325
|
||||
0.00091901227
|
||||
0.0010552043375
|
||||
0.0013117699705
|
||||
-0.000302204736
|
||||
0.002096120671
|
||||
-0.0002417090715
|
||||
0.0008896279815
|
||||
8.3058685e-05
|
||||
0.002360101467
|
||||
0.003364314747
|
||||
0.0008746445705
|
||||
-0.0011215585125
|
||||
-0.0003387424825
|
||||
0.0005632970265
|
||||
-0.0006617281215
|
||||
0.0003733063965
|
||||
0.0002623090815
|
||||
0.004593469114
|
||||
0.0040372304995
|
||||
-0.001688451935
|
||||
-0.003686908717
|
||||
-0.004326202128
|
||||
-0.000870929915
|
||||
-0.0001854711995
|
||||
0.0002189774835
|
||||
0.00071865135
|
||||
0.007416398218
|
||||
0.0020460979
|
||||
-0.008020256566
|
||||
-0.016722806328
|
||||
0.001376213073
|
||||
0.000347513599
|
||||
0.0016684763755
|
||||
-0.000874786219
|
||||
0.001891181919
|
||||
-0.000534904311
|
||||
0.000846430852
|
||||
-0.000641433051
|
||||
0.0007377551475
|
||||
0.001358126396
|
||||
-0.000866748663
|
||||
0.011124487718
|
||||
0.005228666165
|
||||
-0.001490438881
|
||||
-0.0008813532175
|
||||
-0.0001303988565
|
||||
0.0007163794045
|
||||
0.004674505138
|
||||
-0.000722641184
|
||||
-0.002023585289
|
||||
0.001547283689
|
||||
0.000753938405
|
||||
0.000470918236
|
||||
-0.0003316097225
|
||||
-0.0002293860925
|
||||
6.90841455e-05
|
||||
-0.001301344263
|
||||
-0.0004029179255
|
||||
6.69084325e-05
|
||||
-0.000142497889
|
||||
0.0002207077485
|
||||
-0.000201523756
|
|
@ -0,0 +1,16 @@
|
|||
# DATE: 2019-09-18 UNITS: metal CONTRIBUTOR: Mary Alice Cusentino mcusent@sandia.gov CITATION: M.A. Wood, M.A. Cusentino, B.D. Wirth, and A.P. Thompson, "Data-driven material models for atomistic simulation", Physical Review B 99, 184305 (2019)
|
||||
# Definition of SNAP+ZBL potential.
|
||||
variable zblcutinner equal 4
|
||||
variable zblcutouter equal 4.8
|
||||
variable zblz1 equal 74
|
||||
variable zblz2 equal 4
|
||||
|
||||
# Specify hybrid with SNAP and ZBL
|
||||
|
||||
pair_style hybrid/overlay zbl ${zblcutinner} ${zblcutouter} &
|
||||
mliap model linear WBe_Wood_PRB2019.mliap.model descriptor sna WBe_Wood_PRB2019.mliap.descriptor
|
||||
pair_coeff 1 1 zbl ${zblz1} ${zblz1}
|
||||
pair_coeff 1 2 zbl ${zblz1} ${zblz2}
|
||||
pair_coeff 2 2 zbl ${zblz2} ${zblz2}
|
||||
pair_coeff * * mliap W Be
|
||||
|
|
@ -0,0 +1,20 @@
|
|||
# DATE: 2019-09-18 UNITS: metal CONTRIBUTOR: Mary Alice Cusentino mcusent@sandia.gov CITATION: M.A. Wood, M.A. Cusentino, B.D. Wirth, and A.P. Thompson, "Data-driven material models for atomistic simulation", Physical Review B 99, 184305 (2019)
|
