git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@6631 f3b2605a-c512-4ea7-a41b-209d697bcdaa

This commit is contained in:
sjplimp 2011-08-08 21:22:57 +00:00
parent 182a07a2a3
commit a6aec34a91
6 changed files with 395 additions and 7 deletions

View File

@ -362,9 +362,9 @@ built with the <A HREF = "Section_accelerate.html">appropriate accelerated
package</A>.
</P>
<DIV ALIGN=center><TABLE BORDER=1 >
<TR ALIGN="center"><TD ><A HREF = "fix_freeze.html">freeze/cuda</A></TD><TD ><A HREF = "fix_addforce.html">addforce/cuda</A></TD><TD ><A HREF = "fix_aveforce.html">aveforce/cuda</A></TD><TD ><A HREF = "fix_enforce2d.html">enforce2d/cuda</A></TD><TD ><A HREF = "fix_gravity.html">gravity/cuda</A></TD><TD ><A HREF = "fix_nh.html">npt/cuda</A></TD></TR>
<TR ALIGN="center"><TD ><A HREF = "fix_nh.html">nve/cuda</A></TD><TD ><A HREF = "fix_nh.html">nvt/cuda</A></TD><TD ><A HREF = "fix_setforce.html">setforce/cuda</A></TD><TD ><A HREF = "fix_shake.html">shake/cuda</A></TD><TD ><A HREF = "fix_temp_berendsen.html">temp/berendsen/cuda</A></TD><TD ><A HREF = "fix_temp_rescale.html">temp/rescale/cuda</A></TD></TR>
<TR ALIGN="center"><TD ><A HREF = "fix_temp_rescale.html">temp/rescale/limit/cuda</A></TD><TD ><A HREF = "fix_viscous.html">viscous/cuda</A>
<TR ALIGN="center"><TD ><A HREF = "fix_freeze.html">freeze/cuda</A></TD><TD ><A HREF = "fix_addforce.html">addforce/cuda</A></TD><TD ><A HREF = "fix_addtorque.html">addtorque</A></TD><TD ><A HREF = "fix_aveforce.html">aveforce/cuda</A></TD><TD ><A HREF = "fix_enforce2d.html">enforce2d/cuda</A></TD><TD ><A HREF = "fix_gravity.html">gravity/cuda</A></TD></TR>
<TR ALIGN="center"><TD ><A HREF = "fix_nh.html">npt/cuda</A></TD><TD ><A HREF = "fix_nh.html">nve/cuda</A></TD><TD ><A HREF = "fix_nh.html">nvt/cuda</A></TD><TD ><A HREF = "fix_setforce.html">setforce/cuda</A></TD><TD ><A HREF = "fix_shake.html">shake/cuda</A></TD><TD ><A HREF = "fix_temp_berendsen.html">temp/berendsen/cuda</A></TD></TR>
<TR ALIGN="center"><TD ><A HREF = "fix_temp_rescale.html">temp/rescale/cuda</A></TD><TD ><A HREF = "fix_temp_rescale.html">temp/rescale/limit/cuda</A></TD><TD ><A HREF = "fix_viscous.html">viscous/cuda</A>
</TD></TR></TABLE></DIV>
<HR>
@ -389,7 +389,8 @@ each style or click on the style itself for a full description:
<A HREF = "Section_start.html#2_3">LAMMPS is built with the appropriate package</A>.
</P>
<DIV ALIGN=center><TABLE BORDER=1 >
<TR ALIGN="center"><TD ><A HREF = "compute_ackland_atom.html">ackland/atom</A></TD><TD ><A HREF = "compute_ke_eff.html">ke/eff</A></TD><TD ><A HREF = "compute_ke_atom_eff.html">ke/atom/eff</A></TD><TD ><A HREF = "compute_temp_eff.html">temp/eff</A></TD><TD ><A HREF = "compute_temp_deform_eff.html">temp/deform/eff</A></TD><TD ><A HREF = "compute_temp_region_eff.html">temp/region/eff</A>
<TR ALIGN="center"><TD ><A HREF = "compute_ackland_atom.html">ackland/atom</A></TD><TD ><A HREF = "compute_ke_eff.html">ke/eff</A></TD><TD ><A HREF = "compute_ke_atom_eff.html">ke/atom/eff</A></TD><TD ><A HREF = "compute_temp_eff.html">temp/eff</A></TD><TD ><A HREF = "compute_temp_deform_eff.html">temp/deform/eff</A></TD><TD ><A HREF = "compute_temp_region_eff.html">temp/region/eff</A></TD></TR>
<TR ALIGN="center"><TD ><A HREF = "compute_temp_rotate.html">temp/rotate</A>
</TD></TR></TABLE></DIV>
<P>These are accelerated compute styles, which can be used if LAMMPS is

