mirror of https://github.com/lammps/lammps.git
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@939 f3b2605a-c512-4ea7-a41b-209d697bcdaa
This commit is contained in:
parent
10cb6b72e9
commit
c65b2445eb
|
@ -0,0 +1,20 @@
|
|||
# Install/unInstall package classes in LAMMPS
|
||||
|
||||
if ($1 == 1) then
|
||||
|
||||
cp -p style_user_ackland.h ..
|
||||
|
||||
cp -p compute_ackland_atom.cpp ..
|
||||
|
||||
cp -p compute_ackland_atom.h ..
|
||||
|
||||
else if ($1 == 0) then
|
||||
|
||||
rm ../style_user_ackland.h
|
||||
touch ../style_user_ackland.h
|
||||
|
||||
rm ../compute_ackland_atom.cpp
|
||||
|
||||
rm ../compute_ackland_atom.h
|
||||
|
||||
endif
|
|
@ -0,0 +1,18 @@
|
|||
The files in this directory are a user-contributed package for LAMMPS.
|
||||
|
||||
The person who created these files is Gerolf Ziegenhain
|
||||
(gerolf@ziegenhain.com). Contact him directly if you have questions.
|
||||
|
||||
This package implements a "compute ackland/atom" command which can be
|
||||
used in a LAMMPS input script. Like other per-atom compute commands,
|
||||
the results can be accessed when dumping atom information to a file,
|
||||
or by other fixes that do averaging of various kinds. See the
|
||||
documentation files for these commands for details.
|
||||
|
||||
The Ackland computation is a means of detecting local lattice
|
||||
structure around an atom, as described in G. Ackland,
|
||||
PRB(2006)73:054104.
|
||||
|
||||
The output is a number with the following mapping:
|
||||
|
||||
enum{UNKNOWN,BCC,FCC,HCP,ICO};
|
|
@ -0,0 +1,385 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
|
||||
http://lammps.sandia.gov, Sandia National Laboratories
|
||||
Steve Plimpton, sjplimp@sandia.gov
|
||||
|
||||
Copyright (2003) Sandia Corporation. Under the terms of Contract
|
||||
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
|
||||
certain rights in this software. This software is distributed under
|
||||
the GNU General Public License.
|
||||
|
||||
See the README file in the top-level LAMMPS directory.
|
||||
------------------------------------------------------------------------- */
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
Contributing author: G. Ziegenhain, gerolf@ziegenhain.com
|
||||
Copyright (C) 2007
|
||||
------------------------------------------------------------------------- */
|
||||
|
||||
#include "string.h"
|
||||
#include "compute_ackland_atom.h"
|
||||
#include "atom.h"
|
||||
#include "modify.h"
|
||||
#include "update.h"
|
||||
#include "neighbor.h"
|
||||
#include "neigh_list.h"
|
||||
#include "neigh_request.h"
|
||||
#include "force.h"
|
||||
#include "pair.h"
|
||||
#include "comm.h"
|
||||
#include "memory.h"
|
||||
#include "error.h"
|
||||
#include <math.h>
|
||||
|
||||
using namespace LAMMPS_NS;
|
||||
|
||||
enum{UNKNOWN,BCC,FCC,HCP,ICO};
|
||||
|
||||
/* ---------------------------------------------------------------------- */
|
||||
|
||||
ComputeAcklandAtom::ComputeAcklandAtom(LAMMPS *lmp, int narg, char **arg) :
|
||||
Compute(lmp, narg, arg)
|
||||
{
|
||||
if (narg != 3) error->all("Illegal compute ackland/atom command");
|
||||
|
||||
peratom_flag = 1;
|
||||
size_peratom = 0;
|
||||
|
||||
nmax = 0;
|
||||
structure = NULL;
|
||||
maxneigh = 0;
|
||||
distsq = NULL;
|
||||
nearest = NULL;
|
||||
nearest_n0 = NULL;
|
||||
nearest_n1 = NULL;
|
||||
}
|
||||
|
||||
/* ---------------------------------------------------------------------- */
|
||||
|
||||
ComputeAcklandAtom::~ComputeAcklandAtom()
|
||||
{
|
||||
memory->sfree(structure);
|
||||
memory->sfree(distsq);
|
||||
memory->sfree(nearest);
|
||||
memory->sfree(nearest_n0);
|
||||
memory->sfree(nearest_n1);
|
||||
}
|
||||
|
||||
/* ---------------------------------------------------------------------- */
|
||||
|
||||
void ComputeAcklandAtom::init()
|
||||
{
|
||||
// need an occasional full neighbor list
|
||||
|
||||
int irequest = neighbor->request((void *) this);
|
||||
neighbor->requests[irequest]->pair = 0;
|
||||
neighbor->requests[irequest]->compute = 1;
|
||||
neighbor->requests[irequest]->half = 0;
|
||||
neighbor->requests[irequest]->full = 1;
|
||||
neighbor->requests[irequest]->occasional = 1;
|
||||
|
||||
int count = 0;
|
||||
for (int i = 0; i < modify->ncompute; i++)
|
||||
if (strcmp(modify->compute[i]->style,"ackland/atom") == 0) count++;
|
||||
if (count > 1 && comm->me == 0)
|
||||
error->warning("More than one compute ackland/atom");
|
||||
}
|
||||
|
||||
/* ---------------------------------------------------------------------- */
|
||||
void ComputeAcklandAtom::compute_peratom()
|
||||
{
|
||||
int i,j,ii,jj,k,n,inum,jnum;
|
||||
double xtmp,ytmp,ztmp,delx,dely,delz,rsq,value;
|
||||
int *ilist,*jlist,*numneigh,**firstneigh;
|
||||
double pairs[66];
|
||||
int chi[8];
|
||||
|
||||
// grow structure array if necessary
|
||||
|
||||
if (atom->nlocal > nmax) {
|
||||
memory->sfree(structure);
|
||||
nmax = atom->nmax;
|
||||
structure = (double *)
|
||||
memory->smalloc(nmax*sizeof(double),"compute/ackland/atom:ackland");
|
||||
scalar_atom = structure;
|
||||
}
|
||||
|
||||
// invoke half neighbor list (will copy or build if necessary)
|
||||
|
||||
neighbor->build_one(list->index);
|
||||
|
||||
inum = list->inum;
|
||||
ilist = list->ilist;
|
||||
numneigh = list->numneigh;
|
||||
firstneigh = list->firstneigh;
|
||||
|
||||
// compute structure parameter for each atom in group
|
||||
// use full neighbor list
|
||||
|
||||
double **x = atom->x;
|
||||
int *mask = atom->mask;
|
||||
int nlocal = atom->nlocal;
|
||||
int nall = atom->nlocal + atom->nghost;
|
||||
double cutsq = force->pair->cutforce * force->pair->cutforce;
|
||||
|
||||
for (ii = 0; ii < inum; ii++) {
|
||||
i = ilist[ii];
|
||||
if (mask[i] & groupbit) {
|
||||
xtmp = x[i][0];
|
||||
ytmp = x[i][1];
|
||||
ztmp = x[i][2];
|
||||
jlist = firstneigh[i];
|
||||
jnum = numneigh[i];
|
||||
|
||||
// ensure distsq and nearest arrays are long enough
|
||||
|
||||
if (jnum > maxneigh) {
|
||||
memory->sfree(distsq);
|
||||
memory->sfree(nearest);
|
||||
memory->sfree(nearest_n0);
|
||||
memory->sfree(nearest_n1);
|
||||
maxneigh = jnum;
|
||||
distsq = (double *) memory->smalloc(maxneigh*sizeof(double),
|
||||
"compute/ackland/atom:distsq");
|
||||
nearest = (int *) memory->smalloc(maxneigh*sizeof(int),
|
||||
"compute/ackland/atom:nearest");
|
||||
nearest_n0 = (int *) memory->smalloc(maxneigh*sizeof(int),
|
||||
"compute/ackland/atom:nearest_n0");
|
||||
nearest_n1 = (int *) memory->smalloc(maxneigh*sizeof(int),
|
||||
"compute/ackland/atom:nearest_n1");
|
||||
}
|
||||
|
||||
// loop over list of all neighbors within force cutoff
|
||||
// distsq[] = distance sq to each
|
||||
// nearest[] = atom indices of neighbors
|
||||
|
||||
n = 0;
|
||||
for (jj = 0; jj < jnum; jj++) {
|
||||
j = jlist[jj];
|
||||
if (j >= nall) j %= nall;
|
||||
|
||||
delx = xtmp - x[j][0];
|
||||
dely = ytmp - x[j][1];
|
||||
delz = ztmp - x[j][2];
|
||||
rsq = delx*delx + dely*dely + delz*delz;
|
||||
if (rsq < cutsq) {
|
||||
distsq[n] = rsq;
|
||||
nearest[n++] = j;
|
||||
}
|
||||
}
|
||||
|
||||
// Select 6 nearest neighbors
|
||||
|
||||
select2(6,n,distsq,nearest);
|
||||
|
||||
// Mean squared separation
|
||||
|
||||
double r0_sq = 0.;
|
||||
for (j = 0; j < 6; j++)
|
||||
r0_sq += distsq[j];
|
||||
r0_sq /= 6.;
|
||||
|
||||
// n0 near neighbors with: distsq<1.45*r0_sq
|
||||
// n1 near neighbors with: distsq<1.55*r0_sq
|
||||
|
||||
double n0_dist_sq = 1.45*r0_sq,
|
||||
n1_dist_sq = 1.55*r0_sq;
|
||||
int n0 = 0, n1 = 0;
|
||||
for (j = 0; j < n; j++) {
|
||||
if (distsq[j] < n1_dist_sq) {
|
||||
nearest_n1[n1++] = nearest[j];
|
||||
if (distsq[j] < n0_dist_sq) {
|
||||
nearest_n0[n0++] = nearest[j];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Evaluate all angles <(r_ij,rik) forall n0 particles with: distsq<1.45*r0_sq
|
||||
double bond_angle;
|
||||
double norm_j, norm_k;
|
||||
chi[0] = chi[1] = chi[2] = chi[3] = chi[4] = chi[5] = chi[6] = chi[7] = 0;
|
||||
double x_ij, y_ij, z_ij, x_ik, y_ik, z_ik;
|
||||
for (j = 0; j < n0; j++) {
|
||||
x_ij = x[i][0]-x[nearest_n0[j]][0];
|
||||
y_ij = x[i][1]-x[nearest_n0[j]][1];
|
||||
z_ij = x[i][2]-x[nearest_n0[j]][2];
|
||||
norm_j = sqrt (x_ij*x_ij + y_ij*y_ij + z_ij*z_ij);
|
||||
if (norm_j <= 0.) continue;
|
||||
for (k = j+1; k < n0; k++) {
|
||||
x_ik = x[i][0]-x[nearest_n0[k]][0];
|
||||
y_ik = x[i][1]-x[nearest_n0[k]][1];
|
||||
z_ik = x[i][2]-x[nearest_n0[k]][2];
|
||||
norm_k = sqrt (x_ik*x_ik + y_ik*y_ik + z_ik*z_ik);
|
||||
if (norm_k <= 0.)
|
||||
continue;
|
||||
|
||||
bond_angle = (x_ij*x_ik + y_ij*y_ik + z_ij*z_ik) / (norm_j*norm_k);
|
||||
|
||||
// Histogram for identifying the relevant peaks
|
||||
if (-1. <= bond_angle && bond_angle < -0.945) { chi[0]++; }
|
||||
else if (-0.945 <= bond_angle && bond_angle < -0.915) { chi[1]++; }
|
||||
else if (-0.915 <= bond_angle && bond_angle < -0.755) { chi[2]++; }
|
||||
else if (-0.755 <= bond_angle && bond_angle < -0.195) { chi[3]++; }
|
||||
else if (-0.195 <= bond_angle && bond_angle < 0.195) { chi[4]++; }
|
||||
else if (0.195 <= bond_angle && bond_angle < 0.245) { chi[5]++; }
|
||||
else if (0.245 <= bond_angle && bond_angle < 0.795) { chi[6]++; }
|
||||
else if (0.795 <= bond_angle && bond_angle < 1.) { chi[7]++; }
|
||||
}
|
||||
}
|
||||
|
||||
// Deviations from the different lattice structures
|
||||
double delta_bcc = 0.35*chi[4]/(double)(chi[5]+chi[6]-chi[4]),
|
||||
delta_cp = fabs(1.-(double)chi[6]/24.),
|
||||
delta_fcc = 0.61*(fabs((double)(chi[0]+chi[1]-6.))+(double)chi[2])/6.,
|
||||
delta_hcp = (fabs((double)chi[0]-3.)+fabs((double)chi[0]+(double)chi[1]+(double)chi[2]+(double)chi[3]-9.))/12.;
|
||||
|
||||
// Identification of the local structure according to the reference
|
||||
if (chi[0] == 7) { delta_bcc = 0.; }
|
||||
else if (chi[0] == 6) { delta_fcc = 0.; }
|
||||
else if (chi[0] <= 3) { delta_hcp = 0.; }
|
||||
|
||||
if (chi[7] > 0.)
