git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@14325 f3b2605a-c512-4ea7-a41b-209d697bcdaa

This commit is contained in:
sjplimp 2015-12-09 20:28:38 +00:00
parent 7920c13b04
commit 582ba55e4a
1052 changed files with 63 additions and 119116 deletions

View File

@ -303,10 +303,19 @@ incomplete and I had trouble with their installation. It's not clear
if some of the packages are still being actively developed and
supported.
The one I recommend, since I have successfully used it with LAMMPS, is
Pypar. Pypar requires the ubiquitous "Numpy
package"_http://numpy.scipy.org be installed in your Python. After
launching python, type
The packages Pypar and mpi4py have both been successfully tested with
LAMMPS. Both are widely used. Pypar is simpler and easy to set up
and use, but supports only a subset of MPI. Mpi4py is more
MPI-feature complete, but also a bit more complex to use. As of
version 2.0.0, mpi4py is the only python MPI wrapper that allows
passing a custom MPI communicator to the LAMMPS constructor, which
means one can easily run one or more LAMMPS instances on subsets of
the total MPI ranks.
:line
Pypar requires the ubiquitous "Numpy package"_http://numpy.scipy.org
be installed in your Python. After launching Python, type
import numpy :pre
@ -361,6 +370,51 @@ the right one.
:line
To install mpi4py (version mpi4py-2.0.0 as of Oct 2015), unpack it
and from its main directory, type
python setup.py build
sudo python setup.py install :pre
Again, the "sudo" is only needed if required to copy mpi4py files into
your Python distribution's site-packages directory. To install with
user privilege into the user local directory type
python setup.py install --user
If you have successully installed mpi4py, you should be able to run
Python and type
from mpi4py import MPI :pre
without error. You should also be able to run python in parallel
on a simple test script
% mpirun -np 4 python test.py :pre
where test.py contains the lines
from mpi4py import MPI
comm = MPI.COMM_WORLD
print "Proc %d out of %d procs" % (comm.Get_rank(),comm.Get_size()) :pre
and see one line of output for each processor you run on.
IMPORTANT NOTE: To use mpi4py and LAMMPS in parallel from Python, you
must insure both are using the same version of MPI. If you only have
one MPI installed on your system, this is not an issue, but it can be
if you have multiple MPIs. Your LAMMPS build is explicit about which
MPI it is using, since you specify the details in your lo-level
src/MAKE/Makefile.foo file. Mpi4py uses the "mpicc" command to find
information about the MPI it uses to build against. And it tries to
load "libmpi.so" from the LD_LIBRARY_PATH. This may or may not find
the MPI library that LAMMPS is using. If you have problems running
both mpi4py and LAMMPS together, this is an issue you may need to
address, e.g. by moving other MPI installations so that mpi4py finds
the right one.
:line
11.6 Testing the Python-LAMMPS interface :link(py_6),h4
To test if LAMMPS is callable from Python, launch Python interactively
@ -491,10 +545,11 @@ correspond one-to-one with calls you can make to the LAMMPS library
from a C++ or C or Fortran program.
lmp = lammps() # create a LAMMPS object using the default liblammps.so library
lmp = lammps(ptr=lmpptr) # ditto, but use lmpptr as previously created LAMMPS object
lmp = lammps("g++") # create a LAMMPS object using the liblammps_g++.so library
lmp = lammps("",list) # ditto, with command-line args, e.g. list = \["-echo","screen"\]
lmp = lammps("g++",list) :pre
4 optional args are allowed: name, cmdargs, ptr, comm
lmp = lammps(ptr=lmpptr) # use lmpptr as previously created LAMMPS object
lmp = lammps(comm=split) # create a LAMMPS object with a custom communicator. Requires mpi4py 2.0.0 or later
lmp = lammps(name="g++") # create a LAMMPS object using the liblammps_g++.so library
lmp = lammps(name="g++",cmdargs=list) # add LAMMPS command-line args, e.g. list = \["-echo","screen"\] :pre
lmp.close() # destroy a LAMMPS object :pre