View File

@ -500,6 +500,7 @@ package"_Section_accelerate.html.
"freeze/cuda"_fix_freeze.html,
"addforce/cuda"_fix_addforce.html,
"addtorque"_fix_addtorque.html,
"aveforce/cuda"_fix_aveforce.html,
"enforce2d/cuda"_fix_enforce2d.html,
"gravity/cuda"_fix_gravity.html,
@ -576,7 +577,8 @@ These are compute styles contributed by users, which can be used if
"ke/atom/eff"_compute_ke_atom_eff.html,
"temp/eff"_compute_temp_eff.html,
"temp/deform/eff"_compute_temp_deform_eff.html,
"temp/region/eff"_compute_temp_region_eff.html :tb(c=6,ea=c)
"temp/region/eff"_compute_temp_region_eff.html,
"temp/rotate"_compute_temp_rotate.html :tb(c=6,ea=c)
These are accelerated compute styles, which can be used if LAMMPS is
built with the "appropriate accelerated
@ -818,5 +820,3 @@ package"_Section_accelerate.html.
"pppm/cuda"_kspace_style.html,
"pppm/gpu"_kspace_style.html :tb(c=4,ea=c)

View File

@ -0,0 +1,101 @@
<HTML>
<CENTER><A HREF = "http://lammps.sandia.gov">LAMMPS WWW Site</A> - <A HREF = "Manual.html">LAMMPS Documentation</A> - <A HREF = "Section_commands.html#comm">LAMMPS Commands</A>
</CENTER>
<HR>
<H3>compute temp/rotate command
</H3>
<P><B>Syntax:</B>
</P>
<PRE>compute ID group-ID temp/rotate
</PRE>
<UL><LI>ID, group-ID are documented in <A HREF = "compute.html">compute</A> command
<LI>temp/rotate = style name of this compute command
</UL>
<P><B>Examples:</B>
</P>
<PRE>compute Tbead bead temp/rotate
</PRE>
<P><B>Description:</B>
</P>
<P>Define a computation that calculates the temperature of a group of
atoms, after subtracting out the center-of-mass velocity and angular velocity of the group.
This is useful if the group is expected to have a non-zero net
velocity and/or global rotation motion for some reason. A compute of this style can be used by any
command that computes a temperature,
e.g. <A HREF = "thermo_modify.html">thermo_modify</A>, <A HREF = "fix_temp_rescale.html">fix
temp/rescale</A>, <A HREF = "fix_nh.html">fix npt</A>, etc.
</P>
<P>After the center-of-mass velocity and angular velocity has been subtracted from each atom,
the temperature is calculated by the formula KE = dim/2 N k T, where
KE = total kinetic energy of the group of atoms (sum of 1/2 m v^2),
dim = 2 or 3 = dimensionality of the simulation, N = number of atoms
in the group, k = Boltzmann constant, and T = temperature.
</P>
<P>A kinetic energy tensor, stored as a 6-element vector, is also
calculated by this compute for use in the computation of a pressure
tensor. The formula for the components of the tensor is the same as
the above formula, except that v^2 is replaced by vx*vy for the xy
component, etc. The 6 components of the vector are ordered xx, yy,
zz, xy, xz, yz.
</P>
<P>The number of atoms contributing to the temperature is assumed to be
constant for the duration of the run; use the <I>dynamic</I> option of the
<A HREF = "compute_modify.html">compute_modify</A> command if this is not the case.
</P>
<P>The removal of the center-of-mass velocity and angular velocity by this fix is essentially
computing the temperature after a "bias" has been removed from the
velocity of the atoms. If this compute is used with a fix command
that performs thermostatting then this bias will be subtracted from
each atom, thermostatting of the remaining thermal velocity will be
performed, and the bias will be added back in. Thermostatting fixes
that work in this way include <A HREF = "fix_nh.html">fix nvt</A>, <A HREF = "fix_temp_rescale.html">fix
temp/rescale</A>, <A HREF = "fix_temp_berendsen.html">fix
temp/berendsen</A>, and <A HREF = "fix_langevin.html">fix
langevin</A>.
</P>
<P>This compute subtracts out degrees-of-freedom due to fixes that
constrain molecular motion, such as <A HREF = "fix_shake.html">fix shake</A> and
<A HREF = "fix_rigid.html">fix rigid</A>. This means the temperature of groups of
atoms that include these constraints will be computed correctly. If
needed, the subtracted degrees-of-freedom can be altered using the
<I>extra</I> option of the <A HREF = "compute_modify.html">compute_modify</A> command.
</P>
<P>See <A HREF = "Section_howto.html#4_16">this howto section</A> of the manual for a
discussion of different ways to compute temperature and perform
thermostatting.
</P>
<P><B>Output info:</B>
</P>
<P>This compute calculates a global scalar (the temperature) and a global
vector of length 6 (KE tensor), which can be accessed by indices 1-6.
These values can be used by any command that uses global scalar or
vector values from a compute as input. See <A HREF = "Section_howto.html#4_15">this
section</A> for an overview of LAMMPS output
options.
</P>
<P>The scalar value calculated by this compute is "intensive". The
vector values are "extensive".
</P>
<P>The scalar value will be in temperature <A HREF = "units.html">units</A>. The
vector values will be in energy <A HREF = "units.html">units</A>.
</P>
<P><B>Restrictions:</B>
</P>
<P>This compute is part of the "user-misc" package. It is only enabled
if LAMMPS was built with that package. See the <A HREF = "Section_start.html#2_3">Making
LAMMPS</A> section for more info.
</P>
<P><B>Related commands:</B>
</P>
<P><A HREF = "compute_temp.html">compute temp</A>
</P>
<P><B>Default:</B> none
</P>
</HTML>