|
||||
structure[i] = UNKNOWN;
|
||||
else
|
||||
if (chi[4] < 3.)
|
||||
{
|
||||
if (n1 > 13 || n1 < 11)
|
||||
structure[i] = UNKNOWN;
|
||||
else
|
||||
structure[i] = ICO;
|
||||
} else
|
||||
if (delta_bcc <= delta_cp)
|
||||
{
|
||||
if (n1 < 11)
|
||||
structure[i] = UNKNOWN;
|
||||
else
|
||||
structure[i] = BCC;
|
||||
} else
|
||||
if (n1 > 12 || n1 < 11)
|
||||
structure[i] = UNKNOWN;
|
||||
else
|
||||
if (delta_fcc < delta_hcp)
|
||||
structure[i] = FCC;
|
||||
else
|
||||
structure[i] = HCP;
|
||||
|
||||
} // end loop over all particles
|
||||
}
|
||||
}
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
2 select routines from Numerical Recipes (slightly modified)
|
||||
find k smallest values in array of length n
|
||||
2nd routine sorts auxiliary array at same time
|
||||
------------------------------------------------------------------------- */
|
||||
|
||||
#define SWAP(a,b) tmp = a; a = b; b = tmp;
|
||||
#define ISWAP(a,b) itmp = a; a = b; b = itmp;
|
||||
|
||||
void ComputeAcklandAtom::select(int k, int n, double *arr)
|
||||
{
|
||||
int i,ir,j,l,mid;
|
||||
double a,tmp;
|
||||
|
||||
arr--;
|
||||
l = 1;
|
||||
ir = n;
|
||||
for (;;) {
|
||||
if (ir <= l+1) {
|
||||
if (ir == l+1 && arr[ir] < arr[l]) {
|
||||
SWAP(arr[l],arr[ir])
|
||||
}
|
||||
return;
|
||||
} else {
|
||||
mid=(l+ir) >> 1;
|
||||
SWAP(arr[mid],arr[l+1])
|
||||
if (arr[l] > arr[ir]) {
|
||||
SWAP(arr[l],arr[ir])
|
||||
}
|
||||
if (arr[l+1] > arr[ir]) {
|
||||
SWAP(arr[l+1],arr[ir])
|
||||
}
|
||||
if (arr[l] > arr[l+1]) {
|
||||
SWAP(arr[l],arr[l+1])
|
||||
}
|
||||
i = l+1;
|
||||
j = ir;
|
||||
a = arr[l+1];
|
||||
for (;;) {
|
||||
do i++; while (arr[i] < a);
|
||||
do j--; while (arr[j] > a);
|
||||
if (j < i) break;
|
||||
SWAP(arr[i],arr[j])
|
||||
}
|
||||
arr[l+1] = arr[j];
|
||||
arr[j] = a;
|
||||
if (j >= k) ir = j-1;
|
||||
if (j <= k) l = i;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* ---------------------------------------------------------------------- */
|
||||
|
||||
void ComputeAcklandAtom::select2(int k, int n, double *arr, int *iarr)
|
||||
{
|
||||
int i,ir,j,l,mid,ia,itmp;
|
||||
double a,tmp;
|
||||
|
||||
arr--;
|
||||
iarr--;
|
||||
l = 1;
|
||||
ir = n;
|
||||
for (;;) {
|
||||
if (ir <= l+1) {
|
||||
if (ir == l+1 && arr[ir] < arr[l]) {
|
||||
SWAP(arr[l],arr[ir])
|
||||
ISWAP(iarr[l],iarr[ir])
|
||||
}
|
||||
return;
|
||||
} else {
|
||||
mid=(l+ir) >> 1;
|
||||
SWAP(arr[mid],arr[l+1])
|
||||
ISWAP(iarr[mid],iarr[l+1])
|
||||
if (arr[l] > arr[ir]) {
|
||||
SWAP(arr[l],arr[ir])
|
||||
ISWAP(iarr[l],iarr[ir])
|
||||
}
|
||||
if (arr[l+1] > arr[ir]) {
|
||||
SWAP(arr[l+1],arr[ir])
|
||||
ISWAP(iarr[l+1],iarr[ir])
|
||||
}
|
||||
if (arr[l] > arr[l+1]) {
|
||||
SWAP(arr[l],arr[l+1])
|
||||
ISWAP(iarr[l],iarr[l+1])
|
||||
}
|
||||
i = l+1;
|
||||
j = ir;
|
||||
a = arr[l+1];
|
||||
ia = iarr[l+1];
|
||||
for (;;) {
|
||||
do i++; while (arr[i] < a);
|
||||
do j--; while (arr[j] > a);
|
||||
if (j < i) break;
|
||||
SWAP(arr[i],arr[j])
|
||||
ISWAP(iarr[i],iarr[j])
|
||||
}
|
||||
arr[l+1] = arr[j];
|
||||
arr[j] = a;
|
||||
iarr[l+1] = iarr[j];
|
||||
iarr[j] = ia;
|
||||
if (j >= k) ir = j-1;
|
||||
if (j <= k) l = i;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
memory usage of local atom-based array
|
||||
------------------------------------------------------------------------- */
|
||||
|
||||
int ComputeAcklandAtom::memory_usage()
|
||||
{
|
||||
int bytes = nmax * sizeof(double);
|
||||
return bytes;
|
||||
}
|
|
@ -0,0 +1,42 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
|
||||
http://lammps.sandia.gov, Sandia National Laboratories
|
||||
Steve Plimpton, sjplimp@sandia.gov
|
||||
|
||||
Copyright (2003) Sandia Corporation. Under the terms of Contract
|
||||
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
|
||||
certain rights in this software. This software is distributed under
|
||||
the GNU General Public License.
|
||||
|
||||
See the README file in the top-level LAMMPS directory.
|
||||
------------------------------------------------------------------------- */
|
||||
|
||||
#ifndef COMPUTE_ACKLAND_ATOM_H
|
||||
#define COMPUTE_ACKLAND_ATOM_H
|
||||
|
||||
#include "compute.h"
|
||||
|
||||
namespace LAMMPS_NS {
|
||||
|
||||
class ComputeAcklandAtom : public Compute {
|
||||
public:
|
||||
ComputeAcklandAtom(class LAMMPS *, int, char **);
|
||||
~ComputeAcklandAtom();
|
||||
void init();
|
||||
void compute_peratom();
|
||||
int memory_usage();
|
||||
|
||||
private:
|
||||
int nmax,maxneigh;
|
||||
double *distsq;
|
||||
int *nearest, *nearest_n0, *nearest_n1;
|
||||
double *structure;
|
||||
class NeighList *list;
|
||||
|
||||
void select(int, int, double *);
|
||||
void select2(int, int, double *, int *);
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
#endif
|
|
@ -0,0 +1,20 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
|
||||
http://lammps.sandia.gov, Sandia National Laboratories
|
||||
Steve Plimpton, sjplimp@sandia.gov
|
||||
|
||||
Copyright (2003) Sandia Corporation. Under the terms of Contract
|
||||
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
|
||||
certain rights in this software. This software is distributed under
|
||||
the GNU General Public License.
|
||||
|
||||
See the README file in the top-level LAMMPS directory.
|
||||
------------------------------------------------------------------------- */
|
||||
|
||||
#ifdef ComputeInclude
|
||||
#include "compute_ackland_atom.h"
|
||||
#endif
|
||||
|
||||
#ifdef ComputeClass
|
||||
ComputeStyle(ackland/atom,ComputeAcklandAtom)
|
||||
#endif
|
|
@ -0,0 +1,34 @@
|
|||
# Install/unInstall package classes in LAMMPS
|
||||
|
||||
if ($1 == 1) then
|
||||
|
||||
cp -p style_user_ewaldn.h ..
|
||||
|
||||
cp -p ewald_n.cpp ..
|
||||
cp -p pair_buck_coul.cpp ..
|
||||
cp -p pair_lj_coul.cpp ..
|
||||
|
||||
cp -p ewald_n.h ..
|
||||
cp -p pair_buck_coul.h ..
|
||||
cp -p pair_lj_coul.h ..
|
||||
|
||||
cp -p math_vector.h ..
|
||||
cp -p math_complex.h ..
|
||||
|
||||
else if ($1 == 0) then
|
||||
|
||||
rm ../style_user_ewaldn.h
|
||||
touch ../style_user_ewaldn.h
|
||||
|
||||
rm ../ewald_n.cpp
|
||||
rm ../pair_buck_coul.cpp
|
||||
rm ../pair_lj_coul.cpp
|
||||
|
||||
rm ../ewald_n.h
|
||||
rm ../pair_buck_coul.h
|
||||
rm ../pair_lj_coul.h
|
||||
|
||||
rm ../math_vector.h
|
||||
rm ../math_complex.h
|
||||
|
||||
endif
|
|
@ -0,0 +1,22 @@
|
|||
The files in this directory are a user-contributed package for LAMMPS.
|
||||
|
||||
The person who created these files is Pieter in' t Veld at Sandia
|
||||
(pjintve@sandia.gov). Contact him directly if you have questions.
|
||||
|
||||
This package implements 3 commands which can be used in a LAMMPS input
|
||||
script: pair_style lj/coul, pair_style buck/coul, and kspace_style
|
||||
ewald/n. See the documentation files for these commands for details.
|
||||
|
||||
The "kspace_style ewald/n" command is similar to standard Ewald for
|
||||
charges, but also enables the Lennard-Jones interaction, or any 1/r^N
|
||||
interaction to be of infinite extent, instead of being cutoff. LAMMPS
|
||||
pair potentials for long-range Coulombic interactions, such as
|
||||
lj/cut/coul/long can be used with ewald/n. The two new pair_style
|
||||
commands provide the modifications for the short-range LJ and
|
||||
Buckingham interactions that can also be used with ewald/n.
|
||||
|
||||
Another advantage of kspace_style ewald/n is that it can be used with
|
||||
non-orthogonal (triclinic symmetry) simulation boxes, either for just
|
||||
long-range Coulombic interactions, or for both Coulombic and 1/r^N LJ
|
||||
or Buckingham, which is not currently possible for other kspace styles
|
||||
such as PPPM and ewald.
|
|
@ -0,0 +1,704 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
|
||||
www.cs.sandia.gov/~sjplimp/lammps.html
|
||||
Steve Plimpton, sjplimp@sandia.gov, Sandia National Laboratories
|
||||
|
||||
Copyright (2003) Sandia Corporation. Under the terms of Contract
|
||||
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
|
||||
certain rights in this software. This software is distributed under
|
||||
the GNU General Public License.
|
||||
|
||||
See the README file in the top-level LAMMPS directory.
|
||||
------------------------------------------------------------------------- */
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
Contributing author: Pieter J. in 't Veld (SNL)
|
||||
------------------------------------------------------------------------- */
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
module: ewald_n.cpp
|
||||
author: Pieter J. in 't Veld for SNL
|
||||
date: September 13, 2006.
