git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@14972 f3b2605a-c512-4ea7-a41b-209d697bcdaa

This commit is contained in:
sjplimp 2016-05-09 21:12:06 +00:00
parent 410c743f77
commit 69ffae65d0
146 changed files with 214 additions and 214 deletions

View File

@ -335,7 +335,7 @@ commands need only be used if a non-default value is desired.</p>
</ol> </ol>
<p>Set parameters that need to be defined before atoms are created or <p>Set parameters that need to be defined before atoms are created or
read-in from a file.</p> read-in from a file.</p>
<p>The relevant commands are <span class="xref doc">units</span>, <p>The relevant commands are <a class="reference internal" href="units.html"><span class="doc">units</span></a>,
<a class="reference internal" href="dimension.html"><span class="doc">dimension</span></a>, <a class="reference internal" href="newton.html"><span class="doc">newton</span></a>, <a class="reference internal" href="dimension.html"><span class="doc">dimension</span></a>, <a class="reference internal" href="newton.html"><span class="doc">newton</span></a>,
<a class="reference internal" href="processors.html"><span class="doc">processors</span></a>, <a class="reference internal" href="boundary.html"><span class="doc">boundary</span></a>, <a class="reference internal" href="processors.html"><span class="doc">processors</span></a>, <a class="reference internal" href="boundary.html"><span class="doc">boundary</span></a>,
<a class="reference internal" href="atom_style.html"><span class="doc">atom_style</span></a>, <a class="reference internal" href="atom_modify.html"><span class="doc">atom_modify</span></a>.</p> <a class="reference internal" href="atom_style.html"><span class="doc">atom_style</span></a>, <a class="reference internal" href="atom_modify.html"><span class="doc">atom_modify</span></a>.</p>
@ -404,7 +404,7 @@ in the command&#8217;s documentation.</p>
<p>Initialization:</p> <p>Initialization:</p>
<p><a class="reference internal" href="atom_modify.html"><span class="doc">atom_modify</span></a>, <a class="reference internal" href="atom_style.html"><span class="doc">atom_style</span></a>, <p><a class="reference internal" href="atom_modify.html"><span class="doc">atom_modify</span></a>, <a class="reference internal" href="atom_style.html"><span class="doc">atom_style</span></a>,
<a class="reference internal" href="boundary.html"><span class="doc">boundary</span></a>, <a class="reference internal" href="dimension.html"><span class="doc">dimension</span></a>, <a class="reference internal" href="boundary.html"><span class="doc">boundary</span></a>, <a class="reference internal" href="dimension.html"><span class="doc">dimension</span></a>,
<a class="reference internal" href="newton.html"><span class="doc">newton</span></a>, <a class="reference internal" href="processors.html"><span class="doc">processors</span></a>, <span class="xref doc">units</span></p> <a class="reference internal" href="newton.html"><span class="doc">newton</span></a>, <a class="reference internal" href="processors.html"><span class="doc">processors</span></a>, <a class="reference internal" href="units.html"><span class="doc">units</span></a></p>
<p>Atom definition:</p> <p>Atom definition:</p>
<p><a class="reference internal" href="create_atoms.html"><span class="doc">create_atoms</span></a>, <a class="reference internal" href="create_box.html"><span class="doc">create_box</span></a>, <p><a class="reference internal" href="create_atoms.html"><span class="doc">create_atoms</span></a>, <a class="reference internal" href="create_box.html"><span class="doc">create_box</span></a>,
<a class="reference internal" href="lattice.html"><span class="doc">lattice</span></a>, <a class="reference internal" href="read_data.html"><span class="doc">read_data</span></a>, <a class="reference internal" href="lattice.html"><span class="doc">lattice</span></a>, <a class="reference internal" href="read_data.html"><span class="doc">read_data</span></a>,
@ -575,7 +575,7 @@ in the command&#8217;s documentation.</p>
<td><a class="reference internal" href="undump.html"><span class="doc">undump</span></a></td> <td><a class="reference internal" href="undump.html"><span class="doc">undump</span></a></td>
<td><a class="reference internal" href="unfix.html"><span class="doc">unfix</span></a></td> <td><a class="reference internal" href="unfix.html"><span class="doc">unfix</span></a></td>
</tr> </tr>
<tr class="row-even"><td><span class="xref doc">units</span></td> <tr class="row-even"><td><a class="reference internal" href="units.html"><span class="doc">units</span></a></td>
<td><a class="reference internal" href="variable.html"><span class="doc">variable</span></a></td> <td><a class="reference internal" href="variable.html"><span class="doc">variable</span></a></td>
<td><a class="reference internal" href="velocity.html"><span class="doc">velocity</span></a></td> <td><a class="reference internal" href="velocity.html"><span class="doc">velocity</span></a></td>
<td><a class="reference internal" href="write_coeff.html"><span class="doc">write_coeff</span></a></td> <td><a class="reference internal" href="write_coeff.html"><span class="doc">write_coeff</span></a></td>

View File

@ -363,8 +363,8 @@ commands like <a class="reference internal" href="pair_coeff.html"><span class="
<a class="reference internal" href="bond_coeff.html"><span class="doc">bond_coeff</span></a>. See <a class="reference internal" href="Section_tools.html"><span class="doc">Section_tools</span></a> <a class="reference internal" href="bond_coeff.html"><span class="doc">bond_coeff</span></a>. See <a class="reference internal" href="Section_tools.html"><span class="doc">Section_tools</span></a>
for additional tools that can use CHARMM or AMBER to assign force for additional tools that can use CHARMM or AMBER to assign force
field coefficients and convert their output into LAMMPS input.</p> field coefficients and convert their output into LAMMPS input.</p>
<p>See <a class="reference internal" href="pair_charmm.html#mackerell"><span class="std std-ref">(MacKerell)</span></a> for a description of the CHARMM force <p>See <a class="reference internal" href="special_bonds.html#mackerell"><span class="std std-ref">(MacKerell)</span></a> for a description of the CHARMM force
field. See <a class="reference internal" href="dihedral_charmm.html#cornell"><span class="std std-ref">(Cornell)</span></a> for a description of the AMBER force field. See <a class="reference internal" href="special_bonds.html#cornell"><span class="std std-ref">(Cornell)</span></a> for a description of the AMBER force
field.</p> field.</p>
<p>These style choices compute force field formulas that are consistent <p>These style choices compute force field formulas that are consistent
with common options in CHARMM or AMBER. See each command&#8217;s with common options in CHARMM or AMBER. See each command&#8217;s
@ -389,7 +389,7 @@ atoms involved in the bond, angle, or torsion terms. DREIDING has an
<a class="reference internal" href="pair_hbond_dreiding.html"><span class="doc">explicit hydrogen bond term</span></a> to describe <a class="reference internal" href="pair_hbond_dreiding.html"><span class="doc">explicit hydrogen bond term</span></a> to describe
interactions involving a hydrogen atom on very electronegative atoms interactions involving a hydrogen atom on very electronegative atoms
(N, O, F).</p> (N, O, F).</p>
<p>See <a class="reference internal" href="pair_hbond_dreiding.html#mayo"><span class="std std-ref">(Mayo)</span></a> for a description of the DREIDING force field</p> <p>See <a class="reference internal" href="special_bonds.html#mayo"><span class="std std-ref">(Mayo)</span></a> for a description of the DREIDING force field</p>
<p>These style choices compute force field formulas that are consistent <p>These style choices compute force field formulas that are consistent
with the DREIDING force field. See each command&#8217;s with the DREIDING force field. See each command&#8217;s
documentation for the formula it computes.</p> documentation for the formula it computes.</p>
@ -587,7 +587,7 @@ computations between frozen atoms by using this command:</p>
<div class="section" id="tip3p-water-model"> <div class="section" id="tip3p-water-model">
<span id="howto-7"></span><h2>6.7. TIP3P water model</h2> <span id="howto-7"></span><h2>6.7. TIP3P water model</h2>
<p>The TIP3P water model as implemented in CHARMM <p>The TIP3P water model as implemented in CHARMM
<a class="reference internal" href="pair_charmm.html#mackerell"><span class="std std-ref">(MacKerell)</span></a> specifies a 3-site rigid water molecule with <a class="reference internal" href="special_bonds.html#mackerell"><span class="std std-ref">(MacKerell)</span></a> specifies a 3-site rigid water molecule with
charges and Lennard-Jones parameters assigned to each of the 3 atoms. charges and Lennard-Jones parameters assigned to each of the 3 atoms.
In LAMMPS the <a class="reference internal" href="fix_shake.html"><span class="doc">fix shake</span></a> command can be used to hold In LAMMPS the <a class="reference internal" href="fix_shake.html"><span class="doc">fix shake</span></a> command can be used to hold
the two O-H bonds and the H-O-H angle rigid. A bond style of the two O-H bonds and the H-O-H angle rigid. A bond style of
@ -766,7 +766,7 @@ the partial charge assignemnts change:</p>
<div class="line">H charge = 0.4238</div> <div class="line">H charge = 0.4238</div>
<div class="line"><br /></div> <div class="line"><br /></div>
</div> </div>
<p>See the <a class="reference internal" href="#berendsen"><span class="std std-ref">(Berendsen)</span></a> reference for more details on both <p>See the <a class="reference internal" href="fix_temp_berendsen.html#berendsen"><span class="std std-ref">(Berendsen)</span></a> reference for more details on both
the SPC and SPC/E models.</p> the SPC and SPC/E models.</p>
<p>Wikipedia also has a nice article on <a class="reference external" href="http://en.wikipedia.org/wiki/Water_model">water models</a>.</p> <p>Wikipedia also has a nice article on <a class="reference external" href="http://en.wikipedia.org/wiki/Water_model">water models</a>.</p>
<hr class="docutils" /> <hr class="docutils" />
@ -2731,7 +2731,7 @@ pairs as chunks.</p>
model, representes induced dipoles by a pair of charges (the core atom model, representes induced dipoles by a pair of charges (the core atom
and the Drude particle) connected by a harmonic spring. The Drude and the Drude particle) connected by a harmonic spring. The Drude
model has a number of features aimed at its use in molecular systems model has a number of features aimed at its use in molecular systems
(<a class="reference internal" href="#lamoureux"><span class="std std-ref">Lamoureux and Roux</span></a>):</p> (<a class="reference internal" href="tutorial_drude.html#lamoureux"><span class="std std-ref">Lamoureux and Roux</span></a>):</p>
<ul class="simple"> <ul class="simple">
<li>Thermostating of the additional degrees of freedom associated with the <li>Thermostating of the additional degrees of freedom associated with the
induced dipoles at very low temperature, in terms of the reduced induced dipoles at very low temperature, in terms of the reduced

View File

@ -254,7 +254,7 @@ parallel. E.g. don&#8217;t accumulate a bunch of data on a single processor
and analyze it. You run the risk of seriously degrading the parallel and analyze it. You run the risk of seriously degrading the parallel
efficiency.</li> efficiency.</li>
<li>If your new feature reads arguments or writes output, make sure you <li>If your new feature reads arguments or writes output, make sure you
follow the unit conventions discussed by the <span class="xref doc">units</span> follow the unit conventions discussed by the <a class="reference internal" href="units.html"><span class="doc">units</span></a>
command.</li> command.</li>
<li>If you add something you think is truly useful and doesn&#8217;t impact <li>If you add something you think is truly useful and doesn&#8217;t impact
LAMMPS performance when it isn&#8217;t used, send an email to the LAMMPS performance when it isn&#8217;t used, send an email to the

View File

@ -155,7 +155,7 @@
<p>with an additional Urey_Bradley term based on the distance <em>r</em> between <p>with an additional Urey_Bradley term based on the distance <em>r</em> between
the 1st and 3rd atoms in the angle. K, theta0, Kub, and Rub are the 1st and 3rd atoms in the angle. K, theta0, Kub, and Rub are
coefficients defined for each angle type.</p> coefficients defined for each angle type.</p>
<p>See <a class="reference internal" href="pair_charmm.html#mackerell"><span class="std std-ref">(MacKerell)</span></a> for a description of the CHARMM force <p>See <a class="reference internal" href="special_bonds.html#mackerell"><span class="std std-ref">(MacKerell)</span></a> for a description of the CHARMM force
field.</p> field.</p>
<p>The following coefficients must be defined for each angle type via the <p>The following coefficients must be defined for each angle type via the
<a class="reference internal" href="angle_coeff.html"><span class="doc">angle_coeff</span></a> command as in the example above, or in <a class="reference internal" href="angle_coeff.html"><span class="doc">angle_coeff</span></a> command as in the example above, or in

View File

@ -151,7 +151,7 @@
<p>where Ea is the angle term, Ebb is a bond-bond term, and Eba is a <p>where Ea is the angle term, Ebb is a bond-bond term, and Eba is a
bond-angle term. Theta0 is the equilibrium angle and r1 and r2 are bond-angle term. Theta0 is the equilibrium angle and r1 and r2 are
the equilibrium bond lengths.</p> the equilibrium bond lengths.</p>
<p>See <a class="reference internal" href="pair_class2.html#sun"><span class="std std-ref">(Sun)</span></a> for a description of the COMPASS class2 force field.</p> <p>See <a class="reference internal" href="pair_modify.html#sun"><span class="std std-ref">(Sun)</span></a> for a description of the COMPASS class2 force field.</p>
<p>Coefficients for the Ea, Ebb, and Eba formulas must be defined for <p>Coefficients for the Ea, Ebb, and Eba formulas must be defined for
each angle type via the <a class="reference internal" href="angle_coeff.html"><span class="doc">angle_coeff</span></a> command as in each angle type via the <a class="reference internal" href="angle_coeff.html"><span class="doc">angle_coeff</span></a> command as in
the example above, or in the data file or restart files read by the the example above, or in the data file or restart files read by the