||||
|
||||
# required
|
||||
|
||||
rcutfac 4.8123
|
||||
twojmax 8
|
||||
|
||||
# elements
|
||||
|
||||
nelems 2
|
||||
elems W Be
|
||||
radelems 0.5 0.417932
|
||||
welems 1 0.959049
|
||||
|
||||
# optional
|
||||
|
||||
rfac0 0.99363
|
||||
rmin0 0
|
||||
bzeroflag 1
|
||||
|
|
@ -0,0 +1,117 @@
|
|||
# DATE: 2019-09-18 UNITS: metal CONTRIBUTOR: Mary Alice Cusentino mcusent@sandia.gov CITATION: M.A. Wood, M.A. Cusentino, B.D. Wirth, and A.P. Thompson, "Data-driven material models for atomistic simulation", Physical Review B 99, 184305 (2019)
|
||||
# LAMMPS SNAP coefficients for WBe
|
||||
|
||||
# nelements ncoeff
|
||||
2 56
|
||||
-0.000000000000 # B[0]
|
||||
-0.001487061994 # B[1, 0, 0, 0]
|
||||
0.075808306870 # B[2, 1, 0, 1]
|
||||
0.538735683870 # B[3, 1, 1, 2]
|
||||
-0.074148039366 # B[4, 2, 0, 2]
|
||||
0.602629813770 # B[5, 2, 1, 3]
|
||||
-0.147022424344 # B[6, 2, 2, 2]
|
||||
0.117756828488 # B[7, 2, 2, 4]
|
||||
-0.026490439049 # B[8, 3, 0, 3]
|
||||
-0.035162708767 # B[9, 3, 1, 4]
|
||||
0.064315385091 # B[10, 3, 2, 3]
|
||||
-0.131936948089 # B[11, 3, 2, 5]
|
||||
-0.021272860272 # B[12, 3, 3, 4]
|
||||
-0.091171134054 # B[13, 3, 3, 6]
|
||||
-0.024396224398 # B[14, 4, 0, 4]
|
||||
-0.059813132803 # B[15, 4, 1, 5]
|
||||
0.069585393203 # B[16, 4, 2, 4]
|
||||
-0.085344044181 # B[17, 4, 2, 6]
|
||||
-0.155425254597 # B[18, 4, 3, 5]
|
||||
-0.117031758367 # B[19, 4, 3, 7]
|
||||
-0.040956258020 # B[20, 4, 4, 4]
|
||||
-0.084465000389 # B[21, 4, 4, 6]
|
||||
-0.020367513630 # B[22, 4, 4, 8]
|
||||
-0.010730484318 # B[23, 5, 0, 5]
|
||||
-0.054777575658 # B[24, 5, 1, 6]
|
||||
0.050742893747 # B[25, 5, 2, 5]
|
||||
-0.004686334611 # B[26, 5, 2, 7]
|
||||
-0.116372907121 # B[27, 5, 3, 6]
|
||||
0.005542497708 # B[28, 5, 3, 8]
|
||||
-0.126526795635 # B[29, 5, 4, 5]
|
||||
-0.080163926221 # B[30, 5, 4, 7]
|
||||
-0.082426250179 # B[31, 5, 5, 6]
|
||||
-0.010558777281 # B[32, 5, 5, 8]
|
||||
-0.001939058038 # B[33, 6, 0, 6]
|
||||
-0.027907949962 # B[34, 6, 1, 7]
|
||||
0.049483908476 # B[35, 6, 2, 6]
|
||||
0.005103754385 # B[36, 6, 2, 8]
|
||||
-0.054751505141 # B[37, 6, 3, 7]
|
||||
-0.055556071011 # B[38, 6, 4, 6]
|
||||
-0.006026917619 # B[39, 6, 4, 8]
|
||||
-0.060889030109 # B[40, 6, 5, 7]
|
||||
-0.029977673973 # B[41, 6, 6, 6]
|
||||
-0.014987527280 # B[42, 6, 6, 8]
|
||||
-0.006697686658 # B[43, 7, 0, 7]
|
||||
0.017369624409 # B[44, 7, 1, 8]
|
||||
0.047864358817 # B[45, 7, 2, 7]
|
||||
-0.001989812679 # B[46, 7, 3, 8]
|
||||
0.000153530925 # B[47, 7, 4, 7]
|
