mirror of https://github.com/lammps/lammps.git
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@10419 f3b2605a-c512-4ea7-a41b-209d697bcdaa
This commit is contained in:
parent
0e4a0f8609
commit
5a0cd49c32
|
@ -1,34 +1,34 @@
|
|||
# CdTe Stillinger-Weber potential: Z. Q. Wang, D. Stroud,
|
||||
# and A. J. Markworth, Phys. Rev. B, 40, 3129(1989).
|
||||
|
||||
# The Stillinger-Weber parameters given in the literature are pair
|
||||
# specific. While most of the parameters are indeed pairwise parameters
|
||||
# according to their definition, the parameters epsilon and lambda
|
||||
# should be viewed as three-body dependent. Here we assume that the
|
||||
# the three-body epsilon and lambda is a geometric mean of the pairwise
|
||||
# epsilon and lambda.
|
||||
|
||||
# In lammps, the parameters for the ij pair are entered in
|
||||
# the ijj three-body line. There is no unique way to convert pair
|
||||
# parameters to three body parameters so the example here represents
|
||||
# only one way. The three-body parameters epsilon_ijk can be calculated
|
||||
# from the literature pair parameters using epsilon_ijk =
|
||||
# sqrt(lambda_ij*epsilon_ij*lambda_ik*epsilon_ik)/lambda_ik, and the
|
||||
# results are directly entered in this table. Obviously, this
|
||||
# conversion does not change the two-body parameters epsilon_ijj.
|
||||
# All other ik pair parameters are entered on the i*k line, where *
|
||||
# can be any species. This is consistent with the requirement of
|
||||
# the ik parameter being on the ikk line.
|
||||
|
||||
# These entries are in LAMMPS "metal" units: epsilon = eV;
|
||||
# sigma = Angstroms; other quantities are unitless
|
||||
|
||||
# epsilon sigma a lambda gamma cos(theta) A B p q tol
|
||||
Cd Cd Cd 1.03 2.51 1.80 25.0 1.20 -0.333333333333 5.1726 0.8807 4.0 0.0 0.0
|
||||
Te Te Te 1.03 2.51 1.80 25.0 1.20 -0.333333333333 8.1415 0.6671 4.0 0.0 0.0
|
||||
Cd Cd Te 1.03 0.0 0.0 25.0 0.0 -0.333333333333 0.0 0.0 0.0 0.0 0.0
|
||||
Cd Te Te 1.03 2.51 1.80 25.0 1.20 -0.333333333333 7.0496 0.6022 4.0 0.0 0.0
|
||||
Te Cd Cd 1.03 2.51 1.80 25.0 1.20 -0.333333333333 7.0496 0.6022 4.0 0.0 0.0
|
||||
Te Cd Te 1.03 0.0 0.0 25.0 0.0 -0.333333333333 0.0 0.0 0.0 0.0 0.0
|
||||
Te Te Cd 1.03 0.0 0.0 25.0 0.0 -0.333333333333 0.0 0.0 0.0 0.0 0.0
|
||||
Cd Te Cd 1.03 0.0 0.0 25.0 0.0 -0.333333333333 0.0 0.0 0.0 0.0 0.0
|
||||
# CdTe Stillinger-Weber potential: Z. Q. Wang, D. Stroud,
|
||||
# and A. J. Markworth, Phys. Rev. B, 40, 3129(1989).
|
||||
|
||||
# The Stillinger-Weber parameters given in the literature are pair
|
||||
# specific. While most of the parameters are indeed pairwise parameters
|
||||
# according to their definition, the parameters epsilon and lambda
|
||||
# should be viewed as three-body dependent. Here we assume that the
|
||||
# the three-body epsilon and lambda is a geometric mean of the pairwise
|
||||
# epsilon and lambda.
|
||||
|
||||
# In lammps, the parameters for the ij pair are entered in
|
||||
# the ijj three-body line. There is no unique way to convert pair
|
||||
# parameters to three body parameters so the example here represents
|
||||
# only one way. The three-body parameters epsilon_ijk can be calculated
|
||||
# from the literature pair parameters using epsilon_ijk =
|
||||
# sqrt(lambda_ij*epsilon_ij*lambda_ik*epsilon_ik)/lambda_ik, and the
|
||||
# results are directly entered in this table. Obviously, this
|
||||
# conversion does not change the two-body parameters epsilon_ijj.
|
||||
# All other ik pair parameters are entered on the i*k line, where *
|
||||
# can be any species. This is consistent with the requirement of
|
||||
# the ik parameter being on the ikk line.
|
||||
|
||||
# These entries are in LAMMPS "metal" units: epsilon = eV;
|
||||
# sigma = Angstroms; other quantities are unitless
|
||||
|
||||
# epsilon sigma a lambda gamma cos(theta) A B p q tol
|
||||
Cd Cd Cd 1.03 2.51 1.80 25.0 1.20 -0.333333333333 5.1726 0.8807 4.0 0.0 0.0
|
||||
Te Te Te 1.03 2.51 1.80 25.0 1.20 -0.333333333333 8.1415 0.6671 4.0 0.0 0.0
|
||||
Cd Cd Te 1.03 0.0 0.0 25.0 0.0 -0.333333333333 0.0 0.0 0.0 0.0 0.0
|
||||
Cd Te Te 1.03 2.51 1.80 25.0 1.20 -0.333333333333 7.0496 0.6022 4.0 0.0 0.0
|
||||
Te Cd Cd 1.03 2.51 1.80 25.0 1.20 -0.333333333333 7.0496 0.6022 4.0 0.0 0.0
|
||||
Te Cd Te 1.03 0.0 0.0 25.0 0.0 -0.333333333333 0.0 0.0 0.0 0.0 0.0
|
||||
Te Te Cd 1.03 0.0 0.0 25.0 0.0 -0.333333333333 0.0 0.0 0.0 0.0 0.0
|
||||
Cd Te Cd 1.03 0.0 0.0 25.0 0.0 -0.333333333333 0.0 0.0 0.0 0.0 0.0
|
||||
|
|
Loading…
Reference in New Issue