mirror of https://github.com/lammps/lammps.git
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@1085 f3b2605a-c512-4ea7-a41b-209d697bcdaa
This commit is contained in:
parent
01db99fbe5
commit
bb5e1cb67f
|
@ -46,6 +46,10 @@ latex pair_lj_smooth
|
|||
latex pair_lubricate
|
||||
latex pair_meam
|
||||
latex pair_morse
|
||||
latex pair_resquared
|
||||
latex pair_resquared2
|
||||
latex pair_resquared3
|
||||
latex pair_resquared4
|
||||
latex pair_soft
|
||||
latex pair_sw
|
||||
latex pair_tersoff
|
||||
|
|
Binary file not shown.
After Width: | Height: | Size: 1.6 KiB |
|
@ -0,0 +1,7 @@
|
|||
\documentstyle[12pt]{article}
|
||||
|
||||
\begin{document}
|
||||
|
||||
$$ A_{12} = 4\pi^2\epsilon_{\mathrm{LJ}}(\rho\sigma^3)^2 $$
|
||||
|
||||
\end{document}
|
Binary file not shown.
After Width: | Height: | Size: 1.5 KiB |
|
@ -0,0 +1,7 @@
|
|||
\documentstyle[12pt]{article}
|
||||
|
||||
\begin{document}
|
||||
|
||||
$$ A_{12} = 4\pi^2\epsilon_{\mathrm{LJ}}(\rho\sigma^3) $$
|
||||
|
||||
\end{document}
|
Binary file not shown.
After Width: | Height: | Size: 679 B |
|
@ -0,0 +1,7 @@
|
|||
\documentstyle[12pt]{article}
|
||||
|
||||
\begin{document}
|
||||
|
||||
$$ A_{12} = \epsilon_{\mathrm{LJ}} $$
|
||||
|
||||
\end{document}
|
Binary file not shown.
After Width: | Height: | Size: 2.9 KiB |
|
@ -0,0 +1,9 @@
|
|||
\documentstyle[12pt]{article}
|
||||
|
||||
\begin{document}
|
||||
|
||||
$$ \epsilon_a = \sigma \cdot { \frac{a}{ b \cdot c } }; \epsilon_b =
|
||||
\sigma \cdot { \frac{b}{ a \cdot c } }; \epsilon_c = \sigma \cdot {
|
||||
\frac{c}{ a \cdot b } } $$
|
||||
|
||||
\end{document}
|
Binary file not shown.
|
@ -0,0 +1,113 @@
|
|||
\documentstyle[12pt]{article}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\begin{center}
|
||||
|
||||
\large{Additional documention for the RE-squared ellipsoidal potential \\
|
||||
as implemented in LAMMPS}
|
||||
|
||||
\end{center}
|
||||
|
||||
\centerline{Mike Brown, Sandia National Labs, October 2007}
|
||||
|
||||
\vspace{0.3in}
|
||||
|
||||
Let the shape matrices $\mathbf{S}_i=\mbox{diag}(a_i, b_i, c_i)$ be
|
||||
given by the ellipsoid radii. Let the relative energy matrices
|
||||
$\mathbf{E}_i = \mbox{diag} (\epsilon_{ia}, \epsilon_{ib},
|
||||
\epsilon_{ic})$ be given by the relative well depths
|
||||
(dimensionless energy scales inversely proportional to the well-depths
|
||||
of the respective orthogonal configurations of the interacting molecules).
|
||||
Let $\mathbf{A}_1$ and $\mathbf{A}_2$ be the transformation matrices
|
||||
from the simulation box frame to the body frame and $\mathbf{r}$
|
||||
be the center to center vector between the particles. Let $A_{12}$ be
|
||||
the Hamaker constant for the interaction given in LJ units by
|
||||
$A_{12}=4\pi^2\epsilon_{\mathrm{LJ}}(\rho\sigma^3)^2$.