||||
-0.003862356345 # B[48, 7, 5, 8]
|
||||
-0.009754314198 # B[49, 7, 6, 7]
|
||||
0.000777958970 # B[50, 7, 7, 8]
|
||||
-0.003031424287 # B[51, 8, 0, 8]
|
||||
0.015612715209 # B[52, 8, 2, 8]
|
||||
0.003210129646 # B[53, 8, 4, 8]
|
||||
-0.013088799947 # B[54, 8, 6, 8]
|
||||
0.001465970755 # B[55, 8, 8, 8]
|
||||
0.000000000000 # B[0]
|
||||
-0.000112143918 # B[1, 0, 0, 0]
|
||||
0.002449805180 # B[2, 1, 0, 1]
|
||||
0.189705916830 # B[3, 1, 1, 2]
|
||||
-0.019967429692 # B[4, 2, 0, 2]
|
||||
0.286015704682 # B[5, 2, 1, 3]
|
||||
0.072864063124 # B[6, 2, 2, 2]
|
||||
0.108748154196 # B[7, 2, 2, 4]
|
||||
-0.005203284351 # B[8, 3, 0, 3]
|
||||
0.043948598532 # B[9, 3, 1, 4]
|
||||
0.105425889093 # B[10, 3, 2, 3]
|
||||
0.060460134045 # B[11, 3, 2, 5]
|
||||
-0.003406205141 # B[12, 3, 3, 4]
|
||||
0.002306765306 # B[13, 3, 3, 6]
|
||||
-0.003845115174 # B[14, 4, 0, 4]
|
||||
0.029471162073 # B[15, 4, 1, 5]
|
||||
0.054901130330 # B[16, 4, 2, 4]
|
||||
0.010910192753 # B[17, 4, 2, 6]
|
||||
0.033885210622 # B[18, 4, 3, 5]
|
||||
0.008053439551 # B[19, 4, 3, 7]
|
||||
-0.001432298168 # B[20, 4, 4, 4]
|
||||
0.017478027729 # B[21, 4, 4, 6]
|
||||
-0.003402034990 # B[22, 4, 4, 8]
|
||||
-0.002655339820 # B[23, 5, 0, 5]
|
||||
0.012668749892 # B[24, 5, 1, 6]
|
||||
0.037521561888 # B[25, 5, 2, 5]
|
||||
-0.000682693314 # B[26, 5, 2, 7]
|
||||
0.008525913627 # B[27, 5, 3, 6]
|
||||
0.008977936348 # B[28, 5, 3, 8]
|
||||
0.006922732235 # B[29, 5, 4, 5]
|
||||
0.003031883044 # B[30, 5, 4, 7]
|
||||
-0.000345577975 # B[31, 5, 5, 6]
|
||||
-0.001041600679 # B[32, 5, 5, 8]
|
||||
-0.001407625493 # B[33, 6, 0, 6]
|
||||
0.004211558640 # B[34, 6, 1, 7]
|
||||
0.014450875461 # B[35, 6, 2, 6]
|
||||
-0.007033326252 # B[36, 6, 2, 8]
|
||||
0.004998742185 # B[37, 6, 3, 7]
|
||||
-0.002824617682 # B[38, 6, 4, 6]
|
||||
0.003831871934 # B[39, 6, 4, 8]
|
||||
-0.005700892700 # B[40, 6, 5, 7]
|
||||
0.000184422409 # B[41, 6, 6, 6]
|
||||
0.001592696824 # B[42, 6, 6, 8]
|
||||
-0.000804927645 # B[43, 7, 0, 7]
|
||||
0.008465358642 # B[44, 7, 1, 8]
|
||||
0.005460531160 # B[45, 7, 2, 7]
|
||||
-0.000639605094 # B[46, 7, 3, 8]
|
||||
-0.002403948393 # B[47, 7, 4, 7]
|
||||
-0.001267042453 # B[48, 7, 5, 8]
|
||||
0.003836940623 # B[49, 7, 6, 7]
|
||||
0.002333141437 # B[50, 7, 7, 8]
|
||||
-0.000665360637 # B[51, 8, 0, 8]
|
||||
-0.003460637865 # B[52, 8, 2, 8]
|
||||
-0.001598726043 # B[53, 8, 4, 8]
|
||||
0.001478744304 # B[54, 8, 6, 8]
|
||||
0.000806643203 # B[55, 8, 8, 8]
|
Loading…
Reference in New Issue