mirror of https://github.com/lammps/lammps.git
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@14964 f3b2605a-c512-4ea7-a41b-209d697bcdaa
This commit is contained in:
parent
a06ff7f880
commit
d3d29d35af
|
@ -363,8 +363,8 @@ commands like <a class="reference internal" href="pair_coeff.html"><span class="
|
|||
<a class="reference internal" href="bond_coeff.html"><span class="doc">bond_coeff</span></a>. See <a class="reference internal" href="Section_tools.html"><span class="doc">Section_tools</span></a>
|
||||
for additional tools that can use CHARMM or AMBER to assign force
|
||||
field coefficients and convert their output into LAMMPS input.</p>
|
||||
<p>See <a class="reference internal" href="pair_charmm.html#mackerell"><span class="std std-ref">(MacKerell)</span></a> for a description of the CHARMM force
|
||||
field. See <a class="reference internal" href="dihedral_charmm.html#cornell"><span class="std std-ref">(Cornell)</span></a> for a description of the AMBER force
|
||||
<p>See <a class="reference internal" href="special_bonds.html#mackerell"><span class="std std-ref">(MacKerell)</span></a> for a description of the CHARMM force
|
||||
field. See <a class="reference internal" href="special_bonds.html#cornell"><span class="std std-ref">(Cornell)</span></a> for a description of the AMBER force
|
||||
field.</p>
|
||||
<p>These style choices compute force field formulas that are consistent
|
||||
with common options in CHARMM or AMBER. See each command’s
|
||||
|
@ -389,7 +389,7 @@ atoms involved in the bond, angle, or torsion terms. DREIDING has an
|
|||
<a class="reference internal" href="pair_hbond_dreiding.html"><span class="doc">explicit hydrogen bond term</span></a> to describe
|
||||
interactions involving a hydrogen atom on very electronegative atoms
|
||||
(N, O, F).</p>
|
||||
<p>See <a class="reference internal" href="pair_hbond_dreiding.html#mayo"><span class="std std-ref">(Mayo)</span></a> for a description of the DREIDING force field</p>
|
||||
<p>See <a class="reference internal" href="special_bonds.html#mayo"><span class="std std-ref">(Mayo)</span></a> for a description of the DREIDING force field</p>
|
||||
<p>These style choices compute force field formulas that are consistent
|
||||
with the DREIDING force field. See each command’s
|
||||
documentation for the formula it computes.</p>
|
||||
|
@ -587,7 +587,7 @@ computations between frozen atoms by using this command:</p>
|
|||
<div class="section" id="tip3p-water-model">
|
||||
<span id="howto-7"></span><h2>6.7. TIP3P water model</h2>
|
||||
<p>The TIP3P water model as implemented in CHARMM
|
||||
<a class="reference internal" href="pair_charmm.html#mackerell"><span class="std std-ref">(MacKerell)</span></a> specifies a 3-site rigid water molecule with
|
||||
<a class="reference internal" href="special_bonds.html#mackerell"><span class="std std-ref">(MacKerell)</span></a> specifies a 3-site rigid water molecule with
|
||||
charges and Lennard-Jones parameters assigned to each of the 3 atoms.