View File

@ -151,7 +151,7 @@ used for an octahedral complex and <em>n</em> = 3 might be used for a
trigonal center:</p> trigonal center:</p>
<img alt="_images/angle_cosine_periodic.jpg" class="align-center" src="_images/angle_cosine_periodic.jpg" /> <img alt="_images/angle_cosine_periodic.jpg" class="align-center" src="_images/angle_cosine_periodic.jpg" />
<p>where C, B and n are coefficients defined for each angle type.</p> <p>where C, B and n are coefficients defined for each angle type.</p>
<p>See <a class="reference internal" href="pair_hbond_dreiding.html#mayo"><span class="std std-ref">(Mayo)</span></a> for a description of the DREIDING force field</p> <p>See <a class="reference internal" href="special_bonds.html#mayo"><span class="std std-ref">(Mayo)</span></a> for a description of the DREIDING force field</p>
<p>The following coefficients must be defined for each angle type via the <p>The following coefficients must be defined for each angle type via the
<a class="reference internal" href="angle_coeff.html"><span class="doc">angle_coeff</span></a> command as in the example above, or in <a class="reference internal" href="angle_coeff.html"><span class="doc">angle_coeff</span></a> command as in the example above, or in
the data file or restart files read by the <a class="reference internal" href="read_data.html"><span class="doc">read_data</span></a> the data file or restart files read by the <a class="reference internal" href="read_data.html"><span class="doc">read_data</span></a>

View File

@ -147,7 +147,7 @@
<p>The <em>class2</em> bond style uses the potential</p> <p>The <em>class2</em> bond style uses the potential</p>
<img alt="_images/bond_class2.jpg" class="align-center" src="_images/bond_class2.jpg" /> <img alt="_images/bond_class2.jpg" class="align-center" src="_images/bond_class2.jpg" />
<p>where r0 is the equilibrium bond distance.</p> <p>where r0 is the equilibrium bond distance.</p>
<p>See <a class="reference internal" href="pair_class2.html#sun"><span class="std std-ref">(Sun)</span></a> for a description of the COMPASS class2 force field.</p> <p>See <a class="reference internal" href="pair_modify.html#sun"><span class="std std-ref">(Sun)</span></a> for a description of the COMPASS class2 force field.</p>
<p>The following coefficients must be defined for each bond type via the <p>The following coefficients must be defined for each bond type via the
<a class="reference internal" href="bond_coeff.html"><span class="doc">bond_coeff</span></a> command as in the example above, or in <a class="reference internal" href="bond_coeff.html"><span class="doc">bond_coeff</span></a> command as in the example above, or in
the data file or restart files read by the <a class="reference internal" href="read_data.html"><span class="doc">read_data</span></a> the data file or restart files read by the <a class="reference internal" href="read_data.html"><span class="doc">read_data</span></a>

View File

@ -150,7 +150,7 @@
<p>The <em>fene</em> bond style uses the potential</p> <p>The <em>fene</em> bond style uses the potential</p>
<img alt="_images/bond_fene.jpg" class="align-center" src="_images/bond_fene.jpg" /> <img alt="_images/bond_fene.jpg" class="align-center" src="_images/bond_fene.jpg" />
<p>to define a finite extensible nonlinear elastic (FENE) potential <p>to define a finite extensible nonlinear elastic (FENE) potential
<a class="reference internal" href="bond_fene_expand.html#kremer"><span class="std std-ref">(Kremer)</span></a>, used for bead-spring polymer models. The first <a class="reference internal" href="special_bonds.html#kremer"><span class="std std-ref">(Kremer)</span></a>, used for bead-spring polymer models. The first
term is attractive, the 2nd Lennard-Jones term is repulsive. The term is attractive, the 2nd Lennard-Jones term is repulsive. The
first term extends to R0, the maximum extent of the bond. The 2nd first term extends to R0, the maximum extent of the bond. The 2nd
term is cutoff at 2^(1/6) sigma, the minimum of the LJ potential.</p> term is cutoff at 2^(1/6) sigma, the minimum of the LJ potential.</p>

View File

@ -147,7 +147,7 @@
<p>The <em>fene/expand</em> bond style uses the potential</p> <p>The <em>fene/expand</em> bond style uses the potential</p>
<img alt="_images/bond_fene_expand.jpg" class="align-center" src="_images/bond_fene_expand.jpg" /> <img alt="_images/bond_fene_expand.jpg" class="align-center" src="_images/bond_fene_expand.jpg" />
<p>to define a finite extensible nonlinear elastic (FENE) potential <p>to define a finite extensible nonlinear elastic (FENE) potential
<a class="reference internal" href="#kremer"><span class="std std-ref">(Kremer)</span></a>, used for bead-spring polymer models. The first <a class="reference internal" href="special_bonds.html#kremer"><span class="std std-ref">(Kremer)</span></a>, used for bead-spring polymer models. The first
term is attractive, the 2nd Lennard-Jones term is repulsive.</p> term is attractive, the 2nd Lennard-Jones term is repulsive.</p>
<p>The <em>fene/expand</em> bond style is similar to <em>fene</em> except that an extra <p>The <em>fene/expand</em> bond style is similar to <em>fene</em> except that an extra
shift factor of delta (positive or negative) is added to <em>r</em> to shift factor of delta (positive or negative) is added to <em>r</em> to

View File

@ -409,7 +409,7 @@ including this one, have been processed.</p>
<hr class="docutils" /> <hr class="docutils" />
<p>The <em>units</em> keyword determines the meaning of the distance units used <p>The <em>units</em> keyword determines the meaning of the distance units used
to define various arguments. A <em>box</em> value selects standard distance to define various arguments. A <em>box</em> value selects standard distance
units as defined by the <span class="xref doc">units</span> command, e.g. Angstroms for units as defined by the <a class="reference internal" href="units.html"><span class="doc">units</span></a> command, e.g. Angstroms for
units = real or metal. A <em>lattice</em> value means the distance units are units = real or metal. A <em>lattice</em> value means the distance units are
in lattice spacings. The <a class="reference internal" href="lattice.html"><span class="doc">lattice</span></a> command must have in lattice spacings. The <a class="reference internal" href="lattice.html"><span class="doc">lattice</span></a> command must have
been previously used to define the lattice spacing.</p> been previously used to define the lattice spacing.</p>

View File

@ -158,7 +158,7 @@ number of sub_styles defined by the <a class="reference internal" href="angle_st
or vector values from a compute as input. See <a class="reference internal" href="Section_howto.html#howto-15"><span class="std std-ref">this section</span></a> for an overview of LAMMPS output or vector values from a compute as input. See <a class="reference internal" href="Section_howto.html#howto-15"><span class="std std-ref">this section</span></a> for an overview of LAMMPS output
options.</p> options.</p>
<p>The vector values are &#8220;extensive&#8221; and will be in energy <p>The vector values are &#8220;extensive&#8221; and will be in energy
<span class="xref doc">units</span>.</p> <a class="reference internal" href="units.html"><span class="doc">units</span></a>.</p>
</div> </div>
<div class="section" id="restrictions"> <div class="section" id="restrictions">
<h2>Restrictions</h2> <h2>Restrictions</h2>

View File

@ -181,7 +181,7 @@ keywords. The vector or array can be accessed by any command that
uses local values from a compute as input. See <a class="reference internal" href="Section_howto.html#howto-15"><span class="std std-ref">this section</span></a> for an overview of LAMMPS output uses local values from a compute as input. See <a class="reference internal" href="Section_howto.html#howto-15"><span class="std std-ref">this section</span></a> for an overview of LAMMPS output
options.</p> options.</p>
<p>The output for <em>theta</em> will be in degrees. The output for <em>eng</em> will <p>The output for <em>theta</em> will be in degrees. The output for <em>eng</em> will
be in energy <span class="xref doc">units</span>.</p> be in energy <a class="reference internal" href="units.html"><span class="doc">units</span></a>.</p>
</div> </div>
<div class="section" id="restrictions"> <div class="section" id="restrictions">
<h2>Restrictions</h2> <h2>Restrictions</h2>

View File

@ -191,7 +191,7 @@ These values can be accessed by any command that uses global array
values from a compute as input. See <a class="reference internal" href="Section_howto.html#howto-15"><span class="std std-ref">Section_howto 15</span></a> for an overview of LAMMPS output values from a compute as input. See <a class="reference internal" href="Section_howto.html#howto-15"><span class="std std-ref">Section_howto 15</span></a> for an overview of LAMMPS output
options.</p> options.</p>
<p>The array values are &#8220;intensive&#8221;. The array values will be in <p>The array values are &#8220;intensive&#8221;. The array values will be in
mass-velocity-distance <span class="xref doc">units</span>.</p> mass-velocity-distance <a class="reference internal" href="units.html"><span class="doc">units</span></a>.</p>
</div> </div>
<div class="section" id="restrictions"> <div class="section" id="restrictions">
<h2>Restrictions</h2> <h2>Restrictions</h2>

View File

@ -196,7 +196,7 @@ specified, a local array is produced where the number of columns = the
number of keywords. The vector or array can be accessed by any number of keywords. The vector or array can be accessed by any
command that uses local values from a compute as input. See <a class="reference internal" href="Section_howto.html#howto-15"><span class="std std-ref">this section</span></a> for an overview of LAMMPS output command that uses local values from a compute as input. See <a class="reference internal" href="Section_howto.html#howto-15"><span class="std std-ref">this section</span></a> for an overview of LAMMPS output
options.</p> options.</p>
<p>The <span class="xref doc">units</span> for output values depend on the body style.</p> <p>The <a class="reference internal" href="units.html"><span class="doc">units</span></a> for output values depend on the body style.</p>
</div> </div>
<div class="section" id="restrictions"> <div class="section" id="restrictions">
<h2>Restrictions</h2> <h2>Restrictions</h2>

View File

@ -158,7 +158,7 @@ These values can be used by any command that uses global scalar or
vector values from a compute as input. See <a class="reference internal" href="Section_howto.html#howto-15"><span class="std std-ref">this section</span></a> for an overview of LAMMPS output vector values from a compute as input. See <a class="reference internal" href="Section_howto.html#howto-15"><span class="std std-ref">this section</span></a> for an overview of LAMMPS output
options.</p> options.</p>
<p>The vector values are &#8220;extensive&#8221; and will be in energy <p>The vector values are &#8220;extensive&#8221; and will be in energy
<span class="xref doc">units</span>.</p> <a class="reference internal" href="units.html"><span class="doc">units</span></a>.</p>
</div> </div>
<div class="section" id="restrictions"> <div class="section" id="restrictions">
<h2>Restrictions</h2> <h2>Restrictions</h2>

View File

@ -187,9 +187,9 @@ local array is produced where the number of columns = the number of
keywords. The vector or array can be accessed by any command that keywords. The vector or array can be accessed by any command that
uses local values from a compute as input. See <a class="reference internal" href="Section_howto.html#howto-15"><span class="std std-ref">this section</span></a> for an overview of LAMMPS output uses local values from a compute as input. See <a class="reference internal" href="Section_howto.html#howto-15"><span class="std std-ref">this section</span></a> for an overview of LAMMPS output
options.</p> options.</p>
<p>The output for <em>dist</em> will be in distance <span class="xref doc">units</span>. The <p>The output for <em>dist</em> will be in distance <a class="reference internal" href="units.html"><span class="doc">units</span></a>. The
output for <em>eng</em> will be in energy <span class="xref doc">units</span>. The output for output for <em>eng</em> will be in energy <a class="reference internal" href="units.html"><span class="doc">units</span></a>. The output for
<em>force</em> will be in force <span class="xref doc">units</span>.</p> <em>force</em> will be in force <a class="reference internal" href="units.html"><span class="doc">units</span></a>.</p>
</div> </div>
<div class="section" id="restrictions"> <div class="section" id="restrictions">
<h2>Restrictions</h2> <h2>Restrictions</h2>

View File

@ -644,7 +644,7 @@ and <em>crmax</em>.</p>
be used. For non-orthogonal (triclinic) simulation boxes, only the be used. For non-orthogonal (triclinic) simulation boxes, only the
<em>reduced</em> option may be used.</p> <em>reduced</em> option may be used.</p>
<p>A <em>box</em> value selects standard distance units as defined by the <p>A <em>box</em> value selects standard distance units as defined by the
<span class="xref doc">units</span> command, e.g. Angstroms for units = real or metal. <a class="reference internal" href="units.html"><span class="doc">units</span></a> command, e.g. Angstroms for units = real or metal.
A <em>lattice</em> value means the distance units are in lattice spacings. A <em>lattice</em> value means the distance units are in lattice spacings.
The <a class="reference internal" href="lattice.html"><span class="doc">lattice</span></a> command must have been previously used to The <a class="reference internal" href="lattice.html"><span class="doc">lattice</span></a> command must have been previously used to
define the lattice spacing. A <em>reduced</em> value means normalized define the lattice spacing. A <em>reduced</em> value means normalized

View File

@ -165,7 +165,7 @@ accessed by indices 1-3 by any command that uses global vector values
from a compute as input. See <a class="reference internal" href="Section_howto.html#howto-15"><span class="std std-ref">this section</span></a> for an overview of LAMMPS output from a compute as input. See <a class="reference internal" href="Section_howto.html#howto-15"><span class="std std-ref">this section</span></a> for an overview of LAMMPS output
options.</p> options.</p>
<p>The vector values are &#8220;intensive&#8221;. The vector values will be in <p>The vector values are &#8220;intensive&#8221;. The vector values will be in
distance <span class="xref doc">units</span>.</p> distance <a class="reference internal" href="units.html"><span class="doc">units</span></a>.</p>
</div> </div>
<div class="section" id="restrictions"> <div class="section" id="restrictions">
<h2>Restrictions</h2> <h2>Restrictions</h2>

View File

@ -189,7 +189,7 @@ values can be accessed by any command that uses global array values
from a compute as input. See <a class="reference internal" href="Section_howto.html#howto-15"><span class="std std-ref">Section_howto 15</span></a> for an overview of LAMMPS output from a compute as input. See <a class="reference internal" href="Section_howto.html#howto-15"><span class="std std-ref">Section_howto 15</span></a> for an overview of LAMMPS output
options.</p> options.</p>
<p>The array values are &#8220;intensive&#8221;. The array values will be in <p>The array values are &#8220;intensive&#8221;. The array values will be in
distance <span class="xref doc">units</span>.</p> distance <a class="reference internal" href="units.html"><span class="doc">units</span></a>.</p>
</div> </div>
<div class="section" id="restrictions"> <div class="section" id="restrictions">
<h2>Restrictions</h2> <h2>Restrictions</h2>

