mirror of https://github.com/lammps/lammps.git
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@14984 f3b2605a-c512-4ea7-a41b-209d697bcdaa
This commit is contained in:
parent
03cb787025
commit
df885d59ff
|
@ -30,7 +30,7 @@ with an additional Urey_Bradley term based on the distance {r} between
|
|||
the 1st and 3rd atoms in the angle. K, theta0, Kub, and Rub are
|
||||
coefficients defined for each angle type.
|
||||
|
||||
See "(MacKerell)"_#MacKerell for a description of the CHARMM force
|
||||
See "(MacKerell)"_#angle-MacKerell for a description of the CHARMM force
|
||||
field.
|
||||
|
||||
The following coefficients must be defined for each angle type via the
|
||||
|
@ -85,6 +85,6 @@ LAMMPS"_Section_start.html#start_3 section for more info on packages.
|
|||
|
||||
:line
|
||||
|
||||
:link(MacKerell)
|
||||
:link(angle-MacKerell)
|
||||
[(MacKerell)] MacKerell, Bashford, Bellott, Dunbrack, Evanseck, Field,
|
||||
Fischer, Gao, Guo, Ha, et al, J Phys Chem, 102, 3586 (1998).
|
||||
|
|
|
@ -30,7 +30,7 @@ where Ea is the angle term, Ebb is a bond-bond term, and Eba is a
|
|||
bond-angle term. Theta0 is the equilibrium angle and r1 and r2 are
|
||||
the equilibrium bond lengths.
|
||||
|
||||
See "(Sun)"_#Sun for a description of the COMPASS class2 force field.
|
||||
See "(Sun)"_#angle-Sun for a description of the COMPASS class2 force field.
|
||||
|
||||
Coefficients for the Ea, Ebb, and Eba formulas must be defined for
|
||||
each angle type via the "angle_coeff"_angle_coeff.html command as in
|
||||
|
@ -115,5 +115,5 @@ for more info on packages.
|
|||
|
||||
:line
|
||||
|
||||
:link(Sun)
|
||||
:link(angle-Sun)
|
||||
[(Sun)] Sun, J Phys Chem B 102, 7338-7364 (1998).
|
||||
|
|
|
@ -30,7 +30,7 @@ trigonal center:
|
|||
|
||||
where C, B and n are coefficients defined for each angle type.
|
||||
|
||||
See "(Mayo)"_#Mayo for a description of the DREIDING force field
|
||||
See "(Mayo)"_#cosine-Mayo for a description of the DREIDING force field
|
||||
|
||||
The following coefficients must be defined for each angle type via the
|
||||
"angle_coeff"_angle_coeff.html command as in the example above, or in
|
||||
|
@ -85,6 +85,6 @@ LAMMPS"_Section_start.html#start_3 section for more info on packages.
|
|||
|
||||
:line
|
||||
|
||||
:link(Mayo)
|
||||
:link(cosine-Mayo)
|
||||
[(Mayo)] Mayo, Olfason, Goddard III, J Phys Chem, 94, 8897-8909
|
||||
(1990).
|
||||
|
|
|
@ -26,7 +26,7 @@ The {class2} bond style uses the potential
|
|||
|
||||
where r0 is the equilibrium bond distance.
|
||||
|
||||
See "(Sun)"_#Sun for a description of the COMPASS class2 force field.
|
||||
See "(Sun)"_#bond-Sun for a description of the COMPASS class2 force field.
|
||||
|
||||
The following coefficients must be defined for each bond type via the
|
||||
"bond_coeff"_bond_coeff.html command as in the example above, or in
|
||||
|
@ -77,5 +77,5 @@ for more info on packages.
|
|||
|
||||
:line
|
||||
|
||||
:link(Sun)
|
||||
:link(bond-Sun)
|
||||
[(Sun)] Sun, J Phys Chem B 102, 7338-7364 (1998).
|
||||
|
|
|
@ -25,7 +25,7 @@ The {fene/expand} bond style uses the potential
|
|||
:c,image(Eqs/bond_fene_expand.jpg)
|
||||
|
||||
to define a finite extensible nonlinear elastic (FENE) potential
|
||||
"(Kremer)"_#Kremer, used for bead-spring polymer models. The first
|
||||
"(Kremer)"_#feneexpand-Kremer, used for bead-spring polymer models. The first
|
||||
term is attractive, the 2nd Lennard-Jones term is repulsive.
|
||||
|
||||
The {fene/expand} bond style is similar to {fene} except that an extra
|
||||
|
@ -88,5 +88,5 @@ style. LAMMPS will issue a warning it that's not the case.