|
||||
In LAMMPS the <a class="reference internal" href="fix_shake.html"><span class="doc">fix shake</span></a> command can be used to hold
|
||||
the two O-H bonds and the H-O-H angle rigid. A bond style of
|
||||
|
@ -766,7 +766,7 @@ the partial charge assignemnts change:</p>
|
|||
<div class="line">H charge = 0.4238</div>
|
||||
<div class="line"><br /></div>
|
||||
</div>
|
||||
<p>See the <a class="reference internal" href="#berendsen"><span class="std std-ref">(Berendsen)</span></a> reference for more details on both
|
||||
<p>See the <a class="reference internal" href="fix_temp_berendsen.html#berendsen"><span class="std std-ref">(Berendsen)</span></a> reference for more details on both
|
||||
the SPC and SPC/E models.</p>
|
||||
<p>Wikipedia also has a nice article on <a class="reference external" href="http://en.wikipedia.org/wiki/Water_model">water models</a>.</p>
|
||||
<hr class="docutils" />
|
||||
|
@ -2731,7 +2731,7 @@ pairs as chunks.</p>
|
|||
model, representes induced dipoles by a pair of charges (the core atom
|
||||
and the Drude particle) connected by a harmonic spring. The Drude
|
||||
model has a number of features aimed at its use in molecular systems
|
||||
(<a class="reference internal" href="#lamoureux"><span class="std std-ref">Lamoureux and Roux</span></a>):</p>
|
||||
(<a class="reference internal" href="tutorial_drude.html#lamoureux"><span class="std std-ref">Lamoureux and Roux</span></a>):</p>
|
||||
<ul class="simple">
|
||||
<li>Thermostating of the additional degrees of freedom associated with the
|
||||
induced dipoles at very low temperature, in terms of the reduced
|
||||
|
|
|
@ -155,7 +155,7 @@
|
|||
<p>with an additional Urey_Bradley term based on the distance <em>r</em> between
|
||||
the 1st and 3rd atoms in the angle. K, theta0, Kub, and Rub are
|
||||
coefficients defined for each angle type.</p>
|
||||
<p>See <a class="reference internal" href="pair_charmm.html#mackerell"><span class="std std-ref">(MacKerell)</span></a> for a description of the CHARMM force
|
||||
<p>See <a class="reference internal" href="special_bonds.html#mackerell"><span class="std std-ref">(MacKerell)</span></a> for a description of the CHARMM force
|
||||
field.</p>
|
||||
<p>The following coefficients must be defined for each angle type via the
|
||||
<a class="reference internal" href="angle_coeff.html"><span class="doc">angle_coeff</span></a> command as in the example above, or in
|
||||
|
|
|
@ -151,7 +151,7 @@
|
|||
<p>where Ea is the angle term, Ebb is a bond-bond term, and Eba is a
|
||||
bond-angle term. Theta0 is the equilibrium angle and r1 and r2 are
|
||||
the equilibrium bond lengths.</p>
|
||||
<p>See <a class="reference internal" href="pair_class2.html#sun"><span class="std std-ref">(Sun)</span></a> for a description of the COMPASS class2 force field.</p>
|
||||
<p>See <a class="reference internal" href="pair_modify.html#sun"><span class="std std-ref">(Sun)</span></a> for a description of the COMPASS class2 force field.</p>
|
||||
<p>Coefficients for the Ea, Ebb, and Eba formulas must be defined for
|
||||
each angle type via the <a class="reference internal" href="angle_coeff.html"><span class="doc">angle_coeff</span></a> command as in
|
||||
the example above, or in the data file or restart files read by the
|
||||
|
|
|
@ -151,7 +151,7 @@ used for an octahedral complex and <em>n</em> = 3 might be used for a
|
|||
trigonal center:</p>
|
||||
<img alt="_images/angle_cosine_periodic.jpg" class="align-center" src="_images/angle_cosine_periodic.jpg" />
|
||||
<p>where C, B and n are coefficients defined for each angle type.</p>
|
||||
<p>See <a class="reference internal" href="pair_hbond_dreiding.html#mayo"><span class="std std-ref">(Mayo)</span></a> for a description of the DREIDING force field</p>
|
||||