|
||||
usage: kspace ewald/n precision
|
||||
precision set precision of all orders
|
||||
remarks: - cut off and precision are assumed identical for all orders
|
||||
- coulombics from Macromolecules 1989, 93, 7320
|
||||
- dipoles from J. Chem. Phys. 2000, 113, 10913
|
||||
* ---------------------------------------------------------------------- */
|
||||
|
||||
#include "mpi.h"
|
||||
#include "string.h"
|
||||
#include "stdio.h"
|
||||
#include "stdlib.h"
|
||||
#include "math.h"
|
||||
#include "ewald_n.h"
|
||||
#include "math_vector.h"
|
||||
#include "atom.h"
|
||||
#include "comm.h"
|
||||
#include "force.h"
|
||||
#include "pair.h"
|
||||
#include "domain.h"
|
||||
#include "memory.h"
|
||||
#include "error.h"
|
||||
|
||||
using namespace LAMMPS_NS;
|
||||
|
||||
#define KSPACE_ILLEGAL "Illegal kspace_style ewald/n command"
|
||||
#define KSPACE_ORDER "Unsupported order in kspace_style ewald/n for"
|
||||
#define KSPACE_MIX "Unsupported mixing rule in kspace_style ewald/n for"
|
||||
|
||||
enum{GEOMETRIC,ARITHMETIC,SIXTHPOWER}; // same as in pair.cpp
|
||||
|
||||
//#define DEBUG
|
||||
|
||||
/* ---------------------------------------------------------------------- */
|
||||
|
||||
EwaldN::EwaldN(LAMMPS *lmp, int narg, char **arg) : KSpace(lmp, narg, arg)
|
||||
{
|
||||
if (narg!=1) error->all(KSPACE_ILLEGAL);
|
||||
precision = fabs(atof(arg[0]));
|
||||
memset(function, 0, EWALD_NORDER*sizeof(int));
|
||||
kenergy = kvirial = NULL;
|
||||
cek_local = cek_global = NULL;
|
||||
ekr_local = NULL;
|
||||
hvec = NULL;
|
||||
kvec = NULL;
|
||||
B = NULL;
|
||||
first_output = 0;
|
||||
}
|
||||
|
||||
EwaldN::~EwaldN()
|
||||
{
|
||||
deallocate();
|
||||
delete [] ekr_local;
|
||||
delete [] B;
|
||||
}
|
||||
|
||||
/* --------------------------------------------------------------------- */
|
||||
|
||||
void EwaldN::init()
|
||||
{
|
||||
nkvec = nkvec_max = nevec = nevec_max = bytes = 0;
|
||||
nfunctions = nsums = sums = 0;
|
||||
nbox = -1;
|
||||
|
||||
if (!comm->me) { // output message
|
||||
if (screen) fprintf(screen,"EwaldN initialization ...\n");
|
||||
if (logfile) fprintf(logfile,"EwaldN initialization ...\n");
|
||||
}
|
||||
|
||||
if (domain->dimension == 2) // check for errors
|
||||
error->all("Cannot use EwaldN with 2d simulation");
|
||||
if (slabflag == 0 && domain->nonperiodic > 0)
|
||||
error->all("Cannot use nonperiodic boundaries with EwaldN");
|
||||
if (slabflag == 1) {
|
||||
if (domain->xperiodic != 1 || domain->yperiodic != 1 ||
|
||||
domain->boundary[2][0] != 1 || domain->boundary[2][1] != 1)
|
||||
error->all("Incorrect boundaries with slab EwaldN");
|
||||
}
|
||||
|
||||
qqrd2e = force->qqrd2e; // check pair_style
|
||||
//mumurd2e = force->mumurd2e;
|
||||
//dielectric = force->dielectric;
|
||||
mumurd2e = dielectric = 1.0;
|
||||
|
||||
Pair *pair = force->pair;
|
||||
void *ptr = pair ? pair->extract_ptr("ewald_order") : NULL;
|
||||
if (!ptr) error->all("KSpace style is incompatible with Pair style");
|
||||
int ewald_order = *((int *) ptr);
|
||||
int ewald_mix = *((int *) pair->extract_ptr("ewald_mix"));
|
||||
double cutoff = *((double *) pair->extract_ptr("ewald_cut"));
|
||||
memset(function, 0, EWALD_NFUNCS*sizeof(int));
|
||||
for (int i=0; i<=EWALD_NORDER; ++i) // transcribe order
|
||||
if (ewald_order&(1<<i)) { // from pair_style
|
||||
int n[] = EWALD_NSUMS, k;
|
||||
char str[128];
|
||||
switch (i) {
|
||||
case 1:
|
||||
k = 0; break;
|
||||
case 3:
|
||||
k = 3; break;
|
||||
case 6:
|
||||
if (ewald_mix==GEOMETRIC) { k = 1; break; }
|
||||
else if (ewald_mix==ARITHMETIC) { k = 2; break; }
|
||||
sprintf(str, "%s pair_style %s", KSPACE_MIX, force->pair_style);
|
||||
error->all(str);
|
||||
default:
|
||||
sprintf(str, "%s pair_style %s", KSPACE_ORDER, force->pair_style);
|
||||
error->all(str);
|
||||
}
|
||||
nfunctions += function[k] = 1;
|
||||
nsums += n[k];
|
||||
}
|
||||
|
||||
g_ewald = (1.35 - 0.15*log(precision))/cutoff; // determine resolution
|
||||
g2_max = -4.0*g_ewald*g_ewald*log(precision);
|
||||
|
||||
if (!comm->me) { // output results
|
||||
if (screen) fprintf(screen, " G vector = %g\n", g_ewald);
|
||||
if (logfile) fprintf(logfile, " G vector = %g\n", g_ewald);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
adjust EwaldN coeffs, called initially and whenever volume has changed
|
||||
------------------------------------------------------------------------- */
|
||||
|
||||
void EwaldN::setup()
|
||||
{
|
||||
volume = shape_det(domain->h)*slab_volfactor; // cell volume
|
||||
memcpy(unit, domain->h_inv, sizeof(shape)); // wave vector units
|
||||
shape_scalar_mult(unit, 2.0*M_PI);
|
||||
unit[2] /= slab_volfactor;
|
||||
|
||||
//int nbox_old = nbox, nkvec_old = nkvec;
|
||||
if (precision>=1) nbox = 0;
|
||||
else {
|
||||
vector n = {1.0, 1.0, 1.0}; // based on cutoff
|
||||
vec_scalar_mult(n, g_ewald*sqrt(-log(precision))/M_PI);
|
||||
shape_vec_dot(n, n, domain->h);
|
||||
n[2] *= slab_volfactor;
|
||||
nbox = (int) n[0];
|
||||
if (nbox<(int) n[1]) nbox = (int) n[1];
|
||||
if (nbox<(int) n[2]) nbox = (int) n[2];
|
||||
}
|
||||
reallocate();
|
||||
|
||||
coefficients(); // compute coeffs
|
||||
init_coeffs();
|
||||
init_coeff_sums();
|
||||
init_self();
|
||||
|
||||
if (!(first_output||comm->me)) { // output on first
|
||||
first_output = 1;
|
||||
if (screen) fprintf(screen,
|
||||
" vectors: nbox = %d, nkvec = %d\n", nbox, nkvec);
|
||||
if (logfile) fprintf(logfile,
|
||||
" vectors: nbox = %d, nkvec = %d\n", nbox, nkvec);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void EwaldN::reallocate() // allocate memory
|
||||
{
|
||||
int ix, iy, iz;
|
||||
int nkvec_max = nkvec;
|
||||
vector h;
|
||||
|
||||
nkvec = 0; // determine size(kvec)
|
||||
int kflag[(nbox+1)*(2*nbox+1)*(2*nbox+1)], *flag = kflag;
|
||||
for (ix=0; ix<=nbox; ++ix)
|
||||
for (iy=-nbox; iy<=nbox; ++iy)
|
||||
for (iz=-nbox; iz<=nbox; ++iz)
|
||||
if (!(ix||iy||iz)) *(flag++) = 0;
|
||||
else if ((!ix)&&(iy<0)) *(flag++) = 0;
|
||||
else if ((!(ix||iy))&&(iz<0)) *(flag++) = 0; // use symmetry
|
||||
else {
|
||||
h[0] = unit[0]*ix;
|
||||
h[1] = unit[5]*ix+unit[1]*iy;
|
||||
h[2] = unit[4]*ix+unit[3]*iy+unit[2]*iz;
|
||||
if ((*(flag++) = h[0]*h[0]+h[1]*h[1]+h[2]*h[2]<=g2_max)) ++nkvec;
|
||||
}
|
||||
|
||||
if (nkvec>nkvec_max) {
|
||||
deallocate(); // free memory
|
||||
hvec = new hvector[nkvec]; // hvec
|
||||
bytes += (nkvec-nkvec_max)*sizeof(hvector);
|
||||
kvec = new kvector[nkvec]; // kvec
|
||||
bytes += (nkvec-nkvec_max)*sizeof(kvector);
|
||||
kenergy = new double[nkvec*nfunctions]; // kenergy
|
||||
bytes += (nkvec-nkvec_max)*nfunctions*sizeof(double);
|
||||
kvirial = new double[6*nkvec*nfunctions]; // kvirial
|
||||
bytes += 6*(nkvec-nkvec_max)*nfunctions*sizeof(double);
|
||||
cek_local = new complex[nkvec*nsums]; // cek_local
|
||||
bytes += (nkvec-nkvec_max)*nsums*sizeof(complex);
|
||||
cek_global = new complex[nkvec*nsums]; // cek_global
|
||||
bytes += (nkvec-nkvec_max)*nsums*sizeof(complex);
|
||||
nkvec_max = nkvec;
|
||||
}
|
||||
|
||||
flag = kflag; // create index and
|
||||
kvector *k = kvec; // wave vectors
|
||||
hvector *hi = hvec;
|
||||
for (ix=0; ix<=nbox; ++ix)
|
||||
for (iy=-nbox; iy<=nbox; ++iy)
|
||||
for (iz=-nbox; iz<=nbox; ++iz)
|
||||
if (*(flag++)) {
|
||||
hi->x = unit[0]*ix;
|
||||
hi->y = unit[5]*ix+unit[1]*iy;
|
||||
(hi++)->z = unit[4]*ix+unit[3]*iy+unit[2]*iz;
|
||||
k->x = ix+nbox; k->y = iy+nbox; (k++)->z = iz+nbox; }
|
||||
|
||||
}
|
||||
|
||||
|
||||
void EwaldN::reallocate_atoms()
|
||||
{
|
||||
if ((nevec = atom->nmax*(2*nbox+1))<=nevec_max) return;
|
||||
delete [] ekr_local;
|
||||
ekr_local = new cvector[nevec];
|
||||
bytes += (nevec-nevec_max)*sizeof(cvector);
|
||||
nevec_max = nevec;
|
||||
}
|
||||
|
||||
|
||||
void EwaldN::deallocate() // free memory
|
||||
{
|
||||
delete [] hvec; hvec = NULL;
|
||||
delete [] kvec; kvec = NULL;
|
||||
delete [] kenergy; kenergy = NULL;
|
||||
delete [] kvirial; kvirial = NULL;
|
||||
delete [] cek_local; cek_local = NULL;
|
||||
delete [] cek_global; cek_global = NULL;
|
||||
}
|
||||
|
||||
|
||||
void EwaldN::coefficients() // set up pre-factors
|
||||
{
|
||||
vector h;
|
||||
hvector *hi = hvec, *nh;
|
||||
double eta2 = 0.25/(g_ewald*g_ewald);
|
||||
double b1, b2, expb2, h1, h2, c1, c2;
|
||||
double *ke = kenergy, *kv = kvirial;
|
||||
int func0 = function[0], func12 = function[1]||function[2],
|
||||
func3 = function[3];
|
||||
|
||||
for (nh = (hi = hvec)+nkvec; hi<nh; ++hi) { // wave vectors
|
||||
memcpy(h, hi, sizeof(vector));
|
||||
expb2 = exp(-(b2 = (h2 = vec_dot(h, h))*eta2));
|
||||
if (func0) { // qi*qj/r coeffs
|
||||
*(ke++) = c1 = expb2/h2;
|
||||
*(kv++) = c1-(c2 = 2.0*c1*(1.0+b2)/h2)*h[0]*h[0];
|
||||
*(kv++) = c1-c2*h[1]*h[1]; // lammps convention
|
||||
*(kv++) = c1-c2*h[2]*h[2]; // instead of voigt
|
||||
*(kv++) = -c2*h[1]*h[0];
|
||||
*(kv++) = -c2*h[2]*h[0];
|
||||
*(kv++) = -c2*h[2]*h[1];
|
||||
}
|
||||
if (func12) { // -Bij/r^6 coeffs
|
||||
b1 = sqrt(b2); // minus sign folded
|
||||
h1 = sqrt(h2); // into constants
|
||||
*(ke++) = c1 = -h1*h2*((c2=sqrt(M_PI)*erfc(b1))+(0.5/b2-1.0)*expb2/b1);
|
||||
*(kv++) = c1-(c2 = 3.0*h1*(c2-expb2/b1))*h[0]*h[0];
|
||||
*(kv++) = c1-c2*h[1]*h[1]; // lammps convention
|
||||
*(kv++) = c1-c2*h[2]*h[2]; // instead of voigt