|
|||
|
||||
:line
|
||||
|
||||
:link(Kremer)
|
||||
:link(feneexpand-Kremer)
|
||||
[(Kremer)] Kremer, Grest, J Chem Phys, 92, 5057 (1990).
|
||||
|
|
|
@ -45,7 +45,7 @@ fix saed/vtk 1 1 1 c_2 file Ni_000.saed :pre
|
|||
[Description:]
|
||||
|
||||
Define a computation that calculates electron diffraction intensity as
|
||||
described in "(Coleman)"_#Coleman on a mesh of reciprocal lattice nodes
|
||||
described in "(Coleman)"_#saed-Coleman on a mesh of reciprocal lattice nodes
|
||||
defined by the entire simulation domain (or manually) using simulated
|
||||
radiation of wavelength lambda.
|
||||
|
||||
|
@ -169,7 +169,7 @@ The option defaults are Kmax = 1.70, Zone 1 0 0, c 1 1 1, dR_Ewald =
|
|||
|
||||
:line
|
||||
|
||||
:link(Coleman)
|
||||
:link(saed-Coleman)
|
||||
[(Coleman)] Coleman, Spearot, Capolungo, MSMSE, 21, 055020
|
||||
(2013).
|
||||
|
||||
|
|
|
@ -26,7 +26,7 @@ The {charmm} dihedral style uses the potential
|
|||
|
||||
:c,image(Eqs/dihedral_charmm.jpg)
|
||||
|
||||
See "(MacKerell)"_#MacKerell for a description of the CHARMM force
|
||||
See "(MacKerell)"_#dihedral-MacKerell for a description of the CHARMM force
|
||||
field. This dihedral style can also be used for the AMBER force field
|
||||
(see comment on weighting factors below). See "(Cornell)"_#Cornell
|
||||
for a description of the AMBER force field.
|
||||
|
@ -110,6 +110,6 @@ LAMMPS"_Section_start.html#start_3 section for more info on packages.
|
|||
[(Cornell)] Cornell, Cieplak, Bayly, Gould, Merz, Ferguson,
|
||||
Spellmeyer, Fox, Caldwell, Kollman, JACS 117, 5179-5197 (1995).
|
||||
|
||||
:link(MacKerell)
|
||||
:link(dihedral-MacKerell)
|
||||
[(MacKerell)] MacKerell, Bashford, Bellott, Dunbrack, Evanseck, Field,
|
||||
Fischer, Gao, Guo, Ha, et al, J Phys Chem B, 102, 3586 (1998).
|
||||
|
|
|
@ -36,7 +36,7 @@ is an angle-angle-torsion term, and Ebb13 is a bond-bond-13 term.
|
|||
Theta1 and theta2 are equilibrium angles and r1 r2 r3 are equilibrium
|
||||
bond lengths.
|
||||
|
||||
See "(Sun)"_#Sun for a description of the COMPASS class2 force field.
|
||||
See "(Sun)"_#dihedral-Sun for a description of the COMPASS class2 force field.
|
||||
|
||||
Coefficients for the Ed, Embt, Eebt, Eat, Eaat, and Ebb13 formulas
|
||||
must be defined for each dihedral type via the
|
||||
|
@ -174,5 +174,5 @@ section for more info on packages.
|
|||
|
||||
:line
|
||||
|
||||
:link(Sun)
|
||||
:link(dihedral-Sun)
|
||||
[(Sun)] Sun, J Phys Chem B 102, 7338-7364 (1998).
|
||||
|
|
|
@ -100,7 +100,7 @@ functions,
|
|||
:c,image(Eqs/fix_lb_fluid_properties.jpg)
|
||||
|
||||
Full details of the lattice-Boltzmann algorithm used can be found in
|
||||
"Mackay et al."_#Mackay.
|
||||
"Mackay et al."_#fluid-Mackay.
|
||||
|
||||
The fluid is coupled to the MD particles described by {group-ID}
|
||||
through a velocity dependent force. The contribution to the fluid
|
||||
|
@ -140,7 +140,7 @@ using the {setArea} keyword.
|
|||
The user also has the option of specifying their own value for the
|
||||
force coupling constant, for all the MD particles associated with the
|
||||
fix, through the use of the {setGamma} keyword. This may be useful
|
||||
when modelling porous particles. See "Mackay et al."_#Mackay for a
|
||||
when modelling porous particles. See "Mackay et al."_#fluid-Mackay for a
|
||||
detailed description of the method by which the user can choose an
|
||||
appropriate gamma value.