View File

@ -0,0 +1,96 @@
"LAMMPS WWW Site"_lws - "LAMMPS Documentation"_ld - "LAMMPS Commands"_lc :c
:link(lws,http://lammps.sandia.gov)
:link(ld,Manual.html)
:link(lc,Section_commands.html#comm)
:line
compute temp/rotate command :h3
[Syntax:]
compute ID group-ID temp/rotate :pre
ID, group-ID are documented in "compute"_compute.html command
temp/rotate = style name of this compute command :ul
[Examples:]
compute Tbead bead temp/rotate :pre
[Description:]
Define a computation that calculates the temperature of a group of
atoms, after subtracting out the center-of-mass velocity and angular velocity of the group.
This is useful if the group is expected to have a non-zero net
velocity and/or global rotation motion for some reason. A compute of this style can be used by any
command that computes a temperature,
e.g. "thermo_modify"_thermo_modify.html, "fix
temp/rescale"_fix_temp_rescale.html, "fix npt"_fix_nh.html, etc.
After the center-of-mass velocity and angular velocity has been subtracted from each atom,
the temperature is calculated by the formula KE = dim/2 N k T, where
KE = total kinetic energy of the group of atoms (sum of 1/2 m v^2),
dim = 2 or 3 = dimensionality of the simulation, N = number of atoms
in the group, k = Boltzmann constant, and T = temperature.
A kinetic energy tensor, stored as a 6-element vector, is also
calculated by this compute for use in the computation of a pressure
tensor. The formula for the components of the tensor is the same as
the above formula, except that v^2 is replaced by vx*vy for the xy
component, etc. The 6 components of the vector are ordered xx, yy,
zz, xy, xz, yz.
The number of atoms contributing to the temperature is assumed to be
constant for the duration of the run; use the {dynamic} option of the
"compute_modify"_compute_modify.html command if this is not the case.
The removal of the center-of-mass velocity and angular velocity by this fix is essentially
computing the temperature after a "bias" has been removed from the
velocity of the atoms. If this compute is used with a fix command
that performs thermostatting then this bias will be subtracted from
each atom, thermostatting of the remaining thermal velocity will be
performed, and the bias will be added back in. Thermostatting fixes
that work in this way include "fix nvt"_fix_nh.html, "fix
temp/rescale"_fix_temp_rescale.html, "fix
temp/berendsen"_fix_temp_berendsen.html, and "fix
langevin"_fix_langevin.html.
This compute subtracts out degrees-of-freedom due to fixes that
constrain molecular motion, such as "fix shake"_fix_shake.html and
"fix rigid"_fix_rigid.html. This means the temperature of groups of
atoms that include these constraints will be computed correctly. If
needed, the subtracted degrees-of-freedom can be altered using the
{extra} option of the "compute_modify"_compute_modify.html command.
See "this howto section"_Section_howto.html#4_16 of the manual for a
discussion of different ways to compute temperature and perform
thermostatting.
[Output info:]
This compute calculates a global scalar (the temperature) and a global
vector of length 6 (KE tensor), which can be accessed by indices 1-6.
These values can be used by any command that uses global scalar or
vector values from a compute as input. See "this
section"_Section_howto.html#4_15 for an overview of LAMMPS output
options.
The scalar value calculated by this compute is "intensive". The
vector values are "extensive".
The scalar value will be in temperature "units"_units.html. The
vector values will be in energy "units"_units.html.
[Restrictions:]
This compute is part of the "user-misc" package. It is only enabled
if LAMMPS was built with that package. See the "Making
LAMMPS"_Section_start.html#2_3 section for more info.
[Related commands:]
"compute temp"_compute_temp.html
[Default:] none