|
||||
*(kv++) = -c2*h[1]*h[0];
|
||||
*(kv++) = -c2*h[2]*h[0];
|
||||
*(kv++) = -c2*h[2]*h[1];
|
||||
}
|
||||
if (func3) { // dipole coeffs
|
||||
*(ke++) = c1 = expb2/h2;
|
||||
*(kv++) = c1-(c2 = 2.0*c1*(1.0+b2)/h2)*h[0]*h[0];
|
||||
*(kv++) = c1-c2*h[1]*h[1]; // lammps convention
|
||||
*(kv++) = c1-c2*h[2]*h[2]; // instead of voigt
|
||||
*(kv++) = -c2*h[1]*h[0];
|
||||
*(kv++) = -c2*h[2]*h[0];
|
||||
*(kv++) = -c2*h[2]*h[1];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void EwaldN::init_coeffs() // local pair coeffs
|
||||
{
|
||||
int n = atom->ntypes;
|
||||
|
||||
if (function[1]) { // geometric 1/r^6
|
||||
double **b = (double **) force->pair->extract_ptr("B");
|
||||
delete [] B;
|
||||
B = new double[n+1];
|
||||
bytes += (n+1)*sizeof(double);
|
||||
for (int i=0; i<=n; ++i) B[i] = sqrt(fabs(b[i][i]));
|
||||
}
|
||||
if (function[2]) { // arithmetic 1/r^6
|
||||
double **epsilon = (double **) force->pair->extract_ptr("epsilon");
|
||||
double **sigma = (double **) force->pair->extract_ptr("sigma");
|
||||
if (!(epsilon&&sigma))
|
||||
error->all("epsilon or sigma reference not set by pair style in ewald/n");
|
||||
double eps_i, sigma_i, sigma_n, *bi = B = new double[7*n+7];
|
||||
double c[7] = {
|
||||
1.0, sqrt(6.0), sqrt(15.0), sqrt(20.0), sqrt(15.0), sqrt(6.0), 1.0};
|
||||
for (int i=0; i<=n; ++i) {
|
||||
eps_i = sqrt(epsilon[i][i]);
|
||||
sigma_i = sigma[i][i];
|
||||
sigma_n = 1.0;
|
||||
for (int j=0; j<7; ++j) {
|
||||
*(bi++) = sigma_n*eps_i*c[j]; sigma_n *= sigma_i;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void EwaldN::init_coeff_sums() // sums based on atoms
|
||||
{
|
||||
if (sums) return; // calculated only once
|
||||
sums = 1;
|
||||
|
||||
Sum sum_local[EWALD_MAX_NSUMS];
|
||||
|
||||
memset(sum_local, 0, EWALD_MAX_NSUMS*sizeof(Sum));
|
||||
if (function[0]) { // 1/r
|
||||
double *q = atom->q, *qn = q+atom->nlocal;
|
||||
for (double *i=q; i<qn; ++i) {
|
||||
sum_local[0].x += i[0]; sum_local[0].x2 += i[0]*i[0]; }
|
||||
}
|
||||
if (function[1]) { // geometric 1/r^6
|
||||
int *type = atom->type, *ntype = type+atom->nlocal;
|
||||
for (int *i=type; i<ntype; ++i) {
|
||||
sum_local[1].x += B[i[0]]; sum_local[1].x2 += B[i[0]]*B[i[0]]; }
|
||||
}
|
||||
if (function[2]) { // aritmetic 1/r^6
|
||||
double *bi;
|
||||
int *type = atom->type, *ntype = type+atom->nlocal;
|
||||
for (int *i=type; i<ntype; ++i) {
|
||||
bi = B+7*i[0];
|
||||
sum_local[2].x2 += bi[0]*bi[6];
|
||||
for (int k=2; k<9; ++k) sum_local[k].x += *(bi++);
|
||||
}
|
||||
}
|
||||
if (function[3]) { // dipole
|
||||
int *type = atom->type, *ntype = type+atom->nlocal;
|
||||
double *dipole = atom->dipole;
|
||||
for (int *i=type; i<ntype; ++i)
|
||||
sum_local[9].x2 += dipole[i[0]]*dipole[i[0]];
|
||||
}
|
||||
MPI_Allreduce(sum_local, sum, 2*EWALD_MAX_NSUMS, MPI_DOUBLE, MPI_SUM, world);
|
||||
}
|
||||
|
||||
|
||||
void EwaldN::init_self()
|
||||
{
|
||||
double g1 = g_ewald, g2 = g1*g1, g3 = g1*g2;
|
||||
|
||||
memset(energy_self, 0, EWALD_NFUNCS*sizeof(double)); // self energy
|
||||
memset(virial_self, 0, EWALD_NFUNCS*sizeof(double));
|
||||
if (function[0]) { // 1/r
|
||||
virial_self[0] = -0.5*M_PI*qqrd2e/(g2*volume)*sum[0].x*sum[0].x;
|
||||
energy_self[0] = sum[0].x2*qqrd2e*g1/sqrt(M_PI)-virial_self[0];
|
||||
}
|
||||
if (function[1]) { // geometric 1/r^6
|
||||
virial_self[1] = M_PI*sqrt(M_PI)*g3/(6.0*volume)*sum[1].x*sum[1].x;
|
||||
energy_self[1] = -sum[1].x2*g3*g3/12.0+virial_self[1];
|
||||
}
|
||||
if (function[2]) { // arithmetic 1/r^6
|
||||
virial_self[2] = M_PI*sqrt(M_PI)*g3/(48.0*volume)*(sum[2].x*sum[8].x+
|
||||
sum[3].x*sum[7].x+sum[4].x*sum[6].x+0.5*sum[5].x*sum[5].x);
|
||||
energy_self[2] = -sum[2].x2*g3*g3/3.0+virial_self[2];
|
||||
}
|
||||
if (function[3]) { // dipole
|
||||
virial_self[3] = 0; // in surface
|
||||
energy_self[3] = sum[9].x2*mumurd2e*2.0*g3/3.0/sqrt(M_PI)-virial_self[3];
|
||||
}
|
||||
}
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
compute the EwaldN long-range force, energy, virial
|
||||
------------------------------------------------------------------------- */
|
||||
|
||||
void EwaldN::compute(int eflag, int vflag)
|
||||
{
|
||||
if (!nbox) return;
|
||||
reallocate_atoms();
|
||||
compute_ek();
|
||||
compute_force();
|
||||
compute_surface();
|
||||
compute_energy(eflag);
|
||||
compute_virial(vflag);
|
||||
}
|
||||
|
||||
|
||||
void EwaldN::compute_ek()
|
||||
{
|
||||
cvector *ekr = ekr_local;
|
||||
int lbytes = (2*nbox+1)*sizeof(cvector);
|
||||
hvector *h;
|
||||
kvector *k, *nk = kvec+nkvec;
|
||||
cvector z1, z[2*nbox+1], *zx, *zy, *zz, *zn = z+2*nbox;
|
||||
complex *cek, zxyz, zxy, cx;
|
||||
vector mui;
|
||||
double *x = atom->x[0], *xn = x+3*atom->nlocal, *q = atom->q, qi, bi, ci[7];
|
||||
double *dipole = atom->dipole, *mu = atom->mu ? atom->mu[0] : NULL;
|
||||
int i, kx, ky, n = nkvec*nsums, *type = atom->type, tri = domain->triclinic;
|
||||
int func[EWALD_NFUNCS];
|
||||
|
||||
memcpy(func, function, EWALD_NFUNCS*sizeof(int));
|
||||
memset(cek_local, 0, n*sizeof(complex)); // reset sums
|
||||
while (x<xn) {
|
||||
zx = (zy = (zz = z+nbox)+1)-2;
|
||||
C_SET(zz->x, 1, 0); C_SET(zz->y, 1, 0); C_SET(zz->z, 1, 0); // z[0]
|
||||
if (tri) { // triclinic z[1]
|
||||
C_ANGLE(z1.x, unit[0]*x[0]+unit[5]*x[1]+unit[4]*x[2]);
|
||||
C_ANGLE(z1.y, unit[1]*x[1]+unit[3]*x[2]);
|
||||
C_ANGLE(z1.z, x[2]*unit[2]); x += 3;
|
||||
}
|
||||
else { // orthogonal z[1]
|
||||
C_ANGLE(z1.x, *(x++)*unit[0]);
|
||||
C_ANGLE(z1.y, *(x++)*unit[1]);
|
||||
C_ANGLE(z1.z, *(x++)*unit[2]);
|
||||
}
|
||||
for (; zz<zn; --zx, ++zy, ++zz) { // set up z[k]=e^(ik.r)
|
||||
C_RMULT(zy->x, zz->x, z1.x); // 3D k-vector
|
||||
C_RMULT(zy->y, zz->y, z1.y); C_CONJ(zx->y, zy->y);
|
||||
C_RMULT(zy->z, zz->z, z1.z); C_CONJ(zx->z, zy->z);
|
||||
}
|
||||
kx = ky = -1;
|
||||
cek = cek_local;
|
||||
if (func[0]) qi = *(q++);
|
||||
if (func[1]) bi = B[*type];
|
||||
if (func[2]) memcpy(ci, B+7*type[0], 7*sizeof(double));
|
||||
if (func[3]) {
|
||||
memcpy(mui, mu, sizeof(vector)); mu += 3;
|
||||
vec_scalar_mult(mui, dipole[*type]);
|
||||
h = hvec;
|
||||
}
|
||||
for (k=kvec; k<nk; ++k) { // compute rho(k)
|
||||
if (ky!=k->y) { // based on order in
|
||||
if (kx!=k->x) cx = z[kx = k->x].x; // reallocate
|
||||
C_RMULT(zxy, z[ky = k->y].y, cx);
|
||||
}
|
||||
C_RMULT(zxyz, z[k->z].z, zxy);
|
||||
if (func[0]) {
|
||||
cek->re += zxyz.re*qi; (cek++)->im += zxyz.im*qi;
|
||||
}
|
||||
if (func[1]) {
|
||||
cek->re += zxyz.re*bi; (cek++)->im += zxyz.im*bi;
|
||||
}
|
||||
if (func[2]) for (i=0; i<7; ++i) {
|
||||
cek->re += zxyz.re*ci[i]; (cek++)->im += zxyz.im*ci[i];
|
||||
}
|
||||
if (func[3]) {
|
||||
register double muk = mui[0]*h->x+mui[1]*h->y+mui[2]*h->z; ++h;
|
||||
cek->re += zxyz.re*muk; (cek++)->im += zxyz.im*muk;
|
||||
}
|
||||
}
|
||||
ekr = (cvector *) ((char *) memcpy(ekr, z, lbytes)+lbytes);
|
||||
++type;
|
||||
}
|
||||
MPI_Allreduce(cek_local, cek_global, 2*n, MPI_DOUBLE, MPI_SUM, world);
|
||||
}
|
||||
|
||||
|
||||
void EwaldN::compute_force()
|
||||
{
|
||||
kvector *k;
|
||||
hvector *h, *nh;
|
||||
cvector *z = ekr_local;
|
||||
vector sum[EWALD_MAX_NSUMS], mui;
|
||||
complex *cek, zc, zx, zxy;
|
||||
double *f = atom->f[0], *fn = f+3*atom->nlocal, *q = atom->q, *t = NULL;
|
||||
double *dipole = atom->dipole, *mu = atom->mu ? atom->mu[0] : NULL;
|
||||
double *ke, c[EWALD_NFUNCS] = {
|
||||
8.0*M_PI*qqrd2e/volume, 2.0*M_PI*sqrt(M_PI)/(12.0*volume),
|
||||
2.0*M_PI*sqrt(M_PI)/(192.0*volume), 8.0*M_PI*mumurd2e/volume};
|
||||
double kt = 4.0*pow(g_ewald, 3.0)/3.0/sqrt(M_PI)/c[3];
|
||||
int i, kx, ky, lbytes = (2*nbox+1)*sizeof(cvector), *type = atom->type;
|
||||
int func[EWALD_NFUNCS];
|
||||
|
||||
if (atom->torque) t = atom->torque[0];
|
||||
memcpy(func, function, EWALD_NFUNCS*sizeof(int));
|
||||
memset(sum, 0, EWALD_MAX_NSUMS*sizeof(vector)); // fj = -dE/dr =
|
||||
for (; f<fn; f+=3) { // -i*qj*fac*
|
||||
k = kvec; // Sum[conj(d)-d]
|
||||
kx = ky = -1; // d = k*conj(ekj)*ek
|
||||
ke = kenergy;
|
||||
cek = cek_global;
|
||||
memset(sum, 0, EWALD_MAX_NSUMS*sizeof(vector));
|
||||
if (func[3]) {
|
||||
register double di = dipole[*type]*c[3];
|
||||
mui[0] = di*(mu++)[0]; mui[1] = di*(mu++)[1]; mui[2] = di*(mu++)[2];
|
||||
}
|
||||
for (nh = (h = hvec)+nkvec; h<nh; ++h, ++k) {
|
||||
if (ky!=k->y) { // based on order in
|
||||
if (kx!=k->x) zx = z[kx = k->x].x; // reallocate
|
||||
C_RMULT(zxy, z[ky = k->y].y, zx);
|
||||
}
|
||||
C_CRMULT(zc, z[k->z].z, zxy);
|
||||
if (func[0]) { // 1/r
|
||||
register double im = *(ke++)*(zc.im*cek->re+cek->im*zc.re); ++cek;
|
||||
sum[0][0] += h->x*im; sum[0][1] += h->y*im; sum[0][2] += h->z*im;
|
||||
}
|
||||
if (func[1]) { // geometric 1/r^6
|
||||
register double im = *(ke++)*(zc.im*cek->re+cek->im*zc.re); ++cek;
|
||||
sum[1][0] += h->x*im; sum[1][1] += h->y*im; sum[1][2] += h->z*im;
|
||||
}
|
||||
if (func[2]) { // arithmetic 1/r^6
|
||||
register double im, c = *(ke++);
|
||||
for (i=2; i<9; ++i) {
|
||||
im = c*(zc.im*cek->re+cek->im*zc.re); ++cek;
|
||||
sum[i][0] += h->x*im; sum[i][1] += h->y*im; sum[i][2] += h->z*im;
|
||||
}
|
||||
}
|
||||
if (func[3]) { // dipole
|
||||
register double im = *(ke++)*(zc.im*cek->re+
|
||||
cek->im*zc.re)*(mui[0]*h->x+mui[1]*h->y+mui[2]*h->z); ++cek;
|
||||