<p>See <a class="reference internal" href="special_bonds.html#mayo"><span class="std std-ref">(Mayo)</span></a> for a description of the DREIDING force field</p>
|
||||
<p>The following coefficients must be defined for each angle type via the
|
||||
<a class="reference internal" href="angle_coeff.html"><span class="doc">angle_coeff</span></a> command as in the example above, or in
|
||||
the data file or restart files read by the <a class="reference internal" href="read_data.html"><span class="doc">read_data</span></a>
|
||||
|
|
|
@ -147,7 +147,7 @@
|
|||
<p>The <em>class2</em> bond style uses the potential</p>
|
||||
<img alt="_images/bond_class2.jpg" class="align-center" src="_images/bond_class2.jpg" />
|
||||
<p>where r0 is the equilibrium bond distance.</p>
|
||||
<p>See <a class="reference internal" href="pair_class2.html#sun"><span class="std std-ref">(Sun)</span></a> for a description of the COMPASS class2 force field.</p>
|
||||
<p>See <a class="reference internal" href="pair_modify.html#sun"><span class="std std-ref">(Sun)</span></a> for a description of the COMPASS class2 force field.</p>
|
||||
<p>The following coefficients must be defined for each bond type via the
|
||||
<a class="reference internal" href="bond_coeff.html"><span class="doc">bond_coeff</span></a> command as in the example above, or in
|
||||
the data file or restart files read by the <a class="reference internal" href="read_data.html"><span class="doc">read_data</span></a>
|
||||
|
|
|
@ -150,7 +150,7 @@
|
|||
<p>The <em>fene</em> bond style uses the potential</p>
|
||||
<img alt="_images/bond_fene.jpg" class="align-center" src="_images/bond_fene.jpg" />
|
||||
<p>to define a finite extensible nonlinear elastic (FENE) potential
|
||||
<a class="reference internal" href="bond_fene_expand.html#kremer"><span class="std std-ref">(Kremer)</span></a>, used for bead-spring polymer models. The first
|
||||
<a class="reference internal" href="special_bonds.html#kremer"><span class="std std-ref">(Kremer)</span></a>, used for bead-spring polymer models. The first
|
||||
term is attractive, the 2nd Lennard-Jones term is repulsive. The
|
||||
first term extends to R0, the maximum extent of the bond. The 2nd
|
||||
term is cutoff at 2^(1/6) sigma, the minimum of the LJ potential.</p>
|
||||
|
|
|
@ -147,7 +147,7 @@
|
|||
<p>The <em>fene/expand</em> bond style uses the potential</p>
|
||||
<img alt="_images/bond_fene_expand.jpg" class="align-center" src="_images/bond_fene_expand.jpg" />
|
||||
<p>to define a finite extensible nonlinear elastic (FENE) potential
|
||||
<a class="reference internal" href="#kremer"><span class="std std-ref">(Kremer)</span></a>, used for bead-spring polymer models. The first
|
||||
<a class="reference internal" href="special_bonds.html#kremer"><span class="std std-ref">(Kremer)</span></a>, used for bead-spring polymer models. The first
|
||||
term is attractive, the 2nd Lennard-Jones term is repulsive.</p>
|
||||
<p>The <em>fene/expand</em> bond style is similar to <em>fene</em> except that an extra
|
||||
shift factor of delta (positive or negative) is added to <em>r</em> to
|
||||
|
|
|
@ -169,7 +169,7 @@
|
|||
<div class="section" id="description">
|
||||
<h2>Description</h2>
|
||||
<p>Define a computation that calculates electron diffraction intensity as
|
||||
described in <a class="reference internal" href="compute_xrd.html#coleman"><span class="std std-ref">(Coleman)</span></a> on a mesh of reciprocal lattice nodes
|
||||
described in <a class="reference internal" href="fix_saed_vtk.html#coleman"><span class="std std-ref">(Coleman)</span></a> on a mesh of reciprocal lattice nodes
|
||||
defined by the entire simulation domain (or manually) using simulated
|
||||
radiation of wavelength lambda.</p>
|
||||
<p>The electron diffraction intensity I at each reciprocal lattice point
|
||||
|
|
|
@ -167,7 +167,7 @@
|
|||
<div class="section" id="description">
|
||||
<h2>Description</h2>
|
||||