View File

@ -1,30 +0,0 @@
This is TeX, Version 3.14159 (Web2C 7.4.5) (format=latex 2008.11.14) 27 AUG 2011 15:16
**pair_sph_tait
(/usr/share/texmf/tex/latex/tools/.tex
LaTeX2e <2001/06/01>
Babel <v3.7h> and hyphenation patterns for american, french, german, ngerman, n
ohyphenation, loaded.
File ignored)
*
(Please type a command or say `\end')
*x
! LaTeX Error: Missing \begin{document}.
See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
...
<*> x
? x
Here is how much of TeX's memory you used:
6 strings out of 95847
257 string characters out of 1195947
44507 words of memory out of 1000001
3034 multiletter control sequences out of 10000+50000
3640 words of font info for 14 fonts, out of 500000 for 1000
14 hyphenation exceptions out of 1000
5i,0n,4p,93b,14s stack positions out of 1500i,500n,5000p,200000b,5000s
No pages of output.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 3.8 KiB

View File

@ -1,9 +0,0 @@
\documentclass[12pt]{article}
\begin{document}
$$
E = K (\theta - \theta_0)^2 + K_{UB} (r - r_{UB})^2
$$
\end{document}

Binary file not shown.

Before

Width:  |  Height:  |  Size: 16 KiB

View File

@ -1,12 +0,0 @@
\documentclass[12pt]{article}
\begin{document}
\begin{eqnarray*}
E & = & E_a + E_{bb} + E_{ba} \\
E_a & = & K_2 (\theta - \theta_0)^2 + K_3 (\theta - \theta_0)^3 + K_4 (\theta - \theta_0)^4 \\
E_{bb} & = & M (r_{ij} - r_1) (r_{jk} - r_2) \\
E_{ba} & = & N_1 (r_{ij} - r_1) (\theta - \theta_0) + N_2 (r_{jk} - r_2) (\theta - \theta_0)
\end{eqnarray*}
\end{document}

Binary file not shown.

Before

Width:  |  Height:  |  Size: 2.3 KiB

View File

@ -1,9 +0,0 @@
\documentclass[12pt]{article}
\begin{document}
$$
E = K [1 + \cos(\theta)]
$$
\end{document}

Binary file not shown.

Before

Width:  |  Height:  |  Size: 2.5 KiB

View File

@ -1,9 +0,0 @@
\documentclass[12pt]{article}
\begin{document}
$$
E = K [1 - \cos(\theta - \theta_0)]
$$
\end{document}

Binary file not shown.

Before

Width:  |  Height:  |  Size: 3.3 KiB

View File

@ -1,9 +0,0 @@
\documentstyle[12pt]{article}
\begin{document}
$$
E=C\left[ 1-B(-1)^ncos\left( n\theta\right) \right]
$$
\end{document}

Binary file not shown.

Before

Width:  |  Height:  |  Size: 3.8 KiB

View File

@ -1,9 +0,0 @@
\documentstyle[12pt]{article}
\begin{document}
$$
E=-\frac{Umin}{2} \left[ 1+Cos(\theta-\theta_0) \right]
$$
\end{document}

Binary file not shown.

Before

Width:  |  Height:  |  Size: 7.7 KiB

View File

@ -1,13 +0,0 @@
\documentstyle[12pt]{article}
\begin{document}
$$
E=-U_{min}
\frac{e^{-a U(\theta,\theta_0)}-1}{e^a-1}
\quad\mbox{with}\quad
U(\theta,\theta_0)
=-0.5 \left(1+\cos(\theta-\theta_0) \right)
$$
\end{document}

Binary file not shown.

Before

Width:  |  Height:  |  Size: 3.2 KiB

View File

@ -1,9 +0,0 @@
\documentclass[12pt]{article}
\begin{document}
$$
E = K [\cos(\theta) - \cos(\theta_0)]^2
$$
\end{document}

Binary file not shown.

Before

Width:  |  Height:  |  Size: 2.6 KiB

View File

@ -1,9 +0,0 @@
\documentclass[12pt]{article}
\begin{document}
$$
\cos\gamma = \frac{\vec{\mu_j}\bullet\vec{r_{ij}}}{\mu_j\,r_{ij}}
$$
\end{document}

Binary file not shown.