sum[9][0] += h->x*im; sum[9][1] += h->y*im; sum[9][2] += h->z*im;
|
||||
}
|
||||
}
|
||||
if (func[0]) { // 1/r
|
||||
register double qi = *(q++)*c[0];
|
||||
f[0] -= sum[0][0]*qi; f[1] -= sum[0][1]*qi; f[2] -= sum[0][2]*qi;
|
||||
}
|
||||
if (func[1]) { // geometric 1/r^6
|
||||
register double bi = B[*type]*c[1];
|
||||
f[0] -= sum[1][0]*bi; f[1] -= sum[1][1]*bi; f[2] -= sum[1][2]*bi;
|
||||
}
|
||||
if (func[2]) { // arithmetic 1/r^6
|
||||
register double *bi = B+7*type[0]+7;
|
||||
for (i=2; i<9; ++i) {
|
||||
register double c2 = (--bi)[0]*c[2];
|
||||
f[0] -= sum[i][0]*c2; f[1] -= sum[i][1]*c2; f[2] -= sum[i][2]*c2;
|
||||
}
|
||||
}
|
||||
if (func[3]) { // dipole
|
||||
f[0] -= sum[9][0]; f[1] -= sum[9][1]; f[2] -= sum[9][2];
|
||||
*(t++) -= mui[1]*sum[0][2]+mui[2]*sum[0][1]-mui[0]*kt; // torque
|
||||
*(t++) -= mui[2]*sum[0][0]+mui[0]*sum[0][2]-mui[1]*kt;
|
||||
*(t++) -= mui[0]*sum[0][1]+mui[1]*sum[0][0]-mui[2]*kt;
|
||||
}
|
||||
z = (cvector *) ((char *) z+lbytes);
|
||||
++type;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void EwaldN::compute_surface()
|
||||
{
|
||||
if (!function[3]) return;
|
||||
|
||||
vector sum_local = VECTOR_NULL, sum_total;
|
||||
double *mu = atom->mu ? atom->mu[0] : NULL, *dipole = atom->dipole;
|
||||
int *type = atom->type, *ntype = type+atom->nlocal;
|
||||
|
||||
for (int *i=type; i<ntype; ++i) {
|
||||
register double di = dipole[i[0]];
|
||||
sum_local[0] += di*(mu++)[0];
|
||||
sum_local[1] += di*(mu++)[1];
|
||||
sum_local[2] += di*(mu++)[2];
|
||||
}
|
||||
MPI_Allreduce(sum_local, sum_total, 3, MPI_DOUBLE, MPI_SUM, world);
|
||||
|
||||
energy_self[3] += virial_self[3];
|
||||
virial_self[3] =
|
||||
mumurd2e*(2.0*M_PI*vec_dot(sum_total,sum_total)/(2.0*dielectric+1)/volume);
|
||||
energy_self[3] -= virial_self[3];
|
||||
}
|
||||
|
||||
|
||||
void EwaldN::compute_energy(int eflag)
|
||||
{
|
||||
energy = 0.0;
|
||||
if (!eflag) return;
|
||||
|
||||
complex *cek = cek_global;
|
||||
double *ke = kenergy;
|
||||
double c[EWALD_NFUNCS] = {
|
||||
4.0*M_PI*qqrd2e/volume, 2.0*M_PI*sqrt(M_PI)/(24.0*volume),
|
||||
2.0*M_PI*sqrt(M_PI)/(192.0*volume), 4.0*M_PI*mumurd2e/volume};
|
||||
double sum[EWALD_NFUNCS];
|
||||
int func[EWALD_NFUNCS];
|
||||
|
||||
memcpy(func, function, EWALD_NFUNCS*sizeof(int));
|
||||
memset(sum, 0, EWALD_NFUNCS*sizeof(double)); // reset sums
|
||||
for (int k=0; k<nkvec; ++k) { // sum over k vectors
|
||||
if (func[0]) { // 1/r
|
||||
sum[0] += *(ke++)*(cek->re*cek->re+cek->im*cek->im); ++cek; }
|
||||
if (func[1]) { // geometric 1/r^6
|
||||
sum[1] += *(ke++)*(cek->re*cek->re+cek->im*cek->im); ++cek; }
|
||||
if (func[2]) { // arithmetic 1/r^6
|
||||
register double r =
|
||||
(cek[0].re*cek[6].re+cek[0].im*cek[6].im)+
|
||||
(cek[1].re*cek[5].re+cek[1].im*cek[5].im)+
|
||||
(cek[2].re*cek[4].re+cek[2].im*cek[4].im)+
|
||||
0.5*(cek[3].re*cek[3].re+cek[3].im*cek[3].im); cek += 7;
|
||||
sum[2] += *(ke++)*r;
|
||||
}
|
||||
if (func[3]) { // dipole
|
||||
sum[3] += *(ke++)*(cek->re*cek->re+cek->im*cek->im); ++cek; }
|
||||
}
|
||||
for (int k=0; k<EWALD_NFUNCS; ++k) energy += c[k]*sum[k]-energy_self[k];
|
||||
if (slabflag) compute_slabcorr(eflag);
|
||||
}
|
||||
|
||||
|
||||
#define swap(a, b) { register double t = a; a= b; b = t; }
|
||||
|
||||
void EwaldN::compute_virial(int vflag)
|
||||
{
|
||||
memset(virial, 0, sizeof(shape));
|
||||
if (!vflag) return;
|
||||
|
||||
complex *cek = cek_global;
|
||||
double *kv = kvirial;
|
||||
double c[EWALD_NFUNCS] = {
|
||||
4.0*M_PI*qqrd2e/volume, 2.0*M_PI*sqrt(M_PI)/(24.0*volume),
|
||||
2.0*M_PI*sqrt(M_PI)/(192.0*volume), 4.0*M_PI*mumurd2e/volume};
|
||||
shape sum[EWALD_NFUNCS];
|
||||
int func[EWALD_NFUNCS];
|
||||
|
||||
memcpy(func, function, EWALD_NFUNCS*sizeof(int));
|
||||
memset(sum, 0, EWALD_NFUNCS*sizeof(shape));
|
||||
for (int k=0; k<nkvec; ++k) { // sum over k vectors
|
||||
if (func[0]) { // 1/r
|
||||
register double r = cek->re*cek->re+cek->im*cek->im; ++cek;
|
||||
sum[0][0] += *(kv++)*r; sum[0][1] += *(kv++)*r; sum[0][2] += *(kv++)*r;
|
||||
sum[0][3] += *(kv++)*r; sum[0][4] += *(kv++)*r; sum[0][5] += *(kv++)*r;
|
||||
}
|
||||
if (func[1]) { // geometric 1/r^6
|
||||
register double r = cek->re*cek->re+cek->im*cek->im; ++cek;
|
||||
sum[1][0] += *(kv++)*r; sum[1][1] += *(kv++)*r; sum[1][2] += *(kv++)*r;
|
||||
sum[1][3] += *(kv++)*r; sum[1][4] += *(kv++)*r; sum[1][5] += *(kv++)*r;
|
||||
}
|
||||
if (func[2]) { // arithmetic 1/r^6
|
||||
register double r =
|
||||
(cek[0].re*cek[6].re+cek[0].im*cek[6].im)+
|
||||
(cek[1].re*cek[5].re+cek[1].im*cek[5].im)+
|
||||
(cek[2].re*cek[4].re+cek[2].im*cek[4].im)+
|
||||
0.5*(cek[3].re*cek[3].re+cek[3].im*cek[3].im); cek += 7;
|
||||
sum[2][0] += *(kv++)*r; sum[2][1] += *(kv++)*r; sum[2][2] += *(kv++)*r;
|
||||
sum[2][3] += *(kv++)*r; sum[2][4] += *(kv++)*r; sum[2][5] += *(kv++)*r;
|
||||
}
|
||||
if (func[3]) {
|
||||
register double r = cek->re*cek->re+cek->im*cek->im; ++cek;
|
||||
sum[3][0] += *(kv++)*r; sum[3][1] += *(kv++)*r; sum[3][2] += *(kv++)*r;
|
||||
sum[3][3] += *(kv++)*r; sum[3][4] += *(kv++)*r; sum[3][5] += *(kv++)*r;
|
||||
}
|
||||
}
|
||||
for (int k=0; k<EWALD_NFUNCS; ++k)
|
||||
if (func[k]) {
|
||||
shape self = {virial_self[k], virial_self[k], virial_self[k], 0, 0, 0};
|
||||
shape_scalar_mult(sum[k], c[k]);
|
||||
shape_add(virial, sum[k]);
|
||||
shape_subtr(virial, self);
|
||||
}
|
||||
}
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
Slab-geometry correction term to dampen inter-slab interactions between
|
||||
periodically repeating slabs. Yields good approximation to 2-D EwaldN if
|
||||
adequate empty space is left between repeating slabs (J. Chem. Phys.
|
||||
111, 3155). Slabs defined here to be parallel to the xy plane.
|
||||
------------------------------------------------------------------------- */
|
||||
|
||||
void EwaldN::compute_slabcorr(int eflag)
|
||||
{
|
||||
// compute local contribution to global dipole moment
|
||||
|
||||
double *q = atom->q;
|
||||
double *x = atom->x[0]-1, *xn = x+3*atom->nlocal-1;
|
||||
double dipole = 0.0, dipole_all;
|
||||
|
||||
while ((x+=3)<xn) dipole += *x * *(q++);
|
||||
MPI_Allreduce(&dipole, &dipole_all, 1, MPI_DOUBLE, MPI_SUM, world);
|
||||
|
||||
double ffact = -4.0*M_PI*qqrd2e*dipole_all/volume; // force correction
|
||||
double *f = atom->f[0]-1, *fn = f+3*atom->nlocal-3;
|
||||
|
||||
q = atom->q;
|
||||
while ((f+=3)<fn) *f += ffact* *(q++);
|
||||
|
||||
if (eflag) // energy correction
|
||||
energy += qqrd2e*(2.0*M_PI*dipole_all*dipole_all/volume);
|
||||
}
|
||||
|
|
@ -0,0 +1,75 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
|
||||
www.cs.sandia.gov/~sjplimp/lammps.html
|
||||
Steve Plimpton, sjplimp@sandia.gov, Sandia National Laboratories
|
||||
|
||||
Copyright (2003) Sandia Corporation. Under the terms of Contract
|
||||
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
|
||||
certain rights in this software. This software is distributed under
|
||||
the GNU General Public License.
|
||||
|
||||
See the README file in the top-level LAMMPS directory.
|
||||
------------------------------------------------------------------------- */
|
||||
|
||||
#ifndef EWALD_N_H
|
||||
#define EWALD_N_H
|
||||
|
||||
#include "kspace.h"
|
||||
#include "math_complex.h"
|
||||
|
||||
#define EWALD_NORDER 6
|
||||
#define EWALD_NFUNCS 4
|
||||
#define EWALD_MAX_NSUMS 10
|
||||
#define EWALD_NSUMS {1, 1, 7, 1}
|
||||
|
||||
namespace LAMMPS_NS {
|
||||
|
||||
typedef struct cvector { complex x, y, z; } cvector;
|
||||
typedef struct hvector { double x, y, z; } hvector;
|
||||
typedef struct kvector { long x, y, z; } kvector;
|
||||
|
||||
class EwaldN : public KSpace {
|
||||
public:
|
||||
EwaldN(class LAMMPS *, int, char **);
|
||||
~EwaldN();
|
||||
void init();
|
||||
void setup();
|
||||
void compute(int, int);
|
||||
int memory_usage() { return bytes; }
|
||||
|
||||
private:
|
||||
double unit[6];
|
||||
int function[EWALD_NFUNCS], first_output;
|
||||
|
||||
int nkvec, nkvec_max, nevec, nevec_max,
|
||||
nbox, nfunctions, nsums, bytes, sums;
|
||||
double precision, g2_max;
|
||||
double *kenergy, energy_self[EWALD_NFUNCS];
|
||||
double *kvirial, virial_self[EWALD_NFUNCS];
|
||||
cvector *ekr_local;
|
||||
hvector *hvec;
|
||||
kvector *kvec;
|
||||
|
||||
double qqrd2e, mumurd2e, dielectric, *B, volume;
|
||||
struct Sum { double x, x2; } sum[EWALD_MAX_NSUMS];
|
||||
complex *cek_local, *cek_global;
|
||||
|
||||
void reallocate();
|
||||
void reallocate_atoms();
|
||||
void deallocate();
|
||||
void coefficients();
|
||||
void init_coeffs();
|
||||
void init_coeff_sums();
|
||||
void init_self();
|
||||
void compute_ek();
|
||||
void compute_force();
|
||||
void compute_surface();
|
||||
void compute_energy(int);
|
||||
void compute_virial(int);
|
||||
void compute_slabcorr(int);
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
@ -0,0 +1,73 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
|
||||
www.cs.sandia.gov/~sjplimp/lammps.html
|
||||
Steve Plimpton, sjplimp@sandia.gov, Sandia National Laboratories
|
||||
|
||||
Copyright (2003) Sandia Corporation. Under the terms of Contract
|
||||
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
|
||||
certain rights in this software. This software is distributed under
|
||||
the GNU General Public License.