<p>Define a computation that calculates x-ray diffraction intensity as described
|
||||
in <a class="reference internal" href="#coleman"><span class="std std-ref">(Coleman)</span></a> on a mesh of reciprocal lattice nodes defined
|
||||
in <a class="reference internal" href="fix_saed_vtk.html#coleman"><span class="std std-ref">(Coleman)</span></a> on a mesh of reciprocal lattice nodes defined
|
||||
by the entire simulation domain (or manually) using a simulated radiation
|
||||
of wavelength lambda.</p>
|
||||
<p>The x-ray diffraction intensity, I, at each reciprocal lattice point, k,
|
||||
|
|
|
@ -152,9 +152,9 @@
|
|||
<h2>Description</h2>
|
||||
<p>The <em>charmm</em> dihedral style uses the potential</p>
|
||||
<img alt="_images/dihedral_charmm.jpg" class="align-center" src="_images/dihedral_charmm.jpg" />
|
||||
<p>See <a class="reference internal" href="pair_charmm.html#mackerell"><span class="std std-ref">(MacKerell)</span></a> for a description of the CHARMM force
|
||||
<p>See <a class="reference internal" href="special_bonds.html#mackerell"><span class="std std-ref">(MacKerell)</span></a> for a description of the CHARMM force
|
||||
field. This dihedral style can also be used for the AMBER force field
|
||||
(see comment on weighting factors below). See <a class="reference internal" href="#cornell"><span class="std std-ref">(Cornell)</span></a>
|
||||
(see comment on weighting factors below). See <a class="reference internal" href="special_bonds.html#cornell"><span class="std std-ref">(Cornell)</span></a>
|
||||
for a description of the AMBER force field.</p>
|
||||
<p>The following coefficients must be defined for each dihedral type via the
|
||||
<a class="reference internal" href="dihedral_coeff.html"><span class="doc">dihedral_coeff</span></a> command as in the example above, or in
|
||||
|
|
|
@ -156,7 +156,7 @@ Eebt is an end-bond-torsion term, Eat is an angle-torsion term, Eaat
|
|||
is an angle-angle-torsion term, and Ebb13 is a bond-bond-13 term.</p>
|
||||
<p>Theta1 and theta2 are equilibrium angles and r1 r2 r3 are equilibrium
|
||||
bond lengths.</p>
|
||||
<p>See <a class="reference internal" href="pair_class2.html#sun"><span class="std std-ref">(Sun)</span></a> for a description of the COMPASS class2 force field.</p>
|
||||
<p>See <a class="reference internal" href="pair_modify.html#sun"><span class="std std-ref">(Sun)</span></a> for a description of the COMPASS class2 force field.</p>
|
||||
<p>Coefficients for the Ed, Embt, Eebt, Eat, Eaat, and Ebb13 formulas
|
||||
must be defined for each dihedral type via the
|
||||
<a class="reference internal" href="dihedral_coeff.html"><span class="doc">dihedral_coeff</span></a> command as in the example above,
|
||||
|
|
|
@ -210,7 +210,7 @@ finite difference LB integrator is used. If <em>LBtype</em> is set equal to
|
|||
functions,</p>
|
||||
<img alt="_images/fix_lb_fluid_properties.jpg" class="align-center" src="_images/fix_lb_fluid_properties.jpg" />
|
||||
<p>Full details of the lattice-Boltzmann algorithm used can be found in
|
||||
<a class="reference internal" href="#mackay"><span class="std std-ref">Mackay et al.</span></a>.</p>
|
||||
<a class="reference internal" href="fix_lb_viscous.html#mackay"><span class="std std-ref">Mackay et al.</span></a>.</p>
|
||||
<p>The fluid is coupled to the MD particles described by <em>group-ID</em>
|
||||
through a velocity dependent force. The contribution to the fluid
|
||||
force on a given lattice mesh site j due to MD particle alpha is
|
||||
|
@ -242,7 +242,7 @@ using the <em>setArea</em> keyword.</p>
|
|||
<p>The user also has the option of specifying their own value for the
|
||||
force coupling constant, for all the MD particles associated with the
|
||||
fix, through the use of the <em>setGamma</em> keyword. This may be useful
|
||||