View File

@ -157,7 +157,7 @@ number of sub_styles defined by the <a class="reference internal" href="dihedral
or vector values from a compute as input. See <a class="reference internal" href="Section_howto.html#howto-15"><span class="std std-ref">this section</span></a> for an overview of LAMMPS output or vector values from a compute as input. See <a class="reference internal" href="Section_howto.html#howto-15"><span class="std std-ref">this section</span></a> for an overview of LAMMPS output
options.</p> options.</p>
<p>The vector values are &#8220;extensive&#8221; and will be in energy <p>The vector values are &#8220;extensive&#8221; and will be in energy
<span class="xref doc">units</span>.</p> <a class="reference internal" href="units.html"><span class="doc">units</span></a>.</p>
</div> </div>
<div class="section" id="restrictions"> <div class="section" id="restrictions">
<h2>Restrictions</h2> <h2>Restrictions</h2>

View File

@ -194,7 +194,7 @@ chunk. These values can be accessed by any command that uses global
array values from a compute as input. See <a class="reference internal" href="Section_howto.html#howto-15"><span class="std std-ref">Section_howto 15</span></a> for an overview of LAMMPS output array values from a compute as input. See <a class="reference internal" href="Section_howto.html#howto-15"><span class="std std-ref">Section_howto 15</span></a> for an overview of LAMMPS output
options.</p> options.</p>
<p>The array values are &#8220;intensive&#8221;. The array values will be in <p>The array values are &#8220;intensive&#8221;. The array values will be in
dipole units, i.e. charge units times distance <span class="xref doc">units</span>.</p> dipole units, i.e. charge units times distance <a class="reference internal" href="units.html"><span class="doc">units</span></a>.</p>
</div> </div>
<div class="section" id="restrictions"> <div class="section" id="restrictions">
<h2>Restrictions</h2> <h2>Restrictions</h2>

View File

@ -177,7 +177,7 @@ correctly with time=0 atom coordinates from the restart file.</p>
accessed by indices 1-4 by any command that uses per-atom values from accessed by indices 1-4 by any command that uses per-atom values from
a compute as input. See <a class="reference internal" href="Section_howto.html#howto-15"><span class="std std-ref">Section_howto 15</span></a> for an overview of LAMMPS output a compute as input. See <a class="reference internal" href="Section_howto.html#howto-15"><span class="std std-ref">Section_howto 15</span></a> for an overview of LAMMPS output
options.</p> options.</p>
<p>The per-atom array values will be in distance <span class="xref doc">units</span>.</p> <p>The per-atom array values will be in distance <a class="reference internal" href="units.html"><span class="doc">units</span></a>.</p>
</div> </div>
<div class="section" id="restrictions"> <div class="section" id="restrictions">
<h2>Restrictions</h2> <h2>Restrictions</h2>

View File

@ -156,7 +156,7 @@ that uses per-particle values from a compute as input. See
<a class="reference internal" href="Section_howto.html#howto-15"><span class="std std-ref">Section_howto15</span></a> for an overview of <a class="reference internal" href="Section_howto.html#howto-15"><span class="std std-ref">Section_howto15</span></a> for an overview of
LAMMPS output options.</p> LAMMPS output options.</p>
<p>The per-particle array values will be in energy (u_cond, u_mech) and <p>The per-particle array values will be in energy (u_cond, u_mech) and
temperature (dpdTheta) <span class="xref doc">units</span>.</p> temperature (dpdTheta) <a class="reference internal" href="units.html"><span class="doc">units</span></a>.</p>
</div> </div>
<div class="section" id="restrictions"> <div class="section" id="restrictions">
<h2>Restrictions</h2> <h2>Restrictions</h2>

View File

@ -165,7 +165,7 @@ used by any command that uses a global scalar value from a compute as
input. See <a class="reference internal" href="Section_howto.html#howto-15"><span class="std std-ref">Section_howto 15</span></a> for an input. See <a class="reference internal" href="Section_howto.html#howto-15"><span class="std std-ref">Section_howto 15</span></a> for an
overview of LAMMPS output options.</p> overview of LAMMPS output options.</p>
<p>The scalar value calculated by this compute is &#8220;extensive&#8221;. The <p>The scalar value calculated by this compute is &#8220;extensive&#8221;. The
scalar value will be in energy <span class="xref doc">units</span>.</p> scalar value will be in energy <a class="reference internal" href="units.html"><span class="doc">units</span></a>.</p>
</div> </div>
<div class="section" id="restrictions"> <div class="section" id="restrictions">
<h2>Restrictions</h2> <h2>Restrictions</h2>

View File

@ -163,7 +163,7 @@ uses a global scalar value from a compute as input. See
<a class="reference internal" href="Section_howto.html#howto-15"><span class="std std-ref">Section_howto 15</span></a> for an overview of <a class="reference internal" href="Section_howto.html#howto-15"><span class="std std-ref">Section_howto 15</span></a> for an overview of
LAMMPS output options.</p> LAMMPS output options.</p>
<p>The scalar value calculated by this compute is &#8220;extensive&#8221;. The <p>The scalar value calculated by this compute is &#8220;extensive&#8221;. The
scalar value will be in energy <span class="xref doc">units</span>.</p> scalar value will be in energy <a class="reference internal" href="units.html"><span class="doc">units</span></a>.</p>
</div> </div>
<div class="section" id="restrictions"> <div class="section" id="restrictions">
<h2>Restrictions</h2> <h2>Restrictions</h2>

View File

@ -160,7 +160,7 @@ used by any command that uses a global scalar value from a compute as
input. See <a class="reference internal" href="Section_howto.html#howto-15"><span class="std std-ref">Section_howto 15</span></a> for an input. See <a class="reference internal" href="Section_howto.html#howto-15"><span class="std std-ref">Section_howto 15</span></a> for an
overview of LAMMPS output options.</p> overview of LAMMPS output options.</p>
<p>The scalar value calculated by this compute is &#8220;extensive&#8221;. The <p>The scalar value calculated by this compute is &#8220;extensive&#8221;. The
scalar value will be in energy <span class="xref doc">units</span>.</p> scalar value will be in energy <a class="reference internal" href="units.html"><span class="doc">units</span></a>.</p>
</div> </div>
<div class="section" id="restrictions"> <div class="section" id="restrictions">
<h2>Restrictions</h2> <h2>Restrictions</h2>

View File

@ -162,7 +162,7 @@ in the specified compute group or for point particles with a radius =
any command that uses per-atom values from a compute as input. See any command that uses per-atom values from a compute as input. See
<a class="reference internal" href="Section_howto.html#howto-15"><span class="std std-ref">Section_howto 15</span></a> for an overview of <a class="reference internal" href="Section_howto.html#howto-15"><span class="std std-ref">Section_howto 15</span></a> for an overview of
LAMMPS output options.</p> LAMMPS output options.</p>
<p>The per-atom vector values will be in energy <span class="xref doc">units</span>.</p> <p>The per-atom vector values will be in energy <a class="reference internal" href="units.html"><span class="doc">units</span></a>.</p>
</div> </div>
<div class="section" id="restrictions"> <div class="section" id="restrictions">
<h2>Restrictions</h2> <h2>Restrictions</h2>

View File

@ -213,8 +213,8 @@ These values can be used by any command that uses global scalar or
vector values from a compute as input. See <a class="reference internal" href="Section_howto.html#howto-15"><span class="std std-ref">this section</span></a> for an overview of LAMMPS output vector values from a compute as input. See <a class="reference internal" href="Section_howto.html#howto-15"><span class="std std-ref">this section</span></a> for an overview of LAMMPS output
options.</p> options.</p>
<p>Both the scalar and vector values calculated by this compute are <p>Both the scalar and vector values calculated by this compute are
&#8220;extensive&#8221;. The scalar value will be in energy <span class="xref doc">units</span>. &#8220;extensive&#8221;. The scalar value will be in energy <a class="reference internal" href="units.html"><span class="doc">units</span></a>.
The vector values will be in force <span class="xref doc">units</span>.</p> The vector values will be in force <a class="reference internal" href="units.html"><span class="doc">units</span></a>.</p>
</div> </div>
<div class="section" id="restrictions"> <div class="section" id="restrictions">
<h2>Restrictions</h2> <h2>Restrictions</h2>

View File

@ -157,7 +157,7 @@ number of sub_styles defined by the <a class="reference internal" href="improper
or vector values from a compute as input. See <a class="reference internal" href="Section_howto.html#howto-15"><span class="std std-ref">this section</span></a> for an overview of LAMMPS output or vector values from a compute as input. See <a class="reference internal" href="Section_howto.html#howto-15"><span class="std std-ref">this section</span></a> for an overview of LAMMPS output
options.</p> options.</p>
<p>The vector values are &#8220;extensive&#8221; and will be in energy <p>The vector values are &#8220;extensive&#8221; and will be in energy
<span class="xref doc">units</span>.</p> <a class="reference internal" href="units.html"><span class="doc">units</span></a>.</p>
</div> </div>
<div class="section" id="restrictions"> <div class="section" id="restrictions">
<h2>Restrictions</h2> <h2>Restrictions</h2>

View File

@ -190,7 +190,7 @@ as listed above. These values can be accessed by any command that
uses global array values from a compute as input. See <a class="reference internal" href="Section_howto.html#howto-15"><span class="std std-ref">Section_howto 15</span></a> for an overview of LAMMPS output uses global array values from a compute as input. See <a class="reference internal" href="Section_howto.html#howto-15"><span class="std std-ref">Section_howto 15</span></a> for an overview of LAMMPS output
options.</p> options.</p>
<p>The array values are &#8220;intensive&#8221;. The array values will be in <p>The array values are &#8220;intensive&#8221;. The array values will be in
mass*distance^2 <span class="xref doc">units</span>.</p> mass*distance^2 <a class="reference internal" href="units.html"><span class="doc">units</span></a>.</p>
</div> </div>
<div class="section" id="restrictions"> <div class="section" id="restrictions">
<h2>Restrictions</h2> <h2>Restrictions</h2>

View File

@ -166,7 +166,7 @@ can be used by any command that uses a global scalar value from a
compute as input. See <a class="reference internal" href="Section_howto.html#howto-15"><span class="std std-ref">Section_howto 15</span></a> compute as input. See <a class="reference internal" href="Section_howto.html#howto-15"><span class="std std-ref">Section_howto 15</span></a>
for an overview of LAMMPS output options.</p> for an overview of LAMMPS output options.</p>
<p>The scalar value calculated by this compute is &#8220;extensive&#8221;. The <p>The scalar value calculated by this compute is &#8220;extensive&#8221;. The
scalar value will be in energy <span class="xref doc">units</span>.</p> scalar value will be in energy <a class="reference internal" href="units.html"><span class="doc">units</span></a>.</p>
</div> </div>
<div class="section" id="restrictions"> <div class="section" id="restrictions">
<h2>Restrictions</h2> <h2>Restrictions</h2>

View File

@ -155,7 +155,7 @@ specified compute group.</p>
any command that uses per-atom values from a compute as input. See any command that uses per-atom values from a compute as input. See
<a class="reference internal" href="Section_howto.html#howto-15"><span class="std std-ref">Section_howto 15</span></a> for an overview of <a class="reference internal" href="Section_howto.html#howto-15"><span class="std std-ref">Section_howto 15</span></a> for an overview of
LAMMPS output options.</p> LAMMPS output options.</p>
<p>The per-atom vector values will be in energy <span class="xref doc">units</span>.</p> <p>The per-atom vector values will be in energy <a class="reference internal" href="units.html"><span class="doc">units</span></a>.</p>
</div> </div>
<div class="section" id="restrictions"> <div class="section" id="restrictions">
<h2>Restrictions</h2> <h2>Restrictions</h2>

View File

@ -180,7 +180,7 @@ electrons) not in the specified compute group.</p>
accessed by any command that uses per-atom computes as input. See accessed by any command that uses per-atom computes as input. See
<a class="reference internal" href="Section_howto.html#howto-15"><span class="std std-ref">Section_howto 15</span></a> for an overview of <a class="reference internal" href="Section_howto.html#howto-15"><span class="std std-ref">Section_howto 15</span></a> for an overview of
LAMMPS output options.</p> LAMMPS output options.</p>
<p>The per-atom vector values will be in energy <span class="xref doc">units</span>.</p> <p>The per-atom vector values will be in energy <a class="reference internal" href="units.html"><span class="doc">units</span></a>.</p>
</div> </div>
<div class="section" id="restrictions"> <div class="section" id="restrictions">
<h2>Restrictions</h2> <h2>Restrictions</h2>

View File

@ -181,7 +181,7 @@ used by any command that uses a global scalar value from a compute as
input. See <a class="reference internal" href="Section_howto.html#howto-15"><span class="std std-ref">Section_howto 15</span></a> for an input. See <a class="reference internal" href="Section_howto.html#howto-15"><span class="std std-ref">Section_howto 15</span></a> for an
overview of LAMMPS output options.</p> overview of LAMMPS output options.</p>
<p>The scalar value calculated by this compute is &#8220;extensive&#8221;. The <p>The scalar value calculated by this compute is &#8220;extensive&#8221;. The
scalar value will be in energy <span class="xref doc">units</span>.</p> scalar value will be in energy <a class="reference internal" href="units.html"><span class="doc">units</span></a>.</p>
</div> </div>
<div class="section" id="restrictions"> <div class="section" id="restrictions">
<h2>Restrictions</h2> <h2>Restrictions</h2>

View File

@ -161,7 +161,7 @@ rigid bodies). This value can be used by any command that uses a
global scalar value from a compute as input. See <a class="reference internal" href="Section_howto.html#howto-15"><span class="std std-ref">Section_howto 15</span></a> for an overview of LAMMPS output global scalar value from a compute as input. See <a class="reference internal" href="Section_howto.html#howto-15"><span class="std std-ref">Section_howto 15</span></a> for an overview of LAMMPS output
options.</p> options.</p>
<p>The scalar value calculated by this compute is &#8220;extensive&#8221;. The <p>The scalar value calculated by this compute is &#8220;extensive&#8221;. The
scalar value will be in energy <span class="xref doc">units</span>.</p> scalar value will be in energy <a class="reference internal" href="units.html"><span class="doc">units</span></a>.</p>
</div> </div>
<div class="section" id="restrictions"> <div class="section" id="restrictions">
<h2>Restrictions</h2> <h2>Restrictions</h2>