|
||||
|
||||
See the README file in the top-level LAMMPS directory.
|
||||
------------------------------------------------------------------------- */
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
Contributing author: Pieter J. in 't Veld (SNL)
|
||||
------------------------------------------------------------------------- */
|
||||
|
||||
#ifndef MATH_COMPLEX_H
|
||||
#define MATH_COMPLEX_H
|
||||
|
||||
#define COMPLEX_NULL {0, 0}
|
||||
|
||||
namespace LAMMPS_NS {
|
||||
|
||||
typedef struct complex {
|
||||
double re, im; } complex;
|
||||
|
||||
}
|
||||
|
||||
#define C_MULT(d, x, y) { \
|
||||
d.re = x.re*y.re-x.im*y.im; \
|
||||
d.im = x.re*y.im+x.im*y.re; }
|
||||
|
||||
#define C_RMULT(d, x, y) { \
|
||||
register complex t = x; \
|
||||
d.re = t.re*y.re-t.im*y.im; \
|
||||
d.im = t.re*y.im+t.im*y.re; }
|
||||
|
||||
#define C_CRMULT(d, x, y) { \
|
||||
register complex t = x; \
|
||||
d.re = t.re*y.re-t.im*y.im; \
|
||||
d.im = -t.re*y.im-t.im*y.re; }
|
||||
|
||||
#define C_SMULT(d, x, y) { \
|
||||
d.re = x.re*y; \
|
||||
d.im = x.im*y; }
|
||||
|
||||
#define C_ADD(d, x, y) { \
|
||||
d.re = x.re+y.re; \
|
||||
d.im = x.im+y.im; }
|
||||
|
||||
#define C_SUBTR(d, x, y) { \
|
||||
d.re = x.re-y.re; \
|
||||
d.im = x.im-y.im; }
|
||||
|
||||
#define C_CONJ(d, x) { \
|
||||
d.re = x.re; \
|
||||
d.im = -x.im; }
|
||||
|
||||
#define C_SET(d, x, y) { \
|
||||
d.re = x; \
|
||||
d.im = y; }
|
||||
|
||||
#define C_ANGLE(d, angle) { \
|
||||
register double a = angle; \
|
||||
d.re = cos(a); \
|
||||
d.im = sin(a); }
|
||||
|
||||
#define C_COPY(d, x) { \
|
||||
memcpy(&d, &x, sizeof(complex)); }
|
||||
|
||||
#endif
|
||||
|
|
@ -0,0 +1,447 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
|
||||
www.cs.sandia.gov/~sjplimp/lammps.html
|
||||
Steve Plimpton, sjplimp@sandia.gov, Sandia National Laboratories
|
||||
|
||||
Copyright (2003) Sandia Corporation. Under the terms of Contract
|
||||
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
|
||||
certain rights in this software. This software is distributed under
|
||||
the GNU General Public License.
|
||||
|
||||
See the README file in the top-level LAMMPS directory.
|
||||
------------------------------------------------------------------------- */
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
Contributing author: Pieter J. in 't Veld (SNL)
|
||||
------------------------------------------------------------------------- */
|
||||
|
||||
#ifndef MATH_VECTOR_H
|
||||
#define MATH_VECTOR_H
|
||||
|
||||
#include "math.h"
|
||||
|
||||
#define VECTOR_NULL {0, 0, 0}
|
||||
#define SHAPE_NULL {0, 0, 0, 0, 0, 0}
|
||||
#define FORM_NULL {0, 0, 0, 0, 0, 0}
|
||||
#define MATRIX_NULL {VECTOR_NULL, VECTOR_NULL, VECTOR_NULL}
|
||||
#define VECTOR4_NULL {0, 0, 0, 0}
|
||||
#define QUATERNION_NULL {0, 0, 0, 0}
|
||||
#define FORM4_NULL {0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
|
||||
|
||||
#define FZERO 1e-15
|
||||
#define fzero(x) (((x)>-FZERO) && ((x)<FZERO))
|
||||
|
||||
namespace LAMMPS_NS {
|
||||
|
||||
typedef double vector[3]; // 0:x 1:y 2:z
|
||||
typedef int lvector[3];
|
||||
typedef double shape[6]; // 0:xx 1:yy 2:zz 3:zy 4:zx 5:yx
|
||||
typedef int lshape[6]; // xy=0 xz=0 yz=0;
|
||||
typedef double form[6]; // 0:xx 1:yy 2:zz 3:zy 4:zx 5:yx
|
||||
typedef int lform[6]; // xy=yx xz=zx yz=zy;
|
||||
typedef vector matrix[3]; // 00:xx 11:yy 22:zz 21:zy 20:zx 10:yx
|
||||
typedef lvector lmatrix[3];
|
||||
typedef double vector4[4]; // 4D vector
|
||||
typedef double form4[10]; // 0:00 1:11 2:22 3:33 4:32
|
||||
// 5:31 6:30 7:21 8:20 9:10
|
||||
// 01=10 02=20 03=30 etc
|
||||
typedef double quaternion[4]; // quaternion
|
||||
|
||||
// vector operators
|
||||
|
||||
inline double vec_dot(vector &a, vector &b) { // a.b
|
||||
return a[0]*b[0]+a[1]*b[1]+a[2]*b[2]; }
|
||||
|
||||
inline void vec_null(vector &dest) {
|
||||
memset(dest, 0, sizeof(vector)); }
|
||||
|
||||
inline void vec_neg(vector &dest) { // -a
|
||||
dest[0] = -dest[0];
|
||||
dest[1] = -dest[1];
|
||||
dest[2] = -dest[2]; }
|
||||
|
||||
inline void vec_norm(vector &dest) { // a/|a|
|
||||
register double f = sqrt(vec_dot(dest, dest));
|
||||
dest[0] /= f;
|
||||
dest[1] /= f;
|
||||
dest[2] /= f; }
|
||||
|
||||
inline void vec_add(vector &dest, vector &src) { // a+b
|
||||
dest[0] += src[0];
|
||||
dest[1] += src[1];
|
||||
dest[2] += src[2]; }
|
||||
|
||||
inline void vec_subtr(vector &dest, vector &src) { // a-b
|
||||
dest[0] -= src[0];
|
||||
dest[1] -= src[1];
|
||||
dest[2] -= src[2]; }
|
||||
|
||||
inline void vec_mult(vector &dest, vector &src) { // a*b
|
||||
dest[0] *= src[0];
|
||||
dest[1] *= src[1];
|
||||
dest[2] *= src[2]; }
|
||||
|
||||
inline void vec_div(vector &dest, vector &src) { // a/b
|
||||
dest[0] /= src[0];
|
||||
dest[1] /= src[1];
|
||||
dest[2] /= src[2]; }
|
||||
|
||||
inline void vec_cross(vector &dest, vector &src) { // a x b
|
||||
vector t = {
|
||||
dest[1]*src[2]-dest[2]*src[1],
|
||||
dest[2]*src[0]-dest[0]*src[2],
|
||||
dest[0]*src[1]-dest[1]*src[0]};
|
||||
memcpy(dest, t, sizeof(vector)); }
|
||||
|
||||
inline void vec_scalar_mult(vector &dest, double f) { // f*a
|
||||
dest[0] *= f;
|
||||
dest[1] *= f;
|
||||
dest[2] *= f; }
|
||||
|
||||
inline void vec_to_lvec(lvector &dest, vector &src) {
|
||||
dest[0] = (int) src[0];
|
||||
dest[1] = (int) src[1];
|
||||
dest[2] = (int) src[2]; }
|
||||
|
||||
inline void lvec_to_vec(vector &dest, lvector &src) {
|
||||
dest[0] = (double) src[0];
|
||||
dest[1] = (double) src[1];
|
||||
dest[2] = (double) src[2]; }
|
||||
|
||||
// shape operators
|
||||
|
||||
inline double shape_det(shape &s) {
|
||||
return s[0]*s[1]*s[2]; }
|
||||
|
||||
inline void shape_null(shape &dest) {
|
||||
memset(dest, 0, sizeof(shape)); }
|
||||
|
||||
inline void shape_unit(shape &dest) {
|
||||
memset(dest, 0, sizeof(shape));
|
||||
dest[0] = dest[1] = dest[2] = 1.0; }
|
||||
|
||||
inline void shape_add(shape &dest, shape &src) { // h_a+h_b
|
||||
dest[0] += src[0]; dest[1] += src[1]; dest[2] += src[2];
|
||||
dest[3] += src[3]; dest[4] += src[4]; dest[5] += src[5]; }
|
||||
|
||||
inline void shape_subtr(shape &dest, shape &src) { // h_a-h_b
|
||||
dest[0] -= src[0]; dest[1] -= src[1]; dest[2] -= src[2];
|
||||
dest[3] -= src[3]; dest[4] -= src[4]; dest[5] -= src[5]; }
|
||||
|
||||
inline void shape_inv(shape &h_inv, shape &h) { // h^-1
|
||||
h_inv[0] = 1.0/h[0]; h_inv[1] = 1.0/h[1]; h_inv[2] = 1.0/h[2];
|
||||
h_inv[3] = -h[3]/(h[1]*h[2]);
|
||||
h_inv[4] = (h[3]*h[5]-h[1]*h[4])/(h[0]*h[1]*h[2]);
|
||||
h_inv[5] = -h[5]/(h[0]*h[1]); }
|
||||
|
||||
inline void shape_dot(shape &dest, shape &src) { // h_a.h_b
|
||||
dest[3] = dest[1]*src[3]+dest[3]*src[2];
|
||||
dest[4] = dest[0]*src[4]+dest[5]*src[3]+dest[4]*src[2];
|
||||
dest[5] = dest[0]*src[5]+dest[5]*src[1];
|
||||
dest[0] *= src[0]; dest[1] *= src[1]; dest[2] *= src[2]; }
|
||||
|
||||
inline void shape_scalar_mult(shape &dest, double f) { // f*h
|
||||
dest[0] *= f; dest[1] *= f; dest[2] *= f;
|
||||
dest[3] *= f; dest[4] *= f; dest[5] *= f; }
|
||||
|
||||
inline void shape_vec_dot(vector &dest, vector &src, shape &h) {// h.a
|
||||
dest[0] = h[0]*src[0]+h[5]*src[1]+h[4]*src[2];
|
||||
dest[1] = h[1]*src[1]+h[3]*src[2];
|
||||
dest[2] = h[2]*src[2]; }
|
||||
|
||||
inline void vec_shape_dot(vector &dest, shape &h, vector &src) {// a.h
|
||||
dest[2] = h[4]*src[0]+h[3]*src[1]+h[2]*src[2];
|
||||
dest[1] = h[5]*src[0]+h[1]*src[1];
|
||||
dest[0] = h[0]*src[0]; }
|
||||
|
||||
inline void shape_to_matrix(matrix &dest, shape &h) { // m = h
|
||||
dest[0][0] = h[0]; dest[1][0] = h[5]; dest[2][0] = h[4];
|
||||
dest[0][1] = 0.0; dest[1][1] = h[1]; dest[2][1] = h[3];
|
||||
dest[0][2] = 0.0; dest[1][2] = 0.0; dest[2][2] = h[2]; }
|
||||
|
||||
inline void shape_to_lshape(lshape &dest, shape &src) {
|
||||
dest[0] = (long)src[0]; dest[1] = (long)src[1]; dest[2] = (long)src[2];
|
||||
dest[3] = (long)src[3]; dest[4] = (long)src[4]; dest[5] = (long)src[5]; }
|
||||
|
||||
inline void lshape_to_shape(shape &dest, lshape &src) {
|
||||
dest[0] = (double)src[0]; dest[1] = (double)src[1]; dest[2] = (double)src[2];
|
||||
dest[3] = (double)src[3]; dest[4] = (double)src[4]; dest[5] = (double)src[5];}
|
||||
|
||||
// form operators
|
||||
|
||||
inline double form_det(form &m) { // |m|
|
||||
return m[0]*(m[1]*m[2]-m[3]*m[3])+
|
||||
m[4]*(2.0*m[3]*m[5]-m[1]*m[4])-m[2]*m[5]*m[5]; }
|
||||
|
||||
inline void form_null(form &dest) {
|
||||
memset(dest, 0, sizeof(form)); }
|
||||
|
||||
inline void form_unit(form &dest) {
|
||||
memset(dest, 0, sizeof(form));
|
||||
dest[0] = dest[1] = dest[2] = 1.0; }