when modelling porous particles. See <a class="reference internal" href="#mackay"><span class="std std-ref">Mackay et al.</span></a> for a
|
||||
when modelling porous particles. See <a class="reference internal" href="fix_lb_viscous.html#mackay"><span class="std std-ref">Mackay et al.</span></a> for a
|
||||
detailed description of the method by which the user can choose an
|
||||
appropriate gamma value.</p>
|
||||
<div class="admonition note">
|
||||
|
@ -256,7 +256,7 @@ This fix adds the hydrodynamic force to the total force acting on the
|
|||
particles, after which any of the built-in LAMMPS integrators can be
|
||||
used to integrate the particle motion. However, if the user specifies
|
||||
their own value for the force coupling constant, as mentioned in
|
||||
<a class="reference internal" href="#mackay"><span class="std std-ref">Mackay et al.</span></a>, the built-in LAMMPS integrators may prove to
|
||||
<a class="reference internal" href="fix_lb_viscous.html#mackay"><span class="std std-ref">Mackay et al.</span></a>, the built-in LAMMPS integrators may prove to
|
||||
be unstable. Therefore, we have included our own integrators <a class="reference internal" href="fix_lb_rigid_pc_sphere.html"><span class="doc">fix lb/rigid/pc/sphere</span></a>, and <a class="reference internal" href="fix_lb_pc.html"><span class="doc">fix lb/pc</span></a>, to solve for the particle motion in these
|
||||
cases. These integrators should not be used with the
|
||||
<a class="reference internal" href="fix_lb_viscous.html"><span class="doc">lb/viscous</span></a> fix, as they add hydrodynamic forces
|
||||
|
@ -341,7 +341,7 @@ N timesteps.</p>
|
|||
<p>If the keyword <em>trilinear</em> is used, the trilinear stencil is used to
|
||||
interpolate the particle nodes onto the fluid mesh. By default, the
|
||||
immersed boundary method, Peskin stencil is used. Both of these
|
||||
interpolation methods are described in <a class="reference internal" href="#mackay"><span class="std std-ref">Mackay et al.</span></a>.</p>
|
||||
interpolation methods are described in <a class="reference internal" href="fix_lb_viscous.html#mackay"><span class="std std-ref">Mackay et al.</span></a>.</p>
|
||||
<p>If the keyword <em>D3Q19</em> is used, the 19 velocity (D3Q19) lattice is
|
||||
used by the lattice-Boltzmann algorithm. By default, the 15 velocity
|
||||
(D3Q15) lattice is used.</p>
|
||||
|
@ -371,7 +371,7 @@ the fluid densities and velocities at each lattice site are printed to the
|
|||
screen every N timesteps.</p>
|
||||
<hr class="docutils" />
|
||||
<p>For further details, as well as descriptions and results of several
|
||||
test runs, see <a class="reference internal" href="#mackay"><span class="std std-ref">Mackay et al.</span></a>. Please include a citation to
|
||||
test runs, see <a class="reference internal" href="fix_lb_viscous.html#mackay"><span class="std std-ref">Mackay et al.</span></a>. Please include a citation to
|
||||
this paper if the lb_fluid fix is used in work contributing to
|
||||
published research.</p>
|
||||
</div>
|
||||
|
|
|
@ -240,11 +240,11 @@ particles will match the target values specified by Tstart/Tstop and
|
|||
Pstart/Pstop.</p>
|
||||
<p>The equations of motion used are those of Shinoda et al in
|
||||
<a class="reference internal" href="pair_sdk.html#shinoda"><span class="std std-ref">(Shinoda)</span></a>, which combine the hydrostatic equations of
|
||||
Martyna, Tobias and Klein in <a class="reference internal" href="#martyna"><span class="std std-ref">(Martyna)</span></a> with the strain
|
||||
Martyna, Tobias and Klein in <a class="reference internal" href="fix_rigid.html#martyna"><span class="std std-ref">(Martyna)</span></a> with the strain
|
||||
energy proposed by Parrinello and Rahman in
|
||||
<a class="reference internal" href="#parrinello"><span class="std std-ref">(Parrinello)</span></a>. The time integration schemes closely
|
||||