|
||||
|
||||
|
@ -153,7 +153,7 @@ This fix adds the hydrodynamic force to the total force acting on the
|
|||
particles, after which any of the built-in LAMMPS integrators can be
|
||||
used to integrate the particle motion. However, if the user specifies
|
||||
their own value for the force coupling constant, as mentioned in
|
||||
"Mackay et al."_#Mackay, the built-in LAMMPS integrators may prove to
|
||||
"Mackay et al."_#fluid-Mackay, the built-in LAMMPS integrators may prove to
|
||||
be unstable. Therefore, we have included our own integrators "fix
|
||||
lb/rigid/pc/sphere"_fix_lb_rigid_pc_sphere.html, and "fix
|
||||
lb/pc"_fix_lb_pc.html, to solve for the particle motion in these
|
||||
|
@ -248,7 +248,7 @@ N timesteps.
|
|||
If the keyword {trilinear} is used, the trilinear stencil is used to
|
||||
interpolate the particle nodes onto the fluid mesh. By default, the
|
||||
immersed boundary method, Peskin stencil is used. Both of these
|
||||
interpolation methods are described in "Mackay et al."_#Mackay.
|
||||
interpolation methods are described in "Mackay et al."_#Mfluid-ackay.
|
||||
|
||||
If the keyword {D3Q19} is used, the 19 velocity (D3Q19) lattice is
|
||||
used by the lattice-Boltzmann algorithm. By default, the 15 velocity
|
||||
|
@ -284,7 +284,7 @@ screen every N timesteps.
|
|||
:line
|
||||
|
||||
For further details, as well as descriptions and results of several
|
||||
test runs, see "Mackay et al."_#Mackay. Please include a citation to
|
||||
test runs, see "Mackay et al."_#fluid-Mackay. Please include a citation to
|
||||
this paper if the lb_fluid fix is used in work contributing to
|
||||
published research.
|
||||
|
||||
|
@ -360,7 +360,7 @@ If walls are present, they are assumed to be stationary.
|
|||
:link(Ollila)
|
||||
[(Ollila et al.)] Ollila, S.T.T., Denniston, C., Karttunen, M., and Ala-Nissila, T., Fluctuating lattice-Boltzmann model for complex fluids, J. Chem. Phys. 134 (2011) 064902.
|
||||
|
||||
:link(Mackay)
|
||||
:link(fluid-Mackay)
|
||||
[(Mackay et al.)] Mackay, F. E., Ollila, S.T.T., and Denniston, C., Hydrodynamic Forces Implemented into LAMMPS through a lattice-Boltzmann fluid, Computer Physics Communications 184 (2013) 2021-2031.
|
||||
|
||||
:link(Mackay2)
|
||||
|
|
|
@ -49,7 +49,7 @@ index (the second term in the effective potential above). The
|
|||
quasi-beads also interact with the two neighboring quasi-beads through
|
||||
the spring potential in imaginary-time space (first term in effective
|
||||
potential). To sample the canonical ensemble, a Nose-Hoover massive
|
||||
chain thermostat is applied "(Tuckerman)"_#Tuckerman. With the
|
||||
chain thermostat is applied "(Tuckerman)"_#pimd-Tuckerman. With the
|
||||
massive chain algorithm, a chain of NH thermostats is coupled to each
|
||||
degree of freedom for each quasi-bead. The keyword {temp} sets the
|
||||
target temperature for the system and the keyword {nhc} sets the
|
||||
|
@ -161,7 +161,7 @@ and nhc = 2.
|
|||
[(Feynman)] R. Feynman and A. Hibbs, Chapter 7, Quantum Mechanics and
|
||||
Path Integrals, McGraw-Hill, New York (1965).
|
||||
|
||||
:link(Tuckerman)
|
||||
:link(pimd-Tuckerman)
|
||||
[(Tuckerman)] M. Tuckerman and B. Berne, J Chem Phys, 99, 2796 (1993).
|
||||
|
||||
:link(Cao1)
|
||||
|
|
|
@ -47,7 +47,7 @@ Since atom J is the atom of symmetry, normally the bonds J-I, J-K, J-L
|
|||
would exist for an improper to be defined between the 4 atoms, but
|
||||
this is not required.
|
||||
|
||||
See "(Sun)"_#Sun for a description of the COMPASS class2 force field.
|
||||
See "(Sun)"_#improper-Sun for a description of the COMPASS class2 force field.