View File

@ -158,7 +158,7 @@ specified compute group.</p>
any command that uses per-atom values from a compute as input. See any command that uses per-atom values from a compute as input. See
<a class="reference internal" href="Section_howto.html#howto-15"><span class="std std-ref">Section_howto 15</span></a> for an overview of <a class="reference internal" href="Section_howto.html#howto-15"><span class="std std-ref">Section_howto 15</span></a> for an overview of
LAMMPS output options.</p> LAMMPS output options.</p>
<p>The per-atom vector values will be in energy <span class="xref doc">units</span>.</p> <p>The per-atom vector values will be in energy <a class="reference internal" href="units.html"><span class="doc">units</span></a>.</p>
</div> </div>
<div class="section" id="restrictions"> <div class="section" id="restrictions">
<h2>Restrictions</h2> <h2>Restrictions</h2>

View File

@ -158,7 +158,7 @@ specified compute group.</p>
any command that uses per-atom values from a compute as input. See any command that uses per-atom values from a compute as input. See
<a class="reference internal" href="Section_howto.html#howto-15"><span class="std std-ref">Section_howto 15</span></a> for an overview of <a class="reference internal" href="Section_howto.html#howto-15"><span class="std std-ref">Section_howto 15</span></a> for an overview of
LAMMPS output options.</p> LAMMPS output options.</p>
<p>The per-atom vector values will be in mass/volume <span class="xref doc">units</span>.</p> <p>The per-atom vector values will be in mass/volume <a class="reference internal" href="units.html"><span class="doc">units</span></a>.</p>
</div> </div>
<div class="section" id="restrictions"> <div class="section" id="restrictions">
<h2>Restrictions</h2> <h2>Restrictions</h2>

View File

@ -159,7 +159,7 @@ specified compute group.</p>
any command that uses per-atom values from a compute as input. See any command that uses per-atom values from a compute as input. See
<a class="reference internal" href="Section_howto.html#howto-15"><span class="std std-ref">Section_howto 15</span></a> for an overview of <a class="reference internal" href="Section_howto.html#howto-15"><span class="std std-ref">Section_howto 15</span></a> for an overview of
LAMMPS output options.</p> LAMMPS output options.</p>
<p>The per-atom vector values will be in temperature <span class="xref doc">units</span>.</p> <p>The per-atom vector values will be in temperature <a class="reference internal" href="units.html"><span class="doc">units</span></a>.</p>
</div> </div>
<div class="section" id="restrictions"> <div class="section" id="restrictions">
<h2>Restrictions</h2> <h2>Restrictions</h2>

View File

@ -215,7 +215,7 @@ accessed by indices 1-4 by any command that uses global vector values
from a compute as input. See <a class="reference internal" href="Section_howto.html#howto-15"><span class="std std-ref">this section</span></a> for an overview of LAMMPS output from a compute as input. See <a class="reference internal" href="Section_howto.html#howto-15"><span class="std std-ref">this section</span></a> for an overview of LAMMPS output
options.</p> options.</p>
<p>The vector values are &#8220;intensive&#8221;. The vector values will be in <p>The vector values are &#8220;intensive&#8221;. The vector values will be in
distance^2 <span class="xref doc">units</span>.</p> distance^2 <a class="reference internal" href="units.html"><span class="doc">units</span></a>.</p>
</div> </div>
<div class="section" id="restrictions"> <div class="section" id="restrictions">
<h2>Restrictions</h2> <h2>Restrictions</h2>

View File

@ -226,7 +226,7 @@ accessed by any command that uses global array values from a compute
as input. See <a class="reference internal" href="Section_howto.html#howto-15"><span class="std std-ref">this section</span></a> for an as input. See <a class="reference internal" href="Section_howto.html#howto-15"><span class="std std-ref">this section</span></a> for an
overview of LAMMPS output options.</p> overview of LAMMPS output options.</p>
<p>The array values are &#8220;intensive&#8221;. The array values will be in <p>The array values are &#8220;intensive&#8221;. The array values will be in
distance^2 <span class="xref doc">units</span>.</p> distance^2 <a class="reference internal" href="units.html"><span class="doc">units</span></a>.</p>
</div> </div>
<div class="section" id="restrictions"> <div class="section" id="restrictions">
<h2>Restrictions</h2> <h2>Restrictions</h2>

View File

@ -191,7 +191,7 @@ These values can be accessed by any command that uses global array
values from a compute as input. See <a class="reference internal" href="Section_howto.html#howto-15"><span class="std std-ref">Section_howto 15</span></a> for an overview of LAMMPS output values from a compute as input. See <a class="reference internal" href="Section_howto.html#howto-15"><span class="std std-ref">Section_howto 15</span></a> for an overview of LAMMPS output
options.</p> options.</p>
<p>The array values are &#8220;intensive&#8221;. The array values will be in <p>The array values are &#8220;intensive&#8221;. The array values will be in
velocity/distance <span class="xref doc">units</span>.</p> velocity/distance <a class="reference internal" href="units.html"><span class="doc">units</span></a>.</p>
</div> </div>
<div class="section" id="restrictions"> <div class="section" id="restrictions">
<h2>Restrictions</h2> <h2>Restrictions</h2>

View File

@ -185,8 +185,8 @@ from a compute as input. See <a class="reference internal" href="Section_howto.
options.</p> options.</p>
<p>The scalar and vector values calculated by this compute are <p>The scalar and vector values calculated by this compute are
&#8220;extensive&#8221;.</p> &#8220;extensive&#8221;.</p>
<p>The scalar value will be in energy <span class="xref doc">units</span>. The vector <p>The scalar value will be in energy <a class="reference internal" href="units.html"><span class="doc">units</span></a>. The vector
values will typically also be in energy <span class="xref doc">units</span>, but see values will typically also be in energy <a class="reference internal" href="units.html"><span class="doc">units</span></a>, but see
the doc page for the pair style for details.</p> the doc page for the pair style for details.</p>
</div> </div>
<div class="section" id="restrictions"> <div class="section" id="restrictions">

View File

@ -179,9 +179,9 @@ example of ones that do are the <a class="reference internal" href="pair_gran.ht
which calculate the tangential force between two particles and return which calculate the tangential force between two particles and return
its components and magnitude acting on atom I for N = 1,2,3,4. See its components and magnitude acting on atom I for N = 1,2,3,4. See
individual pair styles for detils.</p> individual pair styles for detils.</p>
<p>The output <em>dist</em> will be in distance <span class="xref doc">units</span>. The output <p>The output <em>dist</em> will be in distance <a class="reference internal" href="units.html"><span class="doc">units</span></a>. The output
<em>eng</em> will be in energy <span class="xref doc">units</span>. The outputs <em>force</em>, <em>eng</em> will be in energy <a class="reference internal" href="units.html"><span class="doc">units</span></a>. The outputs <em>force</em>,
<em>fx</em>, <em>fy</em>, and <em>fz</em> will be in force <span class="xref doc">units</span>. The output <em>fx</em>, <em>fy</em>, and <em>fz</em> will be in force <a class="reference internal" href="units.html"><span class="doc">units</span></a>. The output
<em>pN</em> will be in whatever units the pair style defines.</p> <em>pN</em> will be in whatever units the pair style defines.</p>
<p>Note that as atoms migrate from processor to processor, there will be <p>Note that as atoms migrate from processor to processor, there will be
no consistent ordering of the entries within the local vector or array no consistent ordering of the entries within the local vector or array
@ -217,9 +217,9 @@ local array is produced where the number of columns = the number of
keywords. The vector or array can be accessed by any command that keywords. The vector or array can be accessed by any command that
uses local values from a compute as input. See <a class="reference internal" href="Section_howto.html#howto-15"><span class="std std-ref">this section</span></a> for an overview of LAMMPS output uses local values from a compute as input. See <a class="reference internal" href="Section_howto.html#howto-15"><span class="std std-ref">this section</span></a> for an overview of LAMMPS output
options.</p> options.</p>
<p>The output for <em>dist</em> will be in distance <span class="xref doc">units</span>. The <p>The output for <em>dist</em> will be in distance <a class="reference internal" href="units.html"><span class="doc">units</span></a>. The
output for <em>eng</em> will be in energy <span class="xref doc">units</span>. The output for output for <em>eng</em> will be in energy <a class="reference internal" href="units.html"><span class="doc">units</span></a>. The output for
<em>force</em> will be in force <span class="xref doc">units</span>.</p> <em>force</em> will be in force <a class="reference internal" href="units.html"><span class="doc">units</span></a>.</p>
</div> </div>
<div class="section" id="restrictions"> <div class="section" id="restrictions">
<h2>Restrictions</h2> <h2>Restrictions</h2>

View File

@ -200,7 +200,7 @@ value can be used by any command that uses a global scalar value from
a compute as input. See <a class="reference internal" href="Section_howto.html#howto-15"><span class="std std-ref">Section_howto 15</span></a> for an overview of LAMMPS output a compute as input. See <a class="reference internal" href="Section_howto.html#howto-15"><span class="std std-ref">Section_howto 15</span></a> for an overview of LAMMPS output
options.</p> options.</p>
<p>The scalar value calculated by this compute is &#8220;extensive&#8221;. The <p>The scalar value calculated by this compute is &#8220;extensive&#8221;. The
scalar value will be in energy <span class="xref doc">units</span>.</p> scalar value will be in energy <a class="reference internal" href="units.html"><span class="doc">units</span></a>.</p>
</div> </div>
<div class="section" id="restrictions"> <div class="section" id="restrictions">
<h2>Restrictions</h2> <h2>Restrictions</h2>

View File

@ -191,7 +191,7 @@ those are global contributions to the system energy.</p>
any command that uses per-atom values from a compute as input. See any command that uses per-atom values from a compute as input. See
<a class="reference internal" href="Section_howto.html#howto-15"><span class="std std-ref">Section_howto 15</span></a> for an overview of <a class="reference internal" href="Section_howto.html#howto-15"><span class="std std-ref">Section_howto 15</span></a> for an overview of
LAMMPS output options.</p> LAMMPS output options.</p>
<p>The per-atom vector values will be in energy <span class="xref doc">units</span>.</p> <p>The per-atom vector values will be in energy <a class="reference internal" href="units.html"><span class="doc">units</span></a>.</p>
</div> </div>
<div class="section" id="restrictions"> <div class="section" id="restrictions">
<h2>Restrictions</h2> <h2>Restrictions</h2>

View File

@ -262,7 +262,7 @@ per-atom array is produced where the number of columns = the number of
inputs. The vector or array can be accessed by any command that uses inputs. The vector or array can be accessed by any command that uses
per-atom values from a compute as input. See <a class="reference internal" href="Section_howto.html#howto-15"><span class="std std-ref">this section</span></a> for an overview of LAMMPS output per-atom values from a compute as input. See <a class="reference internal" href="Section_howto.html#howto-15"><span class="std std-ref">this section</span></a> for an overview of LAMMPS output
options.</p> options.</p>
<p>The vector or array values will be in whatever <span class="xref doc">units</span> the <p>The vector or array values will be in whatever <a class="reference internal" href="units.html"><span class="doc">units</span></a> the
corresponding attribute is in, e.g. velocity units for vx, charge corresponding attribute is in, e.g. velocity units for vx, charge
units for q, etc.</p> units for q, etc.</p>
</div> </div>

View File

@ -186,7 +186,7 @@ is the center point of the bin in the corresponding dimension. Style
<em>bin/1d</em> only defines a <em>coord1</em> attribute. Style <em>bin/2d</em> adds a <em>bin/1d</em> only defines a <em>coord1</em> attribute. Style <em>bin/2d</em> adds a
<em>coord2</em> attribute. Style <em>bin/3d</em> adds a <em>coord3</em> attribute.</p> <em>coord2</em> attribute. Style <em>bin/3d</em> adds a <em>coord3</em> attribute.</p>
<p>Note that if the value of the <em>units</em> keyword used in the <a class="reference internal" href="compute_chunk_atom.html"><span class="doc">compute chunk/atom command</span></a> is <em>box</em> or <em>lattice</em>, the <p>Note that if the value of the <em>units</em> keyword used in the <a class="reference internal" href="compute_chunk_atom.html"><span class="doc">compute chunk/atom command</span></a> is <em>box</em> or <em>lattice</em>, the
<em>coordN</em> attributes will be in distance <span class="xref doc">units</span>. If the <em>coordN</em> attributes will be in distance <a class="reference internal" href="units.html"><span class="doc">units</span></a>. If the
value of the <em>units</em> keyword is <em>reduced</em>, the <em>coordN</em> attributes value of the <em>units</em> keyword is <em>reduced</em>, the <em>coordN</em> attributes
will be in unitless reduced units (0-1).</p> will be in unitless reduced units (0-1).</p>
<p>The simplest way to output the results of the compute property/chunk <p>The simplest way to output the results of the compute property/chunk

View File

@ -242,7 +242,7 @@ by any command that uses a global values from a compute as input. See
LAMMPS output options.</p> LAMMPS output options.</p>
<p>The array values calculated by this compute are all &#8220;intensive&#8221;.</p> <p>The array values calculated by this compute are all &#8220;intensive&#8221;.</p>
<p>The first column of array values will be in distance <p>The first column of array values will be in distance
<span class="xref doc">units</span>. The g(r) columns of array values are normalized <a class="reference internal" href="units.html"><span class="doc">units</span></a>. The g(r) columns of array values are normalized
numbers &gt;= 0.0. The coordination number columns of array values are numbers &gt;= 0.0. The coordination number columns of array values are
also numbers &gt;= 0.0.</p> also numbers &gt;= 0.0.</p>
</div> </div>

View File

@ -281,7 +281,7 @@ for an overview of LAMMPS output options.</p>
&#8220;intensive&#8221;, except when the <em>sum</em> or <em>sumsq</em> modes are used on &#8220;intensive&#8221;, except when the <em>sum</em> or <em>sumsq</em> modes are used on
per-atom or local vectors, in which case the calculated values are per-atom or local vectors, in which case the calculated values are
&#8220;extensive&#8221;.</p> &#8220;extensive&#8221;.</p>
<p>The scalar or vector values will be in whatever <span class="xref doc">units</span> the <p>The scalar or vector values will be in whatever <a class="reference internal" href="units.html"><span class="doc">units</span></a> the
quantities being reduced are in.</p> quantities being reduced are in.</p>
</div> </div>
<div class="section" id="restrictions"> <div class="section" id="restrictions">