<a class="reference internal" href="fix_nh_eff.html#parrinello"><span class="std std-ref">(Parrinello)</span></a>. The time integration schemes closely
|
||||
follow the time-reversible measure-preserving Verlet and rRESPA
|
||||
integrators derived by Tuckerman et al in <a class="reference internal" href="fix_pimd.html#tuckerman"><span class="std std-ref">(Tuckerman)</span></a>.</p>
|
||||
integrators derived by Tuckerman et al in <a class="reference internal" href="run_style.html#tuckerman"><span class="std std-ref">(Tuckerman)</span></a>.</p>
|
||||
<hr class="docutils" />
|
||||
<p>The thermostat parameters for fix styles <em>nvt</em> and <em>npt</em> is specified
|
||||
using the <em>temp</em> keyword. Other thermostat-related keywords are
|
||||
|
@ -402,7 +402,7 @@ freedom. A value of 0 corresponds to no thermostatting of the
|
|||
barostat variables.</p>
|
||||
<p>The <em>mtk</em> keyword controls whether or not the correction terms due to
|
||||
Martyna, Tuckerman, and Klein are included in the equations of motion
|
||||
<a class="reference internal" href="#martyna"><span class="std std-ref">(Martyna)</span></a>. Specifying <em>no</em> reproduces the original
|
||||
<a class="reference internal" href="fix_rigid.html#martyna"><span class="std std-ref">(Martyna)</span></a>. Specifying <em>no</em> reproduces the original
|
||||
Hoover barostat, whose volume probability distribution function
|
||||
differs from the true NPT and NPH ensembles by a factor of 1/V. Hence
|
||||
using <em>yes</em> is more correct, but in many cases the difference is
|
||||
|
@ -411,7 +411,7 @@ negligible.</p>
|
|||
scheme at little extra cost. The initial and final updates of the
|
||||
thermostat variables are broken up into <em>tloop</em> substeps, each of
|
||||
length <em>dt</em>/<em>tloop</em>. This corresponds to using a first-order
|
||||
Suzuki-Yoshida scheme <a class="reference internal" href="fix_pimd.html#tuckerman"><span class="std std-ref">(Tuckerman)</span></a>. The keyword <em>ploop</em>
|
||||
Suzuki-Yoshida scheme <a class="reference internal" href="run_style.html#tuckerman"><span class="std std-ref">(Tuckerman)</span></a>. The keyword <em>ploop</em>
|
||||
does the same thing for the barostat thermostat.</p>
|
||||
<p>The keyword <em>nreset</em> controls how often the reference dimensions used
|
||||
to define the strain energy are reset. If this keyword is not used,
|
||||
|
|
|
@ -171,7 +171,7 @@ index (the second term in the effective potential above). The
|
|||
quasi-beads also interact with the two neighboring quasi-beads through
|
||||
the spring potential in imaginary-time space (first term in effective
|
||||
potential). To sample the canonical ensemble, a Nose-Hoover massive
|
||||
chain thermostat is applied <a class="reference internal" href="#tuckerman"><span class="std std-ref">(Tuckerman)</span></a>. With the
|
||||
chain thermostat is applied <a class="reference internal" href="run_style.html#tuckerman"><span class="std std-ref">(Tuckerman)</span></a>. With the
|
||||
massive chain algorithm, a chain of NH thermostats is coupled to each
|
||||
degree of freedom for each quasi-bead. The keyword <em>temp</em> sets the
|
||||
target temperature for the system and the keyword <em>nhc</em> sets the
|
||||
|
|
|
@ -165,7 +165,7 @@ theta angles, since it is always the center atom.</p>
|
|||
<p>Since atom J is the atom of symmetry, normally the bonds J-I, J-K, J-L
|
||||
would exist for an improper to be defined between the 4 atoms, but
|
||||
this is not required.</p>
|
||||
<p>See <a class="reference internal" href="pair_class2.html#sun"><span class="std std-ref">(Sun)</span></a> for a description of the COMPASS class2 force field.</p>
|
||||
<p>See <a class="reference internal" href="pair_modify.html#sun"><span class="std std-ref">(Sun)</span></a> for a description of the COMPASS class2 force field.</p>
|
||||