101
doc/fix_addtorque.html Normal file
View File

@ -0,0 +1,101 @@
<HTML>
<CENTER><A HREF = "http://lammps.sandia.gov">LAMMPS WWW Site</A> - <A HREF = "Manual.html">LAMMPS Documentation</A> - <A HREF = "Section_commands.html#comm">LAMMPS Commands</A>
</CENTER>
<HR>
<H3>fix addtorque command
</H3>
<P><B>Syntax:</B>
</P>
<PRE>fix ID group-ID addtorque Tx Ty Tz
</PRE>
<UL><LI>ID, group-ID are documented in <A HREF = "fix.html">fix</A> command
<LI>addtorque = style name of this fix command
<LI>Tx,Ty,Tz = torque component values (torque units)
<LI>any of Tx,Ty,Tz can be a variable (see below)
</UL>
<P><B>Examples:</B>
</P>
<PRE>fix kick bead addtorque 2.0 3.0 5.0
fix kick bead addtorque 0.0 0.0 v_oscillate
</PRE>
<P><B>Description:</B>
</P>
<UL><LI>Add a set of forces to each atom in
the group such that:
the components of the total torque applied on the group (around its center of mass) are Tx,Ty,Tz;
<LI>the group would move as a rigid body in the absence of other forces.
</UL>
<P>This command can be used to drive a group of atoms into rotation.
</P>
<P>Any of the 3 quantities defining the torque components can be specified
as an equal-style <A HREF = "variable.html">variable</A>, namely <I>Tx</I>,
<I>Ty</I>, <I>Tz</I>. If the value is a variable, it should be specified as
v_name, where name is the variable name. In this case, the variable
will be evaluated each timestep, and its value used to determine the
torque component.
</P>
<P>Equal-style variables can specify formulas with various mathematical
functions, and include <A HREF = "thermo_style.html">thermo_style</A> command
keywords for the simulation box parameters and timestep and elapsed
time. Thus it is easy to specify a time-dependent torque.
</P>
<HR>
<P><B>Restart, fix_modify, output, run start/stop, minimize info:</B>
</P>
<P>No information about this fix is written to <A HREF = "restart.html">binary restart
files</A>.
</P>
<P>The <A HREF = "fix_modify.html">fix_modify</A> <I>energy</I> option is supported by this
fix to add the potential "energy" inferred by the added forces to the
system's potential energy as part of <A HREF = "thermo_style.html">thermodynamic
output</A>. This is a fictitious quantity but is
needed so that the <A HREF = "minimize.html">minimize</A> command can include the
forces added by this fix in a consistent manner. I.e. there is a
decrease in potential energy when atoms move in the direction of the
added forces.
</P>
<P>This fix computes a global scalar and a global 3-vector,
which can be accessed by various <A HREF = "Section_howto.html#4_15">output
commands</A>. The scalar is the potential energy
discussed above. The vector is the total torque on the group of atoms
before the forces on individual atoms are changed by the fix. The
scalar and vector values calculated by this fix are "extensive".
</P>
<P>No parameter of this fix can be used with the <I>start/stop</I> keywords of
the <A HREF = "run.html">run</A> command.
</P>
<P>The forces due to this fix are imposed during an energy minimization,
invoked by the <A HREF = "minimize.html">minimize</A> command. You should not
specify force components with a variable that has time-dependence for
use with a minimizer, since the minimizer increments the timestep as
the iteration count during the minimization.
</P>
<P><B>Restrictions:</B>
</P>
<P>This fix is part of the "user-misc" package. It is only enabled if
LAMMPS was built with that package. See the <A HREF = "Section_start.html#2_3">Making
LAMMPS</A> section for more info.
</P>
<P><B>Related commands:</B>
</P>
<P><A HREF = "fix_addforce.html">fix addforce</A>
</P>
<P><B>Default:</B> none
</P>
</HTML>