|
||||
|
||||
inline void form_add(form &dest, form &src) { // m_a+m_b
|
||||
dest[0] += src[0]; dest[1] += src[1]; dest[2] += src[2];
|
||||
dest[3] += src[3]; dest[4] += src[4]; dest[5] += src[5]; }
|
||||
|
||||
inline void form_subtr(shape &dest, form &src) { // m_a-m_b
|
||||
dest[0] -= src[0]; dest[1] -= src[1]; dest[2] -= src[2];
|
||||
dest[3] -= src[3]; dest[4] -= src[4]; dest[5] -= src[5]; }
|
||||
|
||||
inline int form_inv(form &m_inv, form &m) { // m^-1
|
||||
register double det = form_det(m);
|
||||
if (fzero(det)) return 0;
|
||||
m_inv[0] = (m[1]*m[2]-m[3]*m[3])/det;
|
||||
m_inv[1] = (m[0]*m[2]-m[4]*m[4])/det;
|
||||
m_inv[2] = (m[0]*m[1]-m[5]*m[5])/det;
|
||||
m_inv[3] = (m[4]*m[5]-m[0]*m[3])/det;
|
||||
m_inv[4] = (m[3]*m[5]-m[1]*m[4])/det;
|
||||
m_inv[5] = (m[3]*m[4]-m[2]*m[5])/det;
|
||||
return 1; }
|
||||
|
||||
inline void form_dot(form &dest, form &src) { // m_a.m_b
|
||||
form m;
|
||||
memcpy(m, dest, sizeof(form));
|
||||
dest[0] = m[0]*src[0]+m[4]*src[4]+m[5]*src[5];
|
||||
dest[1] = m[1]*src[1]+m[3]*src[3]+m[5]*src[5];
|
||||
dest[2] = m[2]*src[2]+m[3]*src[3]+m[4]*src[4];
|
||||
dest[3] = m[3]*src[2]+m[1]*src[3]+m[5]*src[4];
|
||||
dest[4] = m[4]*src[2]+m[5]*src[3]+m[0]*src[4];
|
||||
dest[5] = m[5]*src[1]+m[4]*src[3]+m[0]*src[5]; }
|
||||
|
||||
inline void form_vec_dot(vector &dest, form &m) { // m.a
|
||||
vector a;
|
||||
memcpy(a, dest, sizeof(vector));
|
||||
dest[0] = m[0]*a[0]+m[5]*a[1]+m[4]*a[2];
|
||||
dest[1] = m[5]*a[0]+m[1]*a[1]+m[3]*a[2];
|
||||
dest[2] = m[4]*a[0]+m[3]*a[1]+m[2]*a[2]; }
|
||||
|
||||
inline void form_to_lform(lform &dest, form &src) {
|
||||
dest[0] = (long)src[0]; dest[1] = (long)src[1]; dest[2] = (long)src[2];
|
||||
dest[3] = (long)src[3]; dest[4] = (long)src[4]; dest[5] = (long)src[5]; }
|
||||
|
||||
inline void lform_to_form(form &dest, lform &src) {
|
||||
dest[0] = (double)src[0]; dest[1] = (double)src[1]; dest[2] = (double)src[2];
|
||||
dest[3] = (double)src[3]; dest[4] = (double)src[4]; dest[5] = (double)src[5];}
|
||||
|
||||
// matrix operators
|
||||
|
||||
inline double matrix_det(matrix &m) { // |m|
|
||||
vector axb;
|
||||
memcpy(&axb, m[0], sizeof(vector));
|
||||
vec_cross(axb, m[1]);
|
||||
return vec_dot(axb, m[2]); }
|
||||
|
||||
inline void matrix_null(matrix &dest) {
|
||||
memset(dest, 0, sizeof(dest)); }
|
||||
|
||||
inline void matrix_unit(matrix &dest) {
|
||||
memset(dest, 0, sizeof(dest));
|
||||
dest[0][0] = dest[1][1] = dest[2][2] = 1.0; }
|
||||
|
||||
inline void matrix_scalar_mult(matrix &dest, double f) { // f*m
|
||||
vec_scalar_mult(dest[0], f);
|
||||
vec_scalar_mult(dest[1], f);
|
||||
vec_scalar_mult(dest[2], f); }
|
||||
|
||||
inline void matrix_trans(matrix &dest) { // m^t
|
||||
double f = dest[0][1]; dest[0][1] = dest[1][0]; dest[1][0] = f;
|
||||
f = dest[0][2]; dest[0][2] = dest[2][0]; dest[2][0] = f;
|
||||
f = dest[1][2]; dest[1][2] = dest[2][1]; dest[2][1] = f; }
|
||||
|
||||
inline int matrix_inv(matrix &dest, matrix &src) { // m^-1
|
||||
double f = matrix_det(src);
|
||||
if (fzero(f)) return 0; // singular matrix
|
||||
memcpy(dest[0], src[1], sizeof(vector));
|
||||
memcpy(dest[1], src[2], sizeof(vector));
|
||||
memcpy(dest[2], src[0], sizeof(vector));
|
||||
vec_cross(dest[0], src[2]);
|
||||
vec_cross(dest[1], src[0]);
|
||||
vec_cross(dest[2], src[1]);
|
||||
matrix_scalar_mult(dest, 1.0/f);
|
||||
matrix_trans(dest);
|
||||
return 0; }
|
||||
|
||||
inline void matrix_vec_dot(vector &dest, vector &src, matrix &m) { // m.a
|
||||
dest[0] = m[0][0]*src[0]+m[1][0]*src[1]+m[2][0]*src[2];
|
||||
dest[1] = m[0][1]*src[0]+m[1][1]*src[1]+m[2][1]*src[2];
|
||||
dest[2] = m[0][2]*src[0]+m[1][2]*src[1]+m[2][2]*src[2]; }
|
||||
|
||||
inline void matrix_to_shape(shape &dest, matrix &src) { // h = m
|
||||
dest[0] = src[0][0]; dest[1] = src[1][1]; dest[2] = src[2][2];
|
||||
dest[3] = src[2][1]; dest[4] = src[2][0]; dest[5] = src[1][0]; }
|
||||
|
||||
inline void matrix_to_lmatrix(lmatrix &dest, matrix &src) {
|
||||
vec_to_lvec(dest[0], src[0]);
|
||||
vec_to_lvec(dest[1], src[1]);
|
||||
vec_to_lvec(dest[2], src[2]); }
|
||||
|
||||
inline void lmatrix_to_matrix(matrix &dest, lmatrix &src) {
|
||||
lvec_to_vec(dest[0], src[0]);
|
||||
lvec_to_vec(dest[1], src[1]);
|
||||
lvec_to_vec(dest[2], src[2]); }
|
||||
|
||||
// quaternion operators
|
||||
|
||||
inline double quat_dot(quaternion &p, quaternion &q) { // p.q
|
||||
return p[0]*q[0]+p[1]*q[1]+p[2]*q[2]+p[3]*q[3];
|
||||
}
|
||||
|
||||
inline void quat_norm(quaternion &q) { // q = q/|q|
|
||||
double f = sqrt(q[0]*q[0]+q[1]*q[1]+q[2]*q[2]+q[3]*q[3]);
|
||||
q[0] /= f; q[1] /= f; q[2] /= f; q[3] /= f;
|
||||
}
|
||||
|
||||
inline void quat_conj(quaternion &q) { // q = conj(q)
|
||||
q[1] = -q[1]; q[2] = -q[2]; q[3] = -q[3];
|
||||
}
|
||||
|
||||
inline void quat_mult(quaternion &dest, quaternion &src) { // dest *= src
|
||||
quaternion q;
|
||||
memcpy(q, dest, sizeof(quaternion));
|
||||
dest[0] = src[0]*q[3]+src[1]*q[2]-src[2]*q[1]+src[3]*q[0];
|
||||
dest[1] = -src[0]*q[2]+src[1]*q[3]+src[2]*q[0]+src[3]*q[1];
|
||||
dest[2] = src[0]*q[1]-src[1]*q[0]+src[2]*q[3]+src[3]*q[2];
|
||||
dest[3] = -src[0]*q[0]-src[1]*q[1]-src[2]*q[2]+src[3]*q[3];
|
||||
}
|
||||
|
||||
inline void quat_div(quaternion &dest, quaternion &src) { // dest /= src
|
||||
quaternion q;
|
||||
memcpy(q, dest, sizeof(quaternion));
|
||||
dest[0] = src[0]*q[3]-src[1]*q[2]+src[2]*q[1]-src[3]*q[0];
|
||||
dest[1] = -src[0]*q[2]-src[1]*q[3]-src[2]*q[0]-src[3]*q[1];
|
||||
dest[2] = src[0]*q[1]+src[1]*q[0]-src[2]*q[3]-src[3]*q[2];
|
||||
dest[3] = -src[0]*q[0]+src[1]*q[1]+src[2]*q[2]-src[3]*q[3];
|
||||
}
|
||||
// dest = q*src*conj(q)
|
||||
inline void quat_vec_rot(vector &dest, vector &src, quaternion &q) {
|
||||
quaternion aa={q[0]*q[0], q[1]*q[1], q[2]*q[2], q[3]*q[3]};
|
||||
form ab={q[0]*q[1], q[0]*q[2], q[0]*q[3], q[1]*q[2], q[1]*q[3], q[2]*q[3]};
|
||||
dest[0] = (aa[0]+aa[1]-aa[2]-aa[3])*src[0]+
|
||||
((ab[3]-ab[2])*src[1]+(ab[1]+ab[4])*src[2])*2.0;
|
||||
dest[1] = (aa[0]-aa[1]+aa[2]-aa[3])*src[1]+
|
||||
((ab[2]+ab[3])*src[0]+(ab[5]-ab[0])*src[2])*2.0;
|
||||
dest[2] = (aa[0]-aa[1]-aa[2]+aa[3])*src[2]+
|
||||
((ab[4]-ab[1])*src[0]+(ab[0]+ab[5])*src[1])*2.0;
|
||||
}
|
||||
|
||||
// vector4 operators
|
||||
|
||||
inline void vec4_null(vector4 &dest) {
|
||||
memset(dest, 0, sizeof(vector4));
|
||||
}
|
||||
|
||||
inline double vec4_dot(vector4 &a, vector4 &b) {
|
||||
return a[0]*b[0]+a[1]*b[1]+a[2]*b[2]+a[3]*b[3]; }
|
||||
|
||||
// form operators
|
||||
|
||||
inline void form4_null(form4 &dest) {
|
||||
memset(dest, 0, sizeof(form4)); }
|
||||
|
||||
inline void form4_unit(form4 &dest) {
|
||||
memset(dest, 0, sizeof(form4));
|
||||
dest[0] = dest[1] = dest[2] = dest[3] = 1.0; }
|
||||
|
||||
inline double form4_det(form4 &m) {
|
||||
register double f = m[6]*m[7]-m[5]*m[8];
|
||||
return m[0]*(
|
||||
m[1]*(m[2]*m[3]-m[4]*m[4])+
|
||||
m[5]*(2.0*m[4]*m[7]-m[2]*m[5])-m[3]*m[7]*m[7])+f*f+
|
||||
-m[1]*(m[2]*m[6]*m[6]+m[8]*(m[3]*m[8]-2.0*m[4]*m[6]))+
|
||||
m[9]*(
|
||||
2.0*(m[2]*m[5]*m[6]+m[3]*m[7]*m[8]-m[4]*(m[6]*m[7]+m[5]*m[8]))+
|
||||
m[9]*(m[4]*m[4]-m[2]*m[3])); }
|
||||
|
||||
inline int form4_inv(form4 &m_inv, form4 &m) {
|
||||
register double det = form4_det(m);
|
||||
if (fzero(det)) return 0;
|
||||
m_inv[0] = (m[1]*(m[2]*m[3]-m[4]*m[4])+
|
||||
m[5]*(2.0*m[4]*m[7]-m[2]*m[5])-m[3]*m[7]*m[7])/det;
|
||||
m_inv[1] = (m[0]*(m[2]*m[3]-m[4]*m[4])+
|
||||
m[6]*(2.0*m[4]*m[8]-m[2]*m[6])-m[3]*m[8]*m[8])/det;
|
||||
m_inv[2] = (m[0]*(m[1]*m[3]-m[5]*m[5])+
|
||||
m[6]*(2.0*m[5]*m[9]-m[1]*m[6])-m[3]*m[9]*m[9])/det;
|
||||
m_inv[3] = (m[0]*(m[1]*m[2]-m[7]*m[7])+
|
||||
m[8]*(2.0*m[7]*m[9]-m[1]*m[8])-m[2]*m[9]*m[9])/det;
|
||||
m_inv[4] = (m[0]*(m[5]*m[7]-m[1]*m[4])+m[1]*m[6]*m[8]+
|
||||
m[9]*(m[4]*m[9]-m[6]*m[7]-m[5]*m[8]))/det;
|
||||
m_inv[5] = (m[0]*(m[4]*m[7]-m[2]*m[5])+m[2]*m[6]*m[9]+
|
||||
m[8]*(m[5]*m[8]-m[6]*m[7]-m[4]*m[9]))/det;
|
||||
m_inv[6] = (m[1]*(m[4]*m[8]-m[2]*m[6])+m[2]*m[5]*m[9]+
|
||||
m[7]*(m[6]*m[7]-m[5]*m[8]-m[4]*m[9]))/det;
|
||||
m_inv[7] = (m[0]*(m[4]*m[5]-m[3]*m[7])+m[3]*m[8]*m[9]+
|
||||
m[6]*(m[6]*m[7]-m[5]*m[8]-m[4]*m[9]))/det;
|
||||
m_inv[8] = (m[1]*(m[4]*m[6]-m[3]*m[8])+m[3]*m[7]*m[9]+
|
||||
m[5]*(m[5]*m[8]-m[6]*m[7]-m[4]*m[9]))/det;
|
||||
m_inv[9] = (m[2]*(m[5]*m[6]-m[3]*m[9])+m[3]*m[7]*m[8]+
|
||||
m[4]*(m[4]*m[9]-m[6]*m[7]-m[5]*m[8]))/det;
|
||||
return 1; }
|
||||
|
||||
inline void form4_vec4_dot(vector4 &dest, form4 &m) {
|
||||
vector4 a;
|
||||
memcpy(a, dest, sizeof(vector4));
|
||||
dest[0] = m[0]*a[0]+m[9]*a[1]+m[7]*a[2]+m[6]*a[3];
|
||||
dest[1] = m[9]*a[0]+m[1]*a[1]+m[6]*a[2]+m[5]*a[3];