<p>Coefficients for the Ei and Eaa formulas must be defined for each
|
||||
improper type via the <a class="reference internal" href="improper_coeff.html"><span class="doc">improper_coeff</span></a> command as
|
||||
in the example above, or in the data file or restart files read by the
|
||||
|
|
|
@ -154,7 +154,7 @@ axis and the IJK plane:</p>
|
|||
<p>If omega0 = 0 the potential term has a minimum for the planar
|
||||
structure. Otherwise it has two minima at +/- omega0, with a barrier
|
||||
in between.</p>
|
||||
<p>See <a class="reference internal" href="pair_hbond_dreiding.html#mayo"><span class="std std-ref">(Mayo)</span></a> for a description of the DREIDING force field.</p>
|
||||
<p>See <a class="reference internal" href="special_bonds.html#mayo"><span class="std std-ref">(Mayo)</span></a> for a description of the DREIDING force field.</p>
|
||||
<p>The following coefficients must be defined for each improper type via
|
||||
the <a class="reference internal" href="improper_coeff.html"><span class="doc">improper_coeff</span></a> command as in the example
|
||||
above, or in the data file or restart files read by the
|
||||
|
|
|
@ -222,7 +222,7 @@
|
|||
additional switching function S(r) that ramps the energy and force
|
||||
smoothly to zero between an inner and outer cutoff. It is a widely
|
||||
used potential in the <a class="reference external" href="http://www.scripps.edu/brooks">CHARMM</a> MD code.
|
||||
See <a class="reference internal" href="#mackerell"><span class="std std-ref">(MacKerell)</span></a> for a description of the CHARMM force
|
||||
See <a class="reference internal" href="special_bonds.html#mackerell"><span class="std std-ref">(MacKerell)</span></a> for a description of the CHARMM force
|
||||
field.</p>
|
||||
<img alt="_images/pair_charmm.jpg" class="align-center" src="_images/pair_charmm.jpg" />
|
||||
<p>Both the LJ and Coulombic terms require an inner and outer cutoff.
|
||||
|
|
|
@ -213,7 +213,7 @@
|
|||
<p>Rc is the cutoff.</p>
|
||||
<p>The <em>lj/class2/coul/cut</em> and <em>lj/class2/coul/long</em> styles add a
|
||||
Coulombic term as described for the <a class="reference internal" href="pair_lj.html"><span class="doc">lj/cut</span></a> pair styles.</p>
|
||||
<p>See <a class="reference internal" href="#sun"><span class="std std-ref">(Sun)</span></a> for a description of the COMPASS class2 force field.</p>
|
||||
<p>See <a class="reference internal" href="pair_modify.html#sun"><span class="std std-ref">(Sun)</span></a> for a description of the COMPASS class2 force field.</p>
|
||||
<p>The following coefficients must be defined for each pair of atoms
|
||||
types via the <a class="reference internal" href="pair_coeff.html"><span class="doc">pair_coeff</span></a> command as in the examples
|
||||
above, or in the data file or restart files read by the
|
||||
|
|
|
@ -181,7 +181,7 @@ the donor atom, e.g. in a bond list read in from a data file via the
|
|||
hydrogen atoms for each donor/acceptor type pair are specified by the
|
||||
<a class="reference internal" href="pair_coeff.html"><span class="doc">pair_coeff</span></a> command (see below).</p>
|
||||
<p>Style <em>hbond/dreiding/lj</em> is the original DREIDING potential of
|
||||
<a class="reference internal" href="#mayo"><span class="std std-ref">(Mayo)</span></a>. It uses a LJ 12/10 functional for the Donor-Acceptor
|
||||
<a class="reference internal" href="special_bonds.html#mayo"><span class="std std-ref">(Mayo)</span></a>. It uses a LJ 12/10 functional for the Donor-Acceptor
|
||||
interactions. To match the results in the original paper, use n = 4.</p>
|
||||
<p>Style <em>hbond/dreiding/morse</em> is an improved version using a Morse
|
||||
potential for the Donor-Acceptor interactions. <a class="reference internal" href="#liu"><span class="std std-ref">(Liu)</span></a> showed
|
||||
|
|
Loading…
Reference in New Issue