View File

@ -169,7 +169,7 @@
<div class="section" id="description"> <div class="section" id="description">
<h2>Description</h2> <h2>Description</h2>
<p>Define a computation that calculates electron diffraction intensity as <p>Define a computation that calculates electron diffraction intensity as
described in <a class="reference internal" href="compute_xrd.html#coleman"><span class="std std-ref">(Coleman)</span></a> on a mesh of reciprocal lattice nodes described in <a class="reference internal" href="fix_saed_vtk.html#coleman"><span class="std std-ref">(Coleman)</span></a> on a mesh of reciprocal lattice nodes
defined by the entire simulation domain (or manually) using simulated defined by the entire simulation domain (or manually) using simulated
radiation of wavelength lambda.</p> radiation of wavelength lambda.</p>
<p>The electron diffraction intensity I at each reciprocal lattice point <p>The electron diffraction intensity I at each reciprocal lattice point

View File

@ -220,7 +220,7 @@ array values calculated by this compute are &#8220;intensive&#8221;. If there a
multiple input vectors, and any value in them is extensive, then the multiple input vectors, and any value in them is extensive, then the
array values calculated by this compute are &#8220;extensive&#8221;. Values array values calculated by this compute are &#8220;extensive&#8221;. Values
produced by a variable are treated as intensive.</p> produced by a variable are treated as intensive.</p>
<p>The vector or array values will be in whatever <span class="xref doc">units</span> the <p>The vector or array values will be in whatever <a class="reference internal" href="units.html"><span class="doc">units</span></a> the
input quantities are in.</p> input quantities are in.</p>
</div> </div>
<div class="section" id="restrictions"> <div class="section" id="restrictions">

View File

@ -158,7 +158,7 @@ specified compute group.</p>
any command that uses per-particle values from a compute as input. See any command that uses per-particle values from a compute as input. See
<a class="reference internal" href="Section_howto.html#howto-15"><span class="std std-ref">Section_howto 15</span></a> for an overview of <a class="reference internal" href="Section_howto.html#howto-15"><span class="std std-ref">Section_howto 15</span></a> for an overview of
LAMMPS output options.</p> LAMMPS output options.</p>
<p>The per-particle vector values will be in distance <span class="xref doc">units</span>.</p> <p>The per-particle vector values will be in distance <a class="reference internal" href="units.html"><span class="doc">units</span></a>.</p>
</div> </div>
<div class="section" id="restrictions"> <div class="section" id="restrictions">
<h2>Restrictions</h2> <h2>Restrictions</h2>

View File

@ -162,7 +162,7 @@ any command that uses per-particle values from a compute as input. See
<a class="reference internal" href="Section_howto.html#howto-15"><span class="std std-ref">How-to discussions, section 6.15</span></a> <a class="reference internal" href="Section_howto.html#howto-15"><span class="std std-ref">How-to discussions, section 6.15</span></a>
for an overview of LAMMPS output options.</p> for an overview of LAMMPS output options.</p>
<p>The per-particle vector values will are dimensionless. See <p>The per-particle vector values will are dimensionless. See
<span class="xref doc">units</span>.</p> <a class="reference internal" href="units.html"><span class="doc">units</span></a>.</p>
</div> </div>
<div class="section" id="restrictions"> <div class="section" id="restrictions">
<h2>Restrictions</h2> <h2>Restrictions</h2>

View File

@ -153,7 +153,7 @@ Mach Dynamics in LAMMPS.</p>
by any command that uses per-particle values from a compute as input. by any command that uses per-particle values from a compute as input.
See <a class="reference internal" href="Section_howto.html#howto-15"><span class="std std-ref">How-to discussions, section 6.15</span></a> for See <a class="reference internal" href="Section_howto.html#howto-15"><span class="std std-ref">How-to discussions, section 6.15</span></a> for
an overview of LAMMPS output options.</p> an overview of LAMMPS output options.</p>
<p>The per-particle vector values will be given in <span class="xref doc">units</span> of energy.</p> <p>The per-particle vector values will be given in <a class="reference internal" href="units.html"><span class="doc">units</span></a> of energy.</p>
</div> </div>
<div class="section" id="restrictions"> <div class="section" id="restrictions">
<h2>Restrictions</h2> <h2>Restrictions</h2>

View File

@ -154,7 +154,7 @@ Mach Dynamics in LAMMPS.</p>
by any command that uses per-particle values from a compute as input. by any command that uses per-particle values from a compute as input.
See <a class="reference internal" href="Section_howto.html#howto-15"><span class="std std-ref">How-to discussions, section 6.15</span></a> for See <a class="reference internal" href="Section_howto.html#howto-15"><span class="std std-ref">How-to discussions, section 6.15</span></a> for
an overview of LAMMPS output options.</p> an overview of LAMMPS output options.</p>
<p>The per-particle values will be given dimensionless. See <span class="xref doc">units</span>.</p> <p>The per-particle values will be given dimensionless. See <a class="reference internal" href="units.html"><span class="doc">units</span></a>.</p>
</div> </div>
<div class="section" id="restrictions"> <div class="section" id="restrictions">
<h2>Restrictions</h2> <h2>Restrictions</h2>

View File

@ -154,7 +154,7 @@ Mach Dynamics in LAMMPS.</p>
by any command that uses per-particle values from a compute as input. by any command that uses per-particle values from a compute as input.
See <a class="reference internal" href="Section_howto.html#howto-15"><span class="std std-ref">How-to discussions, section 6.15</span></a> for See <a class="reference internal" href="Section_howto.html#howto-15"><span class="std std-ref">How-to discussions, section 6.15</span></a> for
an overview of LAMMPS output options.</p> an overview of LAMMPS output options.</p>
<p>The per-particle values will be given in <span class="xref doc">units</span> of one over time.</p> <p>The per-particle values will be given in <a class="reference internal" href="units.html"><span class="doc">units</span></a> of one over time.</p>
</div> </div>
<div class="section" id="restrictions"> <div class="section" id="restrictions">
<h2>Restrictions</h2> <h2>Restrictions</h2>

View File

@ -155,7 +155,7 @@ Mach Dynamics in LAMMPS.</p>
by any command that uses per-particle values from a compute as input. by any command that uses per-particle values from a compute as input.
See <a class="reference internal" href="Section_howto.html#howto-15"><span class="std std-ref">How-to discussions, section 6.15</span></a> for See <a class="reference internal" href="Section_howto.html#howto-15"><span class="std std-ref">How-to discussions, section 6.15</span></a> for
an overview of LAMMPS output options.</p> an overview of LAMMPS output options.</p>
<p>The per-particle values will be in <span class="xref doc">units</span> of mass over volume.</p> <p>The per-particle values will be in <a class="reference internal" href="units.html"><span class="doc">units</span></a> of mass over volume.</p>
</div> </div>
<div class="section" id="restrictions"> <div class="section" id="restrictions">
<h2>Restrictions</h2> <h2>Restrictions</h2>

View File

@ -155,7 +155,7 @@ which can be accessed by any command that uses per-particle values
from a compute as input. See <a class="reference internal" href="Section_howto.html#howto-15"><span class="std std-ref">How-to discussions, section 6.15</span></a> for an overview of LAMMPS output from a compute as input. See <a class="reference internal" href="Section_howto.html#howto-15"><span class="std std-ref">How-to discussions, section 6.15</span></a> for an overview of LAMMPS output
options.</p> options.</p>
<p>The per-particle vector values will be given dimensionless. See <p>The per-particle vector values will be given dimensionless. See
<span class="xref doc">units</span>. The per-particle vector has 10 entries. The first <a class="reference internal" href="units.html"><span class="doc">units</span></a>. The per-particle vector has 10 entries. The first
nine entries correspond to the xx, xy, xz, yx, yy, yz, zx, zy, zz nine entries correspond to the xx, xy, xz, yx, yy, yz, zx, zy, zz
components of the asymmetric deformation gradient tensor. The tenth components of the asymmetric deformation gradient tensor. The tenth
entry is the determinant of the deformation gradient.</p> entry is the determinant of the deformation gradient.</p>

View File

@ -159,7 +159,7 @@ Mach Dynamics in LAMMPS.</p>
by any command that uses per-particle values from a compute as input. by any command that uses per-particle values from a compute as input.
See <a class="reference internal" href="Section_howto.html#howto-15"><span class="std std-ref">How-to discussions, section 6.15</span></a> for See <a class="reference internal" href="Section_howto.html#howto-15"><span class="std std-ref">How-to discussions, section 6.15</span></a> for
an overview of LAMMPS output options.</p> an overview of LAMMPS output options.</p>
<p>The per-particle values will be given in <span class="xref doc">units</span> of time.</p> <p>The per-particle values will be given in <a class="reference internal" href="units.html"><span class="doc">units</span></a> of time.</p>
</div> </div>
<div class="section" id="restrictions"> <div class="section" id="restrictions">
<h2>Restrictions</h2> <h2>Restrictions</h2>

View File

@ -154,7 +154,7 @@ Mach Dynamics in LAMMPS.</p>
by any command that uses per-particle values from a compute as input. by any command that uses per-particle values from a compute as input.
See <a class="reference internal" href="Section_howto.html#howto-15"><span class="std std-ref">How-to discussions, section 6.15</span></a> for See <a class="reference internal" href="Section_howto.html#howto-15"><span class="std std-ref">How-to discussions, section 6.15</span></a> for
an overview of LAMMPS output options.</p> an overview of LAMMPS output options.</p>
<p>The per-particle values are dimensionless. See <span class="xref doc">units</span>.</p> <p>The per-particle values are dimensionless. See <a class="reference internal" href="units.html"><span class="doc">units</span></a>.</p>
</div> </div>
<div class="section" id="restrictions"> <div class="section" id="restrictions">
<h2>Restrictions</h2> <h2>Restrictions</h2>

View File

@ -154,7 +154,7 @@ which can be accessed by any command that uses per-particle values
from a compute as input. See <a class="reference internal" href="Section_howto.html#howto-15"><span class="std std-ref">How-to discussions, section 6.15</span></a> for an overview of LAMMPS output from a compute as input. See <a class="reference internal" href="Section_howto.html#howto-15"><span class="std std-ref">How-to discussions, section 6.15</span></a> for an overview of LAMMPS output
options.</p> options.</p>
<p>The per-particle tensor values will be given dimensionless. See <p>The per-particle tensor values will be given dimensionless. See
<span class="xref doc">units</span>.</p> <a class="reference internal" href="units.html"><span class="doc">units</span></a>.</p>
<p>The per-particle vector has 6 entries, corresponding to the xx, yy, <p>The per-particle vector has 6 entries, corresponding to the xx, yy,
zz, xy, xz, yz components of the symmetric strain tensor.</p> zz, xy, xz, yz components of the symmetric strain tensor.</p>
</div> </div>

View File

@ -153,7 +153,7 @@ Mach Dynamics in LAMMPS.</p>
which can be accessed by any command that uses per-particle values which can be accessed by any command that uses per-particle values
from a compute as input. See <a class="reference internal" href="Section_howto.html#howto-15"><span class="std std-ref">How-to discussions, section 6.15</span></a> for an overview of LAMMPS output from a compute as input. See <a class="reference internal" href="Section_howto.html#howto-15"><span class="std std-ref">How-to discussions, section 6.15</span></a> for an overview of LAMMPS output
options.</p> options.</p>
<p>The values will be given in <span class="xref doc">units</span> of one over time.</p> <p>The values will be given in <a class="reference internal" href="units.html"><span class="doc">units</span></a> of one over time.</p>
<p>The per-particle vector has 6 entries, corresponding to the xx, yy, <p>The per-particle vector has 6 entries, corresponding to the xx, yy,
zz, xy, xz, yz components of the symmetric strain rate tensor.</p> zz, xy, xz, yz components of the symmetric strain rate tensor.</p>
</div> </div>

View File

@ -154,7 +154,7 @@ accessed by any command that uses per-particle values from a compute
as input. See as input. See
<a class="reference internal" href="Section_howto.html#howto-15"><span class="std std-ref">How-to discussions, section 6.15</span></a> <a class="reference internal" href="Section_howto.html#howto-15"><span class="std std-ref">How-to discussions, section 6.15</span></a>
for an overview of LAMMPS output options.</p> for an overview of LAMMPS output options.</p>
<p>The values will be given in <span class="xref doc">units</span> of pressure.</p> <p>The values will be given in <a class="reference internal" href="units.html"><span class="doc">units</span></a> of pressure.</p>
<p>The per-particle vector has 7 entries. The first six entries <p>The per-particle vector has 7 entries. The first six entries
correspond to the xx, yy, zz, xy, xz and yz components of the correspond to the xx, yy, zz, xy, xz and yz components of the
symmetric Cauchy stress tensor. The seventh entry is the second symmetric Cauchy stress tensor. The seventh entry is the second

View File

@ -161,7 +161,7 @@ which is created via the <a href="#id6"><span class="problematic" id="id7">`fix
<p>The output of this compute can be used with the dump2vtk_tris tool to <p>The output of this compute can be used with the dump2vtk_tris tool to
generate a VTK representation of the smd/wall_surace mesh for generate a VTK representation of the smd/wall_surace mesh for
visualization purposes.</p> visualization purposes.</p>
<p>The values will be given in <span class="xref doc">units</span> of distance.</p> <p>The values will be given in <a class="reference internal" href="units.html"><span class="doc">units</span></a> of distance.</p>
</div> </div>
<div class="section" id="restrictions"> <div class="section" id="restrictions">
<h2>Restrictions</h2> <h2>Restrictions</h2>

View File

@ -154,7 +154,7 @@ Mach Dynamics in LAMMPS.</p>
any command that uses per-particle values from a compute as input. any command that uses per-particle values from a compute as input.
See <a class="reference internal" href="Section_howto.html#howto-15"><span class="std std-ref">Section_howto 15</span></a> for an overview of See <a class="reference internal" href="Section_howto.html#howto-15"><span class="std std-ref">Section_howto 15</span></a> for an overview of
LAMMPS output options.</p> LAMMPS output options.</p>
<p>The per-particle values will be given dimentionless, see <span class="xref doc">units</span>.</p> <p>The per-particle values will be given dimentionless, see <a class="reference internal" href="units.html"><span class="doc">units</span></a>.</p>
</div> </div>
<div class="section" id="restrictions"> <div class="section" id="restrictions">
<h2>Restrictions</h2> <h2>Restrictions</h2>