|
||||
|
||||
Coefficients for the Ei and Eaa formulas must be defined for each
|
||||
improper type via the "improper_coeff"_improper_coeff.html command as
|
||||
|
@ -120,5 +120,5 @@ section for more info on packages.
|
|||
|
||||
:line
|
||||
|
||||
:link(Sun)
|
||||
:link(improper-Sun)
|
||||
[(Sun)] Sun, J Phys Chem B 102, 7338-7364 (1998).
|
||||
|
|
|
@ -35,7 +35,7 @@ If omega0 = 0 the potential term has a minimum for the planar
|
|||
structure. Otherwise it has two minima at +/- omega0, with a barrier
|
||||
in between.
|
||||
|
||||
See "(Mayo)"_#Mayo for a description of the DREIDING force field.
|
||||
See "(Mayo)"_#umbrella-Mayo for a description of the DREIDING force field.
|
||||
|
||||
The following coefficients must be defined for each improper type via
|
||||
the "improper_coeff"_improper_coeff.html command as in the example
|
||||
|
@ -85,6 +85,6 @@ LAMMPS"_Section_start.html#start_3 section for more info on packages.
|
|||
|
||||
:line
|
||||
|
||||
:link(Mayo)
|
||||
:link(umbrella-Mayo)
|
||||
[(Mayo)] Mayo, Olfason, Goddard III, J Phys Chem, 94, 8897-8909
|
||||
(1990),
|
||||
|
|
|
@ -68,7 +68,7 @@ The {lj/charmm} styles compute LJ and Coulombic interactions with an
|
|||
additional switching function S(r) that ramps the energy and force
|
||||
smoothly to zero between an inner and outer cutoff. It is a widely
|
||||
used potential in the "CHARMM"_http://www.scripps.edu/brooks MD code.
|
||||
See "(MacKerell)"_#MacKerell for a description of the CHARMM force
|
||||
See "(MacKerell)"_#pair-MacKerell for a description of the CHARMM force
|
||||
field.
|
||||
|
||||
:c,image(Eqs/pair_charmm.jpg)
|
||||
|
@ -194,6 +194,6 @@ the MOLECULE and KSPACE packages are installed by default.
|
|||
|
||||
:line
|
||||
|
||||
:link(MacKerell)
|
||||
:link(pair-MacKerell)
|
||||
[(MacKerell)] MacKerell, Bashford, Bellott, Dunbrack, Evanseck, Field,
|
||||
Fischer, Gao, Guo, Ha, et al, J Phys Chem, 102, 3586 (1998).
|
||||
|
|
|
@ -64,7 +64,7 @@ Rc is the cutoff.
|
|||
The {lj/class2/coul/cut} and {lj/class2/coul/long} styles add a
|
||||
Coulombic term as described for the "lj/cut"_pair_lj.html pair styles.
|
||||
|
||||
See "(Sun)"_#Sun for a description of the COMPASS class2 force field.
|
||||
See "(Sun)"_#pair-Sun for a description of the COMPASS class2 force field.
|
||||
|
||||
The following coefficients must be defined for each pair of atoms
|
||||
types via the "pair_coeff"_pair_coeff.html command as in the examples
|
||||
|
@ -169,5 +169,5 @@ LAMMPS"_Section_start.html#start_3 section for more info.
|
|||
|
||||
:line
|
||||
|
||||
:link(Sun)
|
||||
:link(pair-Sun)
|
||||
[(Sun)] Sun, J Phys Chem B 102, 7338-7364 (1998).
|
||||
|
|
|
@ -57,7 +57,7 @@ hydrogen atoms for each donor/acceptor type pair are specified by the
|
|||
"pair_coeff"_pair_coeff.html command (see below).
|
||||
|
||||
Style {hbond/dreiding/lj} is the original DREIDING potential of
|
||||
"(Mayo)"_#Mayo. It uses a LJ 12/10 functional for the Donor-Acceptor
|
||||
"(Mayo)"_#pair-Mayo. It uses a LJ 12/10 functional for the Donor-Acceptor
|
||||
interactions. To match the results in the original paper, use n = 4.
|
||||
|
||||
Style {hbond/dreiding/morse} is an improved version using a Morse
|
||||
|
@ -234,7 +234,7 @@ thermo_style custom step temp epair v_E_hbond :pre
|
|||
|
||||
:line
|
||||
|
||||
:link(Mayo)
|
||||
:link(pair-Mayo)
|
||||
[(Mayo)] Mayo, Olfason, Goddard III, J Phys Chem, 94, 8897-8909
|
||||
(1990).
|
||||
|
||||
|
|
Loading…
Reference in New Issue