89
doc/fix_addtorque.txt Normal file
View File

@ -0,0 +1,89 @@
"LAMMPS WWW Site"_lws - "LAMMPS Documentation"_ld - "LAMMPS Commands"_lc :c
:link(lws,http://lammps.sandia.gov)
:link(ld,Manual.html)
:link(lc,Section_commands.html#comm)
:line
fix addtorque command :h3
[Syntax:]
fix ID group-ID addtorque Tx Ty Tz :pre
ID, group-ID are documented in "fix"_fix.html command :ulb,l
addtorque = style name of this fix command :l
Tx,Ty,Tz = torque component values (torque units) :l
any of Tx,Ty,Tz can be a variable (see below) :l
:ule
[Examples:]
fix kick bead addtorque 2.0 3.0 5.0
fix kick bead addtorque 0.0 0.0 v_oscillate :pre
[Description:]
Add a set of forces to each atom in
the group such that:
the components of the total torque applied on the group (around its center of mass) are Tx,Ty,Tz; :ulb,l
the group would move as a rigid body in the absence of other forces. :l
:ule
This command can be used to drive a group of atoms into rotation.
Any of the 3 quantities defining the torque components can be specified
as an equal-style "variable"_variable.html, namely {Tx},
{Ty}, {Tz}. If the value is a variable, it should be specified as
v_name, where name is the variable name. In this case, the variable
will be evaluated each timestep, and its value used to determine the
torque component.
Equal-style variables can specify formulas with various mathematical
functions, and include "thermo_style"_thermo_style.html command
keywords for the simulation box parameters and timestep and elapsed
time. Thus it is easy to specify a time-dependent torque.
:line
[Restart, fix_modify, output, run start/stop, minimize info:]
No information about this fix is written to "binary restart
files"_restart.html.
The "fix_modify"_fix_modify.html {energy} option is supported by this
fix to add the potential "energy" inferred by the added forces to the
system's potential energy as part of "thermodynamic
output"_thermo_style.html. This is a fictitious quantity but is
needed so that the "minimize"_minimize.html command can include the
forces added by this fix in a consistent manner. I.e. there is a
decrease in potential energy when atoms move in the direction of the
added forces.
This fix computes a global scalar and a global 3-vector,
which can be accessed by various "output
commands"_Section_howto.html#4_15. The scalar is the potential energy
discussed above. The vector is the total torque on the group of atoms
before the forces on individual atoms are changed by the fix. The
scalar and vector values calculated by this fix are "extensive".
No parameter of this fix can be used with the {start/stop} keywords of
the "run"_run.html command.
The forces due to this fix are imposed during an energy minimization,
invoked by the "minimize"_minimize.html command. You should not
specify force components with a variable that has time-dependence for
use with a minimizer, since the minimizer increments the timestep as
the iteration count during the minimization.
[Restrictions:]
This fix is part of the "user-misc" package. It is only enabled if
LAMMPS was built with that package. See the "Making
LAMMPS"_Section_start.html#2_3 section for more info.
[Related commands:]
"fix addforce"_fix_addforce.html
[Default:] none