View File

@ -156,7 +156,7 @@ LAMMPS output options.</p>
<p>The per-particle vector has 6 entries, corresponding to the xx, yy, <p>The per-particle vector has 6 entries, corresponding to the xx, yy,
zz, xy, xz, yz components of the symmetric strain rate tensor.</p> zz, xy, xz, yz components of the symmetric strain rate tensor.</p>
<p>The per-particle tensor values will be given dimensionless, see <p>The per-particle tensor values will be given dimensionless, see
<span class="xref doc">units</span>.</p> <a class="reference internal" href="units.html"><span class="doc">units</span></a>.</p>
</div> </div>
<div class="section" id="restrictions"> <div class="section" id="restrictions">
<h2>Restrictions</h2> <h2>Restrictions</h2>

View File

@ -154,7 +154,7 @@ Mach Dynamics in LAMMPS.</p>
which can be accessed by any command that uses per-particle values which can be accessed by any command that uses per-particle values
from a compute as input. See <a class="reference internal" href="Section_howto.html#howto-15"><span class="std std-ref">Section_howto 15</span></a> for an overview of LAMMPS output from a compute as input. See <a class="reference internal" href="Section_howto.html#howto-15"><span class="std std-ref">Section_howto 15</span></a> for an overview of LAMMPS output
options.</p> options.</p>
<p>The values will be given in <span class="xref doc">units</span> of one over time.</p> <p>The values will be given in <a class="reference internal" href="units.html"><span class="doc">units</span></a> of one over time.</p>
<p>The per-particle vector has 6 entries, corresponding to the xx, yy, <p>The per-particle vector has 6 entries, corresponding to the xx, yy,
zz, xy, xz, yz components of the symmetric strain rate tensor.</p> zz, xy, xz, yz components of the symmetric strain rate tensor.</p>
</div> </div>

View File

@ -152,7 +152,7 @@ Mach Dynamics in LAMMPS.</p>
which can be accessed by any command that uses per-particle values which can be accessed by any command that uses per-particle values
from a compute as input. See <a class="reference internal" href="Section_howto.html#howto-15"><span class="std std-ref">Section_howto 15</span></a> for an overview of LAMMPS output from a compute as input. See <a class="reference internal" href="Section_howto.html#howto-15"><span class="std std-ref">Section_howto 15</span></a> for an overview of LAMMPS output
options.</p> options.</p>
<p>The values will be given in <span class="xref doc">units</span> of pressure.</p> <p>The values will be given in <a class="reference internal" href="units.html"><span class="doc">units</span></a> of pressure.</p>
<p>The per-particle vector has 7 entries. The first six entries <p>The per-particle vector has 7 entries. The first six entries
correspond to the xx, yy, zz, xy, xz, yz components of the symmetric correspond to the xx, yy, zz, xy, xz, yz components of the symmetric
Cauchy stress tensor. The seventh entry is the second invariant of the Cauchy stress tensor. The seventh entry is the second invariant of the

View File

@ -153,7 +153,7 @@ Mach Dynamics in LAMMPS.</p>
by any command that uses per-particle values from a compute as input. by any command that uses per-particle values from a compute as input.
See <a class="reference internal" href="Section_howto.html#howto-15"><span class="std std-ref">How-to discussions, section 6.15</span></a> for See <a class="reference internal" href="Section_howto.html#howto-15"><span class="std std-ref">How-to discussions, section 6.15</span></a> for
an overview of LAMMPS output options.</p> an overview of LAMMPS output options.</p>
<p>The per-particle vector values will be given in <span class="xref doc">units</span> of <p>The per-particle vector values will be given in <a class="reference internal" href="units.html"><span class="doc">units</span></a> of
volume.</p> volume.</p>
<p>Additionally, the compute returns a scalar, which is the sum of the <p>Additionally, the compute returns a scalar, which is the sum of the
per-particle volumes of the group for which the fix is defined.</p> per-particle volumes of the group for which the fix is defined.</p>

View File

@ -207,8 +207,8 @@ vector values from a compute as input. See <a class="reference internal" href="
options.</p> options.</p>
<p>The scalar value calculated by this compute is &#8220;intensive&#8221;. The <p>The scalar value calculated by this compute is &#8220;intensive&#8221;. The
vector values are &#8220;extensive&#8221;.</p> vector values are &#8220;extensive&#8221;.</p>
<p>The scalar value will be in temperature <span class="xref doc">units</span>. The <p>The scalar value will be in temperature <a class="reference internal" href="units.html"><span class="doc">units</span></a>. The
vector values will be in energy <span class="xref doc">units</span>.</p> vector values will be in energy <a class="reference internal" href="units.html"><span class="doc">units</span></a>.</p>
</div> </div>
<div class="section" id="restrictions"> <div class="section" id="restrictions">
<h2>Restrictions</h2> <h2>Restrictions</h2>

View File

@ -238,8 +238,8 @@ vector values from a compute as input. See <a class="reference internal" href="
options.</p> options.</p>
<p>The scalar value calculated by this compute is &#8220;intensive&#8221;. The <p>The scalar value calculated by this compute is &#8220;intensive&#8221;. The
vector values are &#8220;extensive&#8221;.</p> vector values are &#8220;extensive&#8221;.</p>
<p>The scalar value will be in temperature <span class="xref doc">units</span>. The <p>The scalar value will be in temperature <a class="reference internal" href="units.html"><span class="doc">units</span></a>. The
vector values will be in energy <span class="xref doc">units</span>.</p> vector values will be in energy <a class="reference internal" href="units.html"><span class="doc">units</span></a>.</p>
</div> </div>
<div class="section" id="restrictions"> <div class="section" id="restrictions">
<h2>Restrictions</h2> <h2>Restrictions</h2>

View File

@ -219,8 +219,8 @@ vector values from a compute as input. See <a class="reference internal" href="
options.</p> options.</p>
<p>The scalar value calculated by this compute is &#8220;intensive&#8221;. The <p>The scalar value calculated by this compute is &#8220;intensive&#8221;. The
vector values are &#8220;extensive&#8221;.</p> vector values are &#8220;extensive&#8221;.</p>
<p>The scalar value will be in temperature <span class="xref doc">units</span>. The <p>The scalar value will be in temperature <a class="reference internal" href="units.html"><span class="doc">units</span></a>. The
vector values will be in energy <span class="xref doc">units</span>.</p> vector values will be in energy <a class="reference internal" href="units.html"><span class="doc">units</span></a>.</p>
</div> </div>
<div class="section" id="restrictions"> <div class="section" id="restrictions">
<h2>Restrictions</h2> <h2>Restrictions</h2>

View File

@ -312,10 +312,10 @@ compute as input. Again, see <a class="reference internal" href="Section_howto.
options.</p> options.</p>
<p>The scalar value calculated by this compute is &#8220;intensive&#8221;. The <p>The scalar value calculated by this compute is &#8220;intensive&#8221;. The
vector values are &#8220;extensive&#8221;. The array values are &#8220;intensive&#8221;.</p> vector values are &#8220;extensive&#8221;. The array values are &#8220;intensive&#8221;.</p>
<p>The scalar value will be in temperature <span class="xref doc">units</span>. The <p>The scalar value will be in temperature <a class="reference internal" href="units.html"><span class="doc">units</span></a>. The
vector values will be in energy <span class="xref doc">units</span>. The array values vector values will be in energy <a class="reference internal" href="units.html"><span class="doc">units</span></a>. The array values
will be in temperature <span class="xref doc">units</span> for the <em>temp</em> value, and in will be in temperature <a class="reference internal" href="units.html"><span class="doc">units</span></a> for the <em>temp</em> value, and in
energy <span class="xref doc">units</span> for the <em>kecom</em> and <em>internal</em> values.</p> energy <a class="reference internal" href="units.html"><span class="doc">units</span></a> for the <em>kecom</em> and <em>internal</em> values.</p>
</div> </div>
<div class="section" id="restrictions"> <div class="section" id="restrictions">
<h2>Restrictions</h2> <h2>Restrictions</h2>

View File

@ -189,8 +189,8 @@ vector values from a compute as input. See <a class="reference internal" href="
options.</p> options.</p>
<p>The scalar value calculated by this compute is &#8220;intensive&#8221;. The <p>The scalar value calculated by this compute is &#8220;intensive&#8221;. The
vector values are &#8220;extensive&#8221;.</p> vector values are &#8220;extensive&#8221;.</p>
<p>The scalar value will be in temperature <span class="xref doc">units</span>. The <p>The scalar value will be in temperature <a class="reference internal" href="units.html"><span class="doc">units</span></a>. The
vector values will be in energy <span class="xref doc">units</span>.</p> vector values will be in energy <a class="reference internal" href="units.html"><span class="doc">units</span></a>.</p>
</div> </div>
<div class="section" id="restrictions"> <div class="section" id="restrictions">
<h2>Restrictions</h2> <h2>Restrictions</h2>

View File

@ -204,8 +204,8 @@ These values can be used by any command that uses global scalar or
vector values from a compute as input.</p> vector values from a compute as input.</p>
<p>The scalar value calculated by this compute is &#8220;intensive&#8221;. The <p>The scalar value calculated by this compute is &#8220;intensive&#8221;. The
vector values are &#8220;extensive&#8221;.</p> vector values are &#8220;extensive&#8221;.</p>
<p>The scalar value will be in temperature <span class="xref doc">units</span>. The <p>The scalar value will be in temperature <a class="reference internal" href="units.html"><span class="doc">units</span></a>. The
vector values will be in energy <span class="xref doc">units</span>.</p> vector values will be in energy <a class="reference internal" href="units.html"><span class="doc">units</span></a>.</p>
</div> </div>
<div class="section" id="restrictions"> <div class="section" id="restrictions">
<h2>Restrictions</h2> <h2>Restrictions</h2>

View File

@ -229,8 +229,8 @@ vector values from a compute as input. See <a class="reference internal" href="
options.</p> options.</p>
<p>The scalar value calculated by this compute is &#8220;intensive&#8221;. The <p>The scalar value calculated by this compute is &#8220;intensive&#8221;. The
vector values are &#8220;extensive&#8221;.</p> vector values are &#8220;extensive&#8221;.</p>
<p>The scalar value will be in temperature <span class="xref doc">units</span>. The <p>The scalar value will be in temperature <a class="reference internal" href="units.html"><span class="doc">units</span></a>. The
vector values will be in energy <span class="xref doc">units</span>.</p> vector values will be in energy <a class="reference internal" href="units.html"><span class="doc">units</span></a>.</p>
</div> </div>
<div class="section" id="restrictions"> <div class="section" id="restrictions">
<h2>Restrictions</h2> <h2>Restrictions</h2>

View File

@ -170,8 +170,8 @@ vector values from a compute as input. See <a class="reference internal" href="
options.</p> options.</p>
<p>The scalar value calculated by this compute is &#8220;intensive&#8221;. The <p>The scalar value calculated by this compute is &#8220;intensive&#8221;. The
vector values are &#8220;extensive&#8221;.</p> vector values are &#8220;extensive&#8221;.</p>
<p>The scalar value will be in temperature <span class="xref doc">units</span>. The <p>The scalar value will be in temperature <a class="reference internal" href="units.html"><span class="doc">units</span></a>. The
vector values will be in energy <span class="xref doc">units</span>.</p> vector values will be in energy <a class="reference internal" href="units.html"><span class="doc">units</span></a>.</p>
</div> </div>
<div class="section" id="restrictions"> <div class="section" id="restrictions">
<h2>Restrictions</h2> <h2>Restrictions</h2>

View File

@ -209,8 +209,8 @@ vector values from a compute as input. See <a class="reference internal" href="
options.</p> options.</p>
<p>The scalar value calculated by this compute is &#8220;intensive&#8221;. The <p>The scalar value calculated by this compute is &#8220;intensive&#8221;. The
vector values are &#8220;extensive&#8221;.</p> vector values are &#8220;extensive&#8221;.</p>
<p>The scalar value will be in temperature <span class="xref doc">units</span>. The <p>The scalar value will be in temperature <a class="reference internal" href="units.html"><span class="doc">units</span></a>. The
vector values will be in energy <span class="xref doc">units</span>.</p> vector values will be in energy <a class="reference internal" href="units.html"><span class="doc">units</span></a>.</p>
</div> </div>
<div class="section" id="restrictions"> <div class="section" id="restrictions">
<h2>Restrictions</h2> <h2>Restrictions</h2>

View File

@ -262,10 +262,10 @@ vector or array values from a compute as input. See <a class="reference interna
options.</p> options.</p>
<p>The scalar value calculated by this compute is &#8220;intensive&#8221;. The <p>The scalar value calculated by this compute is &#8220;intensive&#8221;. The
vector values are &#8220;extensive&#8221;. The array values are &#8220;intensive&#8221;.</p> vector values are &#8220;extensive&#8221;. The array values are &#8220;intensive&#8221;.</p>
<p>The scalar value will be in temperature <span class="xref doc">units</span>. The <p>The scalar value will be in temperature <a class="reference internal" href="units.html"><span class="doc">units</span></a>. The
vector values will be in energy <span class="xref doc">units</span>. The first column vector values will be in energy <a class="reference internal" href="units.html"><span class="doc">units</span></a>. The first column
of array values are counts; the values in the second column will be in of array values are counts; the values in the second column will be in
temperature <span class="xref doc">units</span>.</p> temperature <a class="reference internal" href="units.html"><span class="doc">units</span></a>.</p>
</div> </div>
<div class="section" id="restrictions"> <div class="section" id="restrictions">
<h2>Restrictions</h2> <h2>Restrictions</h2>