|
||||
|
||||
\vspace{0.3in}
|
||||
|
||||
The RE-squared anisotropic interaction between pairs of
|
||||
ellipsoidal particles is given by
|
||||
|
||||
$$ U=U_A+U_R, $$
|
||||
|
||||
$$ U_\alpha=\frac{A_{12}}{m_\alpha}(\frac\sigma{h})^{n_\alpha}
|
||||
(1+o_\alpha\eta\chi\frac\sigma{h}) \times \prod_i{
|
||||
\frac{a_ib_ic_i}{(a_i+h/p_\alpha)(b_i+h/p_\alpha)(c_i+h/p_\alpha)}}, $$
|
||||
|
||||
$$ m_A=-36, n_A=0, o_A=3, p_A=2, $$
|
||||
|
||||
$$ m_R=2025, n_R=6, o_R=45/56, p_R=60^{1/3}, $$
|
||||
|
||||
$$ \chi = 2 \hat{\mathbf{r}}^T \mathbf{B}^{-1}
|
||||
\hat{\mathbf{r}}, $$
|
||||
|
||||
$$ \hat{\mathbf{r}} = { \mathbf{r} } / |\mathbf{r}|, $$
|
||||
|
||||
$$ \mathbf{B} = \mathbf{A}_1^T \mathbf{E}_1 \mathbf{A}_1 +
|
||||
\mathbf{A}_2^T \mathbf{E}_2 \mathbf{A}_2 $$
|
||||
|
||||
$$ \eta = \frac{ \det[\mathbf{S}_1]/\sigma_1^2+
|
||||
det[\mathbf{S}_2]/\sigma_2^2}{[\det[\mathbf{H}]/
|
||||
(\sigma_1+\sigma_2)]^{1/2}}, $$
|
||||
|
||||
$$ \sigma_i = (\hat{\mathbf{r}}^T\mathbf{A}_i^T\mathbf{S}_i^{-2}
|
||||
\mathbf{A}_i\hat{\mathbf{r}})^{-1/2}, $$
|
||||
|
||||
$$ \mathbf{H} = \frac{1}{\sigma_1}\mathbf{A}_1^T \mathbf{S}_1^2 \mathbf{A}_1 +
|
||||
\frac{1}{\sigma_2}\mathbf{A}_2^T \mathbf{S}_2^2 \mathbf{A}_2 $$
|
||||
|
||||
|
||||
Here, we use the distance of closest approach approximation given by the
|
||||
Perram reference, namely
|
||||
|
||||
$$ h = |r| - \sigma_{12}, $$
|
||||
|
||||
$$ \sigma_{12} = [ \frac{1}{2} \hat{\mathbf{r}}^T
|
||||
\mathbf{G}^{-1} \hat{\mathbf{r}}]^{ -1/2 }, $$
|
||||
|
||||
and
|
||||
|
||||
$$ \mathbf{G} = \mathbf{A}_1^T \mathbf{S}_1^2 \mathbf{A}_1 +
|
||||
\mathbf{A}_2^T \mathbf{S}_2^2 \mathbf{A}_2 $$
|
||||
|
||||
\vspace{0.3in}
|
||||
|
||||
The RE-squared anisotropic interaction between a
|
||||
ellipsoidal particle and a Lennard-Jones sphere is defined
|
||||
as the $\lim_{a_2->0}U$ under the constraints that
|
||||
$a_2=b_2=c_2$ and $\frac{4}{3}\pi a_2^3\rho=1$:
|
||||
|
||||
$$ U_{\mathrm{elj}}=U_{A_{\mathrm{elj}}}+U_{R_{\mathrm{elj}}}, $$
|
||||
|
||||
$$ U_{\alpha_{\mathrm{elj}}}=(\frac{3\sigma^3c_\alpha^3}
|
||||
{4\pi h_{\mathrm{elj}}^3})\frac{A_{12_{\mathrm{elj}}}}
|
||||
{m_\alpha}(\frac\sigma{h_{\mathrm{elj}}})^{n_\alpha}
|
||||
(1+o_\alpha\chi_{\mathrm{elj}}\frac\sigma{h_{\mathrm{elj}}}) \times
|
||||
\frac{a_1b_1c_1}{(a_1+h_{\mathrm{elj}}/p_\alpha)
|
||||
(b_1+h_{\mathrm{elj}}/p_\alpha)(c_1+h_{\mathrm{elj}}/p_\alpha)}, $$
|
||||
|
||||
$$ A_{12_{\mathrm{elj}}}=4\pi^2\epsilon_{\mathrm{LJ}}(\rho\sigma^3), $$
|
||||
|
||||
with $h_{\mathrm{elj}}$ and $\chi_{\mathrm{elj}}$ calculated as above
|
||||
by replacing $B$ with $B_{\mathrm{elj}}$ and $G$ with $G_{\mathrm{elj}}$:
|
||||
|
||||
$$ \mathbf{B}_{\mathrm{elj}} = \mathbf{A}_1^T \mathbf{E}_1 \mathbf{A}_1 + I, $$
|
||||
|
||||
$$ \mathbf{G}_{\mathrm{elj}} = \mathbf{A}_1^T \mathbf{S}_1^2 \mathbf{A}_1.$$
|
||||
|
||||
\vspace{0.3in}
|
||||
|
||||
The interaction between two LJ spheres is calculated as:
|
||||
|
||||
$$
|
||||
U_{\mathrm{lj}} = 4 \epsilon \left[ \left(\frac{\sigma}{|\mathbf{r}|}\right)^{12} -
|
||||
\left(\frac{\sigma}{|\mathbf{r}|}\right)^6 \right]
|
||||
$$
|
||||
|
||||
\vspace{0.3in}
|
||||
|
||||
The analytic derivatives are used for all force and torque calculation.
|
||||
|
||||
\end{document}
|
Loading…
Reference in New Issue