|
||||
dest[2] = m[8]*a[0]+m[7]*a[1]+m[2]*a[2]+m[4]*a[3];
|
||||
dest[3] = m[6]*a[0]+m[5]*a[1]+m[4]*a[2]+m[3]*a[3]; }
|
||||
|
||||
// square regression: y = eqn[0] + eqn[1]*x + eqn[2]*x*x
|
||||
|
||||
inline int regress2(vector &eqn, int order, double *x, double *y, int n) {
|
||||
form xtx = FORM_NULL, xtx_inv;
|
||||
vector xty = VECTOR_NULL;
|
||||
double xn, xi, yi;
|
||||
int i;
|
||||
|
||||
vec_null(eqn);
|
||||
xtx[0] = n;
|
||||
if ((order = order%2)<0) order = -order; // max: quad regress
|
||||
if (order<1) xtx[1] = 1.0;
|
||||
if (order<2) xtx[2] = 1.0;
|
||||
for (i=0; i<n; ++i) {
|
||||
xty[0] += (yi = y[i]);
|
||||
if (order<1) continue;
|
||||
xty[1] += yi*(xi = xn = x[i]); xtx[5] += xn; xtx[1] += (xn *= xi);
|
||||
if (order<2) continue;
|
||||
xty[2] += yi*xn; xtx[3] += (xn *= xi); xtx[2] += xn*xi;
|
||||
}
|
||||
if (order>1) xtx[4] = xtx[2];
|
||||
if (!form_inv(xtx_inv, xtx)) return 0;
|
||||
memcpy(eqn, xty, sizeof(vector));
|
||||
form_vec_dot(eqn, xtx_inv);
|
||||
return 1; }
|
||||
|
||||
// cubic regression: y = eqn[0] + eqn[1]*x + eqn[2]*x*x + eqn[3]*x*x*x
|
||||
|
||||
inline int regress3(vector4 &eqn, int order, double *x, double *y, int n) {
|
||||
form4 xtx = FORM4_NULL, xtx_inv;
|
||||
vector4 xty = VECTOR4_NULL;
|
||||
double xn, xi, yi;
|
||||
int i;
|
||||
|
||||
vec4_null(eqn);
|
||||
xtx[0] = n;
|
||||
if ((order = order%3)<0) order = -order; // max: cubic regress
|
||||
if (order<1) xtx[1] = 1.0;
|
||||
if (order<2) xtx[2] = 1.0;
|
||||
if (order<3) xtx[3] = 1.0;
|
||||
for (i=0; i<n; ++i) {
|
||||
xty[0] += (yi = y[i]);
|
||||
if (order<1) continue;
|
||||
xty[1] += yi*(xi = xn = x[i]); xtx[9] += xn; xtx[1] += (xn *= xi);
|
||||
if (order<2) continue;
|
||||
xty[2] += yi*xn; xtx[7] += (xn *= xi); xtx[2] += xn*xi;
|
||||
if (order<3) continue;
|
||||
xty[3] += yi*xn; xtx[4] += (xn *= xi*xi); xtx[3] += xn*xi;
|
||||
}
|
||||
if (order>1) xtx[8] = xtx[1];
|
||||
if (order>2) { xtx[6] = xtx[7]; xtx[5] = xtx[2]; }
|
||||
if (!form4_inv(xtx_inv, xtx)) return 0;
|
||||
memcpy(eqn, xty, sizeof(vector4));
|
||||
form4_vec4_dot(eqn, xtx_inv);
|
||||
return 1; }
|
||||
|
||||
}
|
||||
|
||||
#endif
|
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,69 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
|
||||
www.cs.sandia.gov/~sjplimp/lammps.html
|
||||
Steve Plimpton, sjplimp@sandia.gov, Sandia National Laboratories
|
||||
|
||||
Copyright (2003) Sandia Corporation. Under the terms of Contract
|
||||
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
|
||||
certain rights in this software. This software is distributed under
|
||||
the GNU General Public License.
|
||||
|
||||
See the README file in the top-level LAMMPS directory.
|
||||
------------------------------------------------------------------------- */
|
||||
|
||||
#ifndef PAIR_BUCK_COUL_H
|
||||
#define PAIR_BUCK_COUL_H
|
||||
|
||||
#include "pair.h"
|
||||
|
||||
namespace LAMMPS_NS {
|
||||
|
||||
class PairBuckCoul : public Pair {
|
||||
public:
|
||||
double cut_coul;
|
||||
|
||||
PairBuckCoul(class LAMMPS *);
|
||||
~PairBuckCoul();
|
||||
virtual void compute(int, int);
|
||||
|
||||
virtual void settings(int, char **);
|
||||
void coeff(int, char **);
|
||||
double init_one(int, int);
|
||||
virtual void init_style();
|
||||
void write_restart(FILE *);
|
||||
void read_restart(FILE *);
|
||||
|
||||
virtual void write_restart_settings(FILE *);
|
||||
virtual void read_restart_settings(FILE *);
|
||||
virtual void single(int, int, int, int, double, double, double, int, One &);
|
||||
virtual void *extract_ptr(char *);
|
||||
virtual void extract_long(double *);
|
||||
|
||||
void compute_inner();
|
||||
void compute_middle();
|
||||
void compute_outer(int, int);
|
||||
|
||||
protected:
|
||||
double cut_buck_global;
|
||||
double **cut_buck, **cut_buck_read, **cut_bucksq;
|
||||
double cut_coulsq;
|
||||
double **buck_a_read, **buck_a, **buck_c_read, **buck_c;
|
||||
double **buck1, **buck2, **buck_rho_read, **buck_rho, **rhoinv, **offset;
|
||||
double *cut_respa;
|
||||
double g_ewald;
|
||||
int ewald_order, ewald_off;
|
||||
|
||||
double tabinnersq;
|
||||
double *rtable, *drtable, *ftable, *dftable, *ctable, *dctable;
|
||||
double *etable, *detable, *ptable, *dptable, *vtable, *dvtable;
|
||||
int ncoulshiftbits, ncoulmask;
|
||||
|
||||
void options(char **arg, int order);
|
||||
void allocate();
|
||||
void init_tables();
|
||||
void free_tables();
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
#endif
|
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,68 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
|
||||
www.cs.sandia.gov/~sjplimp/lammps.html
|
||||
Steve Plimpton, sjplimp@sandia.gov, Sandia National Laboratories
|
||||
|
||||
Copyright (2003) Sandia Corporation. Under the terms of Contract
|
||||
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
|
||||
certain rights in this software. This software is distributed under
|
||||
the GNU General Public License.
|
||||
|
||||
See the README file in the top-level LAMMPS directory.
|
||||
------------------------------------------------------------------------- */
|
||||
|
||||
#ifndef PAIR_LJ_COUL_H
|
||||
#define PAIR_LJ_COUL_H
|
||||
|
||||
#include "pair.h"
|
||||
|
||||
namespace LAMMPS_NS {
|
||||
|
||||
class PairLJCoul : public Pair {
|
||||
public:
|
||||
double cut_coul;
|
||||
|
||||
PairLJCoul(class LAMMPS *);
|
||||
virtual ~PairLJCoul();
|
||||
virtual void compute(int, int);
|
||||
virtual void settings(int, char **);
|
||||
void coeff(int, char **);
|
||||
double init_one(int, int);
|
||||
virtual void init_style();
|
||||
void write_restart(FILE *);
|
||||
void read_restart(FILE *);
|
||||
|
||||
virtual void write_restart_settings(FILE *);
|
||||
virtual void read_restart_settings(FILE *);
|
||||
virtual void single(int, int, int, int, double, double, double, int, One &);
|
||||
virtual void *extract_ptr(char *);
|
||||
virtual void extract_long(double *);
|
||||
|
||||
void compute_inner();
|
||||
void compute_middle();
|
||||
void compute_outer(int, int);
|
||||
|
||||
protected:
|
||||
double cut_lj_global;
|
||||
double **cut_lj, **cut_lj_read, **cut_ljsq;
|
||||
double cut_coulsq;
|
||||
double **epsilon_read, **epsilon, **sigma_read, **sigma;
|
||||
double **lj1, **lj2, **lj3, **lj4, **offset;
|
||||
double *cut_respa;
|
||||
double g_ewald;
|
||||
int ewald_order, ewald_off;
|
||||
|
||||
double tabinnersq;
|
||||
double *rtable, *drtable, *ftable, *dftable, *ctable, *dctable;
|
||||
double *etable, *detable, *ptable, *dptable, *vtable, *dvtable;
|
||||
int ncoulshiftbits, ncoulmask;
|
||||
|
||||
void options(char **arg, int order);
|
||||
void allocate();
|
||||
void init_tables();
|
||||
void free_tables();
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
#endif
|
|
@ -0,0 +1,30 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
|
||||
http://lammps.sandia.gov, Sandia National Laboratories
|
||||
Steve Plimpton, sjplimp@sandia.gov
|
||||
|
||||
Copyright (2003) Sandia Corporation. Under the terms of Contract
|
||||
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
|
||||
certain rights in this software. This software is distributed under
|
||||
the GNU General Public License.
|
||||
|
||||
See the README file in the top-level LAMMPS directory.
|
||||
------------------------------------------------------------------------- */
|
||||
|
||||
#ifdef KSpaceInclude
|
||||
#include "ewald_n.h"
|
||||
#endif
|
||||
|
||||
#ifdef KSpaceClass
|
||||
KSpaceStyle(ewald/n,EwaldN)
|
||||
#endif
|
||||
|
||||
#ifdef PairInclude
|
||||
#include "pair_buck_coul.h"
|
||||
#include "pair_lj_coul.h"
|
||||
#endif
|
||||
|
||||
#ifdef PairClass
|
||||
PairStyle(buck/coul,PairBuckCoul)
|
||||
PairStyle(lj/coul,PairLJCoul)
|
||||
#endif
|
|
@ -0,0 +1,18 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
|
||||
http://lammps.sandia.gov, Sandia National Laboratories
|
||||
Steve Plimpton, sjplimp@sandia.gov
|
||||
|
||||
Copyright (2003) Sandia Corporation. Under the terms of Contract
|
||||
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
|
||||
certain rights in this software. This software is distributed under
|
||||
the GNU General Public License.
|
||||
|
||||
See the README file in the top-level LAMMPS directory.
|
||||
------------------------------------------------------------------------- */
|
||||
|
||||
// style flies for user-contributed packages
|
||||
// see the README files in individual user-package directories for details
|
||||
|
||||
#include "style_user_ackland.h"
|
||||
#include "style_user_ewaldn.h"
|
Loading…
Reference in New Issue