View File

@ -169,7 +169,7 @@ simulation, N = number of atoms in the group, k = Boltzmann constant,
and T = temperature.</p> and T = temperature.</p>
<p>The <em>units</em> keyword determines the meaning of the distance units used <p>The <em>units</em> keyword determines the meaning of the distance units used
for coordinates (c1,c2) and velocities (vlo,vhi). A <em>box</em> value for coordinates (c1,c2) and velocities (vlo,vhi). A <em>box</em> value
selects standard distance units as defined by the <span class="xref doc">units</span> selects standard distance units as defined by the <a class="reference internal" href="units.html"><span class="doc">units</span></a>
command, e.g. Angstroms for units = real or metal. A <em>lattice</em> value command, e.g. Angstroms for units = real or metal. A <em>lattice</em> value
means the distance units are in lattice spacings; e.g. velocity = means the distance units are in lattice spacings; e.g. velocity =
lattice spacings / tau. The <a class="reference internal" href="lattice.html"><span class="doc">lattice</span></a> command must have lattice spacings / tau. The <a class="reference internal" href="lattice.html"><span class="doc">lattice</span></a> command must have
@ -207,8 +207,8 @@ vector values from a compute as input. See <a class="reference internal" href="
options.</p> options.</p>
<p>The scalar value calculated by this compute is &#8220;intensive&#8221;. The <p>The scalar value calculated by this compute is &#8220;intensive&#8221;. The
vector values are &#8220;extensive&#8221;.</p> vector values are &#8220;extensive&#8221;.</p>
<p>The scalar value will be in temperature <span class="xref doc">units</span>. The <p>The scalar value will be in temperature <a class="reference internal" href="units.html"><span class="doc">units</span></a>. The
vector values will be in energy <span class="xref doc">units</span>.</p> vector values will be in energy <a class="reference internal" href="units.html"><span class="doc">units</span></a>.</p>
</div> </div>
<div class="section" id="restrictions"> <div class="section" id="restrictions">
<h2>Restrictions</h2> <h2>Restrictions</h2>

View File

@ -202,8 +202,8 @@ vector values from a compute as input. See <a class="reference internal" href="
options.</p> options.</p>
<p>The scalar value calculated by this compute is &#8220;intensive&#8221;. The <p>The scalar value calculated by this compute is &#8220;intensive&#8221;. The
vector values are &#8220;extensive&#8221;.</p> vector values are &#8220;extensive&#8221;.</p>
<p>The scalar value will be in temperature <span class="xref doc">units</span>. The <p>The scalar value will be in temperature <a class="reference internal" href="units.html"><span class="doc">units</span></a>. The
vector values will be in energy <span class="xref doc">units</span>.</p> vector values will be in energy <a class="reference internal" href="units.html"><span class="doc">units</span></a>.</p>
</div> </div>
<div class="section" id="restrictions"> <div class="section" id="restrictions">
<h2>Restrictions</h2> <h2>Restrictions</h2>

View File

@ -162,8 +162,8 @@ vector values from a compute as input. See <a class="reference internal" href="
options.</p> options.</p>
<p>The scalar value calculated by this compute is &#8220;intensive&#8221;. The <p>The scalar value calculated by this compute is &#8220;intensive&#8221;. The
vector values are &#8220;extensive&#8221;.</p> vector values are &#8220;extensive&#8221;.</p>
<p>The scalar value will be in temperature <span class="xref doc">units</span>. The <p>The scalar value will be in temperature <a class="reference internal" href="units.html"><span class="doc">units</span></a>. The
vector values will be in energy <span class="xref doc">units</span>.</p> vector values will be in energy <a class="reference internal" href="units.html"><span class="doc">units</span></a>.</p>
</div> </div>
<div class="section" id="restrictions"> <div class="section" id="restrictions">
<h2>Restrictions</h2> <h2>Restrictions</h2>

View File

@ -188,8 +188,8 @@ vector values from a compute as input. See <a class="reference internal" href="
options.</p> options.</p>
<p>The scalar value calculated by this compute is &#8220;intensive&#8221;. The <p>The scalar value calculated by this compute is &#8220;intensive&#8221;. The
vector values are &#8220;extensive&#8221;.</p> vector values are &#8220;extensive&#8221;.</p>
<p>The scalar value will be in temperature <span class="xref doc">units</span>. The <p>The scalar value will be in temperature <a class="reference internal" href="units.html"><span class="doc">units</span></a>. The
vector values will be in energy <span class="xref doc">units</span>.</p> vector values will be in energy <a class="reference internal" href="units.html"><span class="doc">units</span></a>.</p>
</div> </div>
<div class="section" id="restrictions"> <div class="section" id="restrictions">
<h2>Restrictions</h2> <h2>Restrictions</h2>

View File

@ -226,8 +226,8 @@ vector values from a compute as input. See <a class="reference internal" href="
options.</p> options.</p>
<p>The scalar value calculated by this compute is &#8220;intensive&#8221;. The <p>The scalar value calculated by this compute is &#8220;intensive&#8221;. The
vector values are &#8220;extensive&#8221;.</p> vector values are &#8220;extensive&#8221;.</p>
<p>The scalar value will be in temperature <span class="xref doc">units</span>. The <p>The scalar value will be in temperature <a class="reference internal" href="units.html"><span class="doc">units</span></a>. The
vector values will be in energy <span class="xref doc">units</span>.</p> vector values will be in energy <a class="reference internal" href="units.html"><span class="doc">units</span></a>.</p>
</div> </div>
<div class="section" id="restrictions"> <div class="section" id="restrictions">
<h2>Restrictions</h2> <h2>Restrictions</h2>

View File

@ -226,7 +226,7 @@ value can be used by any command that uses a global scalar value from
a compute as input. See <a class="reference internal" href="Section_howto.html#howto-15"><span class="std std-ref">Section_howto 15</span></a> for an overview of LAMMPS output a compute as input. See <a class="reference internal" href="Section_howto.html#howto-15"><span class="std std-ref">Section_howto 15</span></a> for an overview of LAMMPS output
options.</p> options.</p>
<p>The scalar value calculated by this compute is &#8220;extensive&#8221;.</p> <p>The scalar value calculated by this compute is &#8220;extensive&#8221;.</p>
<p>The scalar value will be in energy <span class="xref doc">units</span>.</p> <p>The scalar value will be in energy <a class="reference internal" href="units.html"><span class="doc">units</span></a>.</p>
</div> </div>
<div class="section" id="restrictions"> <div class="section" id="restrictions">
<h2>Restrictions</h2> <h2>Restrictions</h2>

View File

@ -190,7 +190,7 @@ can be accessed by any command that uses global array values from a
compute as input. See <a class="reference internal" href="Section_howto.html#howto-15"><span class="std std-ref">Section_howto 15</span></a> compute as input. See <a class="reference internal" href="Section_howto.html#howto-15"><span class="std std-ref">Section_howto 15</span></a>
for an overview of LAMMPS output options.</p> for an overview of LAMMPS output options.</p>
<p>The array values are &#8220;intensive&#8221;. The array values will be in <p>The array values are &#8220;intensive&#8221;. The array values will be in
force-distance <span class="xref doc">units</span>.</p> force-distance <a class="reference internal" href="units.html"><span class="doc">units</span></a>.</p>
</div> </div>
<div class="section" id="restrictions"> <div class="section" id="restrictions">
<h2>Restrictions</h2> <h2>Restrictions</h2>

View File

@ -180,7 +180,7 @@ accessed by indices 1-4 by any command that uses global vector values
from a compute as input. See <a class="reference internal" href="Section_howto.html#howto-15"><span class="std std-ref">this section</span></a> for an overview of LAMMPS output from a compute as input. See <a class="reference internal" href="Section_howto.html#howto-15"><span class="std std-ref">this section</span></a> for an overview of LAMMPS output
options.</p> options.</p>
<p>The vector values are &#8220;intensive&#8221;. The vector values will be in <p>The vector values are &#8220;intensive&#8221;. The vector values will be in
velocity^2 <span class="xref doc">units</span>.</p> velocity^2 <a class="reference internal" href="units.html"><span class="doc">units</span></a>.</p>
</div> </div>
<div class="section" id="restrictions"> <div class="section" id="restrictions">
<h2>Restrictions</h2> <h2>Restrictions</h2>

View File

@ -180,7 +180,7 @@ These values can be accessed by any command that uses global array
values from a compute as input. See <a class="reference internal" href="Section_howto.html#howto-15"><span class="std std-ref">Section_howto 15</span></a> for an overview of LAMMPS output values from a compute as input. See <a class="reference internal" href="Section_howto.html#howto-15"><span class="std std-ref">Section_howto 15</span></a> for an overview of LAMMPS output
options.</p> options.</p>
<p>The array values are &#8220;intensive&#8221;. The array values will be in <p>The array values are &#8220;intensive&#8221;. The array values will be in
velocity <span class="xref doc">units</span>.</p> velocity <a class="reference internal" href="units.html"><span class="doc">units</span></a>.</p>
</div> </div>
<div class="section" id="restrictions"> <div class="section" id="restrictions">
<h2>Restrictions</h2> <h2>Restrictions</h2>

View File

@ -317,8 +317,8 @@ keyword to turn off the production of the per-atom quantities. For
the default value <em>yes</em> both quantities are produced. For the value the default value <em>yes</em> both quantities are produced. For the value
<em>no</em>, only the local array is produced.</p> <em>no</em>, only the local array is produced.</p>
</div> </div>
<p>The Voronoi cell volume will be in distance <span class="xref doc">units</span> cubed. <p>The Voronoi cell volume will be in distance <a class="reference internal" href="units.html"><span class="doc">units</span></a> cubed.
The Voronoi face area will be in distance <span class="xref doc">units</span> squared.</p> The Voronoi face area will be in distance <a class="reference internal" href="units.html"><span class="doc">units</span></a> squared.</p>
</div> </div>
<div class="section" id="restrictions"> <div class="section" id="restrictions">
<h2>Restrictions</h2> <h2>Restrictions</h2>

View File

@ -167,7 +167,7 @@
<div class="section" id="description"> <div class="section" id="description">
<h2>Description</h2> <h2>Description</h2>
<p>Define a computation that calculates x-ray diffraction intensity as described <p>Define a computation that calculates x-ray diffraction intensity as described
in <a class="reference internal" href="#coleman"><span class="std std-ref">(Coleman)</span></a> on a mesh of reciprocal lattice nodes defined in <a class="reference internal" href="fix_saed_vtk.html#coleman"><span class="std std-ref">(Coleman)</span></a> on a mesh of reciprocal lattice nodes defined
by the entire simulation domain (or manually) using a simulated radiation by the entire simulation domain (or manually) using a simulated radiation
of wavelength lambda.</p> of wavelength lambda.</p>
<p>The x-ray diffraction intensity, I, at each reciprocal lattice point, k, <p>The x-ray diffraction intensity, I, at each reciprocal lattice point, k,

View File

@ -152,9 +152,9 @@
<h2>Description</h2> <h2>Description</h2>
<p>The <em>charmm</em> dihedral style uses the potential</p> <p>The <em>charmm</em> dihedral style uses the potential</p>
<img alt="_images/dihedral_charmm.jpg" class="align-center" src="_images/dihedral_charmm.jpg" /> <img alt="_images/dihedral_charmm.jpg" class="align-center" src="_images/dihedral_charmm.jpg" />
<p>See <a class="reference internal" href="pair_charmm.html#mackerell"><span class="std std-ref">(MacKerell)</span></a> for a description of the CHARMM force <p>See <a class="reference internal" href="special_bonds.html#mackerell"><span class="std std-ref">(MacKerell)</span></a> for a description of the CHARMM force
field. This dihedral style can also be used for the AMBER force field field. This dihedral style can also be used for the AMBER force field
(see comment on weighting factors below). See <a class="reference internal" href="#cornell"><span class="std std-ref">(Cornell)</span></a> (see comment on weighting factors below). See <a class="reference internal" href="special_bonds.html#cornell"><span class="std std-ref">(Cornell)</span></a>
for a description of the AMBER force field.</p> for a description of the AMBER force field.</p>
<p>The following coefficients must be defined for each dihedral type via the <p>The following coefficients must be defined for each dihedral type via the
<a class="reference internal" href="dihedral_coeff.html"><span class="doc">dihedral_coeff</span></a> command as in the example above, or in <a class="reference internal" href="dihedral_coeff.html"><span class="doc">dihedral_coeff</span></a> command as in the example above, or in

View File

@ -156,7 +156,7 @@ Eebt is an end-bond-torsion term, Eat is an angle-torsion term, Eaat
is an angle-angle-torsion term, and Ebb13 is a bond-bond-13 term.</p> is an angle-angle-torsion term, and Ebb13 is a bond-bond-13 term.</p>
<p>Theta1 and theta2 are equilibrium angles and r1 r2 r3 are equilibrium <p>Theta1 and theta2 are equilibrium angles and r1 r2 r3 are equilibrium
bond lengths.</p> bond lengths.</p>
<p>See <a class="reference internal" href="pair_class2.html#sun"><span class="std std-ref">(Sun)</span></a> for a description of the COMPASS class2 force field.</p> <p>See <a class="reference internal" href="pair_modify.html#sun"><span class="std std-ref">(Sun)</span></a> for a description of the COMPASS class2 force field.</p>
<p>Coefficients for the Ed, Embt, Eebt, Eat, Eaat, and Ebb13 formulas <p>Coefficients for the Ed, Embt, Eebt, Eat, Eaat, and Ebb13 formulas
must be defined for each dihedral type via the must be defined for each dihedral type via the
<a class="reference internal" href="dihedral_coeff.html"><span class="doc">dihedral_coeff</span></a> command as in the example above, <a class="reference internal" href="dihedral_coeff.html"><span class="doc">dihedral_coeff</span></a> command as in the example above,

View File

@ -217,7 +217,7 @@ atom&#8217;s rotation.</p>
<p>Distance units for displacements and the origin point of the <em>rotate</em> <p>Distance units for displacements and the origin point of the <em>rotate</em>
style are determined by the setting of <em>box</em> or <em>lattice</em> for the style are determined by the setting of <em>box</em> or <em>lattice</em> for the
<em>units</em> keyword. <em>Box</em> means distance units as defined by the <em>units</em> keyword. <em>Box</em> means distance units as defined by the
<span class="xref doc">units</span> command - e.g. Angstroms for <em>real</em> units. <a class="reference internal" href="units.html"><span class="doc">units</span></a> command - e.g. Angstroms for <em>real</em> units.
<em>Lattice</em> means distance units are in lattice spacings. The <em>Lattice</em> means distance units are in lattice spacings. The
<a class="reference internal" href="lattice.html"><span class="doc">lattice</span></a> command must have been previously used to <a class="reference internal" href="lattice.html"><span class="doc">lattice</span></a> command must have been previously used to
define the lattice spacing.</p> define the lattice spacing.</p>

View File

@ -587,7 +587,7 @@ mass. <em>Vx</em>, <em>vy</em>, <em>vz</em>, <em>fx</em>, <em>fy</em>, <em>fz</
atom velocity and force and atomic charge.</p> atom velocity and force and atomic charge.</p>
<p>There are several options for outputting atom coordinates. The <em>x</em>, <p>There are several options for outputting atom coordinates. The <em>x</em>,
<em>y</em>, <em>z</em> attributes write atom coordinates &#8220;unscaled&#8221;, in the <em>y</em>, <em>z</em> attributes write atom coordinates &#8220;unscaled&#8221;, in the
appropriate distance <span class="xref doc">units</span> (Angstroms, sigma, etc). Use appropriate distance <a class="reference internal" href="units.html"><span class="doc">units</span></a> (Angstroms, sigma, etc). Use
<em>xs</em>, <em>ys</em>, <em>zs</em> if you want the coordinates &#8220;scaled&#8221; to the box size, <em>xs</em>, <em>ys</em>, <em>zs</em> if you want the coordinates &#8220;scaled&#8221; to the box size,
so that each value is 0.0 to 1.0. If the simulation box is triclinic so that each value is 0.0 to 1.0. If the simulation box is triclinic
(tilted), then all atom coords will still be between 0.0 and 1.0. Use (tilted), then all atom coords will still be between 0.0 and 1.0. Use

View File

@ -312,7 +312,7 @@ atom type. <em>mass</em> is the atom mass. <em>vx</em>, <em>vy</em>, <em>vz</e
charge.</p> charge.</p>
<p>There are several options for outputting atom coordinates. The <em>x</em>, <p>There are several options for outputting atom coordinates. The <em>x</em>,
<em>y</em>, <em>z</em> attributes are used to write atom coordinates &#8220;unscaled&#8221;, in <em>y</em>, <em>z</em> attributes are used to write atom coordinates &#8220;unscaled&#8221;, in
the appropriate distance <span class="xref doc">units</span> (Angstroms, sigma, etc). the appropriate distance <a class="reference internal" href="units.html"><span class="doc">units</span></a> (Angstroms, sigma, etc).
Additionaly, you can use <em>xs</em>, <em>ys</em>, <em>zs</em> if you want to also save the Additionaly, you can use <em>xs</em>, <em>ys</em>, <em>zs</em> if you want to also save the
coordinates &#8220;scaled&#8221; to the box size, so that each value is 0.0 to coordinates &#8220;scaled&#8221; to the box size, so that each value is 0.0 to
1.0. If the simulation box is triclinic (tilted), then all atom 1.0. If the simulation box is triclinic (tilted), then all atom

View File

@ -444,7 +444,7 @@ nanometer accuracy, e.g. for N = 1000, the coordinates are written to
<p>The <em>sfactor</em> and <em>tfactor</em> keywords only apply to the dump <em>xtc</em> <p>The <em>sfactor</em> and <em>tfactor</em> keywords only apply to the dump <em>xtc</em>
style. They allow customization of the unit conversion factors used style. They allow customization of the unit conversion factors used
when writing to XTC files. By default they are initialized for when writing to XTC files. By default they are initialized for
whatever <span class="xref doc">units</span> style is being used, to write out whatever <a class="reference internal" href="units.html"><span class="doc">units</span></a> style is being used, to write out
coordinates in nanometers and time in picoseconds. I.e. for <em>real</em> coordinates in nanometers and time in picoseconds. I.e. for <em>real</em>
units, LAMMPS defines <em>sfactor</em> = 0.1 and <em>tfactor</em> = 0.001, since the units, LAMMPS defines <em>sfactor</em> = 0.1 and <em>tfactor</em> = 0.001, since the
Angstroms and fmsec used by <em>real</em> units are 0.1 nm and 0.001 psec Angstroms and fmsec used by <em>real</em> units are 0.1 nm and 0.001 psec
@ -542,7 +542,7 @@ that atoms of each type will be drawn in the image. The specified
<em>type</em> should be an integer from 1 to Ntypes. As with the <em>acolor</em> <em>type</em> should be an integer from 1 to Ntypes. As with the <em>acolor</em>
keyword, a wildcard asterisk can be used as part of the <em>type</em> keyword, a wildcard asterisk can be used as part of the <em>type</em>
argument to specify a range of atomt types. The specified <em>diam</em> is argument to specify a range of atomt types. The specified <em>diam</em> is
the size in whatever distance <span class="xref doc">units</span> the input script is the size in whatever distance <a class="reference internal" href="units.html"><span class="doc">units</span></a> the input script is
using, e.g. Angstroms.</p> using, e.g. Angstroms.</p>
<hr class="docutils" /> <hr class="docutils" />
<p>The <em>amap</em> keyword can be used with the <a class="reference internal" href="dump_image.html"><span class="doc">dump image</span></a> <p>The <em>amap</em> keyword can be used with the <a class="reference internal" href="dump_image.html"><span class="doc">dump image</span></a>
@ -687,7 +687,7 @@ set the diameter that bonds of each type will be drawn in the image.
The specified <em>type</em> should be an integer from 1 to Nbondtypes. As The specified <em>type</em> should be an integer from 1 to Nbondtypes. As
with the <em>bcolor</em> keyword, a wildcard asterisk can be used as part of with the <em>bcolor</em> keyword, a wildcard asterisk can be used as part of
the <em>type</em> argument to specify a range of bond types. The specified the <em>type</em> argument to specify a range of bond types. The specified
<em>diam</em> is the size in whatever distance <span class="xref doc">units</span> you are <em>diam</em> is the size in whatever distance <a class="reference internal" href="units.html"><span class="doc">units</span></a> you are
using, e.g. Angstroms.</p> using, e.g. Angstroms.</p>
<hr class="docutils" /> <hr class="docutils" />
<p>The <em>bitrate</em> keyword can be used with the <a class="reference internal" href="dump_image.html"><span class="doc">dump movie</span></a> command to define the size of the resulting <p>The <em>bitrate</em> keyword can be used with the <a class="reference internal" href="dump_image.html"><span class="doc">dump movie</span></a> command to define the size of the resulting

View File

@ -193,7 +193,7 @@ measured from zhi and is set with the <em>extent</em> argument.</p>
<p>The <em>units</em> keyword determines the meaning of the distance units used <p>The <em>units</em> keyword determines the meaning of the distance units used
to define a wall position, but only when a numeric constant is used. to define a wall position, but only when a numeric constant is used.
A <em>box</em> value selects standard distance units as defined by the A <em>box</em> value selects standard distance units as defined by the
<span class="xref doc">units</span> command, e.g. Angstroms for units = real or metal. <a class="reference internal" href="units.html"><span class="doc">units</span></a> command, e.g. Angstroms for units = real or metal.
A <em>lattice</em> value means the distance units are in lattice spacings. A <em>lattice</em> value means the distance units are in lattice spacings.
The <a class="reference internal" href="lattice.html"><span class="doc">lattice</span></a> command must have been previously used to The <a class="reference internal" href="lattice.html"><span class="doc">lattice</span></a> command must have been previously used to
define the lattice spacings.</p> define the lattice spacings.</p>

View File

@ -293,7 +293,7 @@ an input value from that compute.</p>
each chunk, i.e. number/volume. The <em>density/mass</em> value means the each chunk, i.e. number/volume. The <em>density/mass</em> value means the
mass density is computed for each chunk, i.e. total-mass/volume. The mass density is computed for each chunk, i.e. total-mass/volume. The
output values are in units of 1/volume or density (mass/volume). See output values are in units of 1/volume or density (mass/volume). See
the <span class="xref doc">units</span> command doc page for the definition of density the <a class="reference internal" href="units.html"><span class="doc">units</span></a> command doc page for the definition of density
for each choice of units, e.g. gram/cm^3. If the chunks defined by for each choice of units, e.g. gram/cm^3. If the chunks defined by
the <a class="reference internal" href="compute_chunk_atom.html"><span class="doc">compute chunk/atom</span></a> command are spatial the <a class="reference internal" href="compute_chunk_atom.html"><span class="doc">compute chunk/atom</span></a> command are spatial
bins, the volume is the bin volume. Otherwise it is the volume of the bins, the volume is the bin volume. Otherwise it is the volume of the
@ -475,11 +475,11 @@ coordinate. For <em>bin/cylinder</em>, Coord1 and Coord2 are used. Coord1
is the radial coordinate (away from the cylinder axis), and coord2 is is the radial coordinate (away from the cylinder axis), and coord2 is
the coordinate along the cylinder axis.</p> the coordinate along the cylinder axis.</p>
<p>Note that if the value of the <em>units</em> keyword used in the <a class="reference internal" href="compute_chunk_atom.html"><span class="doc">compute chunk/atom command</span></a> is <em>box</em> or <em>lattice</em>, the <p>Note that if the value of the <em>units</em> keyword used in the <a class="reference internal" href="compute_chunk_atom.html"><span class="doc">compute chunk/atom command</span></a> is <em>box</em> or <em>lattice</em>, the
coordinate values will be in distance <span class="xref doc">units</span>. If the coordinate values will be in distance <a class="reference internal" href="units.html"><span class="doc">units</span></a>. If the
value of the <em>units</em> keyword is <em>reduced</em>, the coordinate values will value of the <em>units</em> keyword is <em>reduced</em>, the coordinate values will
be in unitless reduced units (0-1). This is not true for the Coord1 value be in unitless reduced units (0-1). This is not true for the Coord1 value
of style <em>bin/sphere</em> or <em>bin/cylinder</em> which both represent radial of style <em>bin/sphere</em> or <em>bin/cylinder</em> which both represent radial
dimensions. Those values are always in distance <span class="xref doc">units</span>.</p> dimensions. Those values are always in distance <a class="reference internal" href="units.html"><span class="doc">units</span></a>.</p>
</div> </div>
<hr class="docutils" /> <hr class="docutils" />
<div class="section" id="restart-fix-modify-output-run-start-stop-minimize-info"> <div class="section" id="restart-fix-modify-output-run-start-stop-minimize-info">

View File

@ -345,7 +345,7 @@ each bin, i.e. a weighting of 1 for each atom. The <em>density/mass</em>
value means the mass density is computed in each bind, i.e. each atom value means the mass density is computed in each bind, i.e. each atom
is weighted by its mass. The resulting density is normalized by the is weighted by its mass. The resulting density is normalized by the
volume of the bin so that units of number/volume or density are volume of the bin so that units of number/volume or density are
output. See the <span class="xref doc">units</span> command doc page for the output. See the <a class="reference internal" href="units.html"><span class="doc">units</span></a> command doc page for the
definition of density for each choice of units, e.g. gram/cm^3.</p> definition of density for each choice of units, e.g. gram/cm^3.</p>
<p>If a value begins with &#8220;<a href="#id1"><span class="problematic" id="id2">c_</span></a>&#8221;, a compute ID must follow which has been <p>If a value begins with &#8220;<a href="#id1"><span class="problematic" id="id2">c_</span></a>&#8221;, a compute ID must follow which has been
previously defined in the input script. If no bracketed integer is previously defined in the input script. If no bracketed integer is
@ -409,7 +409,7 @@ are coordinate value. For orthogonal simulation boxes, any of the 3
options may be used. For non-orthogonal (triclinic) simulation boxes, options may be used. For non-orthogonal (triclinic) simulation boxes,
only the <em>reduced</em> option may be used.</p> only the <em>reduced</em> option may be used.</p>
<p>A <em>box</em> value selects standard distance units as defined by the <p>A <em>box</em> value selects standard distance units as defined by the
<span class="xref doc">units</span> command, e.g. Angstroms for units = real or metal. <a class="reference internal" href="units.html"><span class="doc">units</span></a> command, e.g. Angstroms for units = real or metal.
A <em>lattice</em> value means the distance units are in lattice spacings. A <em>lattice</em> value means the distance units are in lattice spacings.
The <a class="reference internal" href="lattice.html"><span class="doc">lattice</span></a> command must have been previously used to The <a class="reference internal" href="lattice.html"><span class="doc">lattice</span></a> command must have been previously used to
define the lattice spacing. A <em>reduced</em> value means normalized define the lattice spacing. A <em>reduced</em> value means normalized

View File

@ -257,7 +257,7 @@ each bin, i.e. a weighting of 1 for each atom. The <em>density/mass</em>
value means the mass density is computed in each bin, i.e. each atom value means the mass density is computed in each bin, i.e. each atom
is weighted by its mass. The resulting density is normalized by the is weighted by its mass. The resulting density is normalized by the
volume of the bin so that units of number/volume or density are volume of the bin so that units of number/volume or density are
output. See the <span class="xref doc">units</span> command doc page for the output. See the <a class="reference internal" href="units.html"><span class="doc">units</span></a> command doc page for the
definition of density for each choice of units, e.g. gram/cm^3. definition of density for each choice of units, e.g. gram/cm^3.
The bin volume will always be calculated in box units, independent The bin volume will always be calculated in box units, independent
of the use of the <em>units</em> keyword in this command.</p> of the use of the <em>units</em> keyword in this command.</p>
@ -323,7 +323,7 @@ simulation boxes, any of the 3 options may be used. For
non-orthogonal (triclinic) simulation boxes, only the <em>reduced</em> option non-orthogonal (triclinic) simulation boxes, only the <em>reduced</em> option
may be used.</p> may be used.</p>
<p>A <em>box</em> value selects standard distance units as defined by the <p>A <em>box</em> value selects standard distance units as defined by the
<span class="xref doc">units</span> command, e.g. Angstroms for units = real or metal. <a class="reference internal" href="units.html"><span class="doc">units</span></a> command, e.g. Angstroms for units = real or metal.
A <em>lattice</em> value means the distance units are in lattice spacings. A <em>lattice</em> value means the distance units are in lattice spacings.
The <a class="reference internal" href="lattice.html"><span class="doc">lattice</span></a> command must have been previously used to The <a class="reference internal" href="lattice.html"><span class="doc">lattice</span></a> command must have been previously used to
define the lattice spacing.</p> define the lattice spacing.</p>

Some files were not shown because too many files have changed in this diff Show More