Before

Width:  |  Height:  |  Size: 2.6 KiB

View File

@ -1,9 +0,0 @@
\documentclass[12pt]{article}
\begin{document}
$$
E = K (\cos\gamma - \cos\gamma_0)^2
$$
\end{document}

Binary file not shown.

Before

Width:  |  Height:  |  Size: 5.0 KiB

View File

@ -1,9 +0,0 @@
\documentclass[12pt]{article}
\begin{document}
$$
\vec{T_j} = \frac{2K(\cos\gamma - \cos\gamma_0)}{\mu_j\,r_{ij}}\,
\vec{r_{ij}} \times \vec{\mu_j}
$$
\end{document}

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.5 KiB

View File

@ -1,9 +0,0 @@
\documentclass[12pt]{article}
\begin{document}
$$
E = K [C_0 + C_1 \cos ( \theta) + C_2 \cos( 2 \theta) ]
$$
\end{document}

Binary file not shown.

Before

Width:  |  Height:  |  Size: 2.7 KiB

View File

@ -1,9 +0,0 @@
\documentclass[12pt]{article}
\begin{document}
$$
E = K [ 1.0 + c \cos ( n \theta) ]
$$
\end{document}

Binary file not shown.

Before

Width:  |  Height:  |  Size: 2.0 KiB

View File

@ -1,9 +0,0 @@
\documentclass[12pt]{article}
\begin{document}
$$
E = K (\theta - \theta_0)^2
$$
\end{document}

Binary file not shown.

Before

Width:  |  Height:  |  Size: 5.1 KiB

View File

@ -1,9 +0,0 @@
\documentclass[12pt]{article}
\begin{document}
$$
E = K_2 (\theta - \theta_0)^2 + K_3 (\theta - \theta_0)^3 + K_4 (\theta - \theta_0)^4
$$
\end{document}

Binary file not shown.

Before

Width:  |  Height:  |  Size: 5.0 KiB

View File

@ -1,9 +0,0 @@
\documentclass[12pt]{article}
\begin{document}
$$
E = K_2 (r - r_0)^2 + K_3 (r - r_0)^3 + K_4 (r - r_0)^4
$$
\end{document}

Binary file not shown.

Before

Width:  |  Height:  |  Size: 8.1 KiB

View File

@ -1,11 +0,0 @@
\documentclass[12pt]{article}
\begin{document}
$$
E = -0.5 K R_0^2 \ln \left[ 1 - \left(\frac{r}{R_0}\right)^2\right] +
4 \epsilon \left[ \left(\frac{\sigma}{r}\right)^{12} -
\left(\frac{\sigma}{r}\right)^6 \right] + \epsilon
$$
\end{document}

Binary file not shown.

Before

Width:  |  Height:  |  Size: 11 KiB

View File

@ -1,13 +0,0 @@
\documentclass[12pt]{article}
\begin{document}
$$
E = -0.5 K R_0^2
\ln \left[1 -\left( \frac{\left(r - \Delta\right)}{R_0}\right)^2 \right] +
4 \epsilon \left[ \left(\frac{\sigma}{\left(r -
\Delta\right)}\right)^{12} - \left(\frac{\sigma}{\left(r -
\Delta\right)}\right)^6 \right] + \epsilon
$$
\end{document}

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1.8 KiB

View File

@ -1,9 +0,0 @@
\documentclass[12pt]{article}
\begin{document}
$$
E = K (r - r_0)^2
$$
\end{document}

Binary file not shown.

Before

Width:  |  Height:  |  Size: 5.0 KiB

View File

@ -1,9 +0,0 @@
\documentclass[12pt]{article}
\begin{document}
$$
E = \frac{Umin}{(r_0-r_c)^2} \left[ (r-r_0)^2-(r_c-r_0)^2 \right]
$$
\end{document}

Binary file not shown.

Before

Width:  |  Height:  |  Size: 5.1 KiB

View File

@ -1,9 +0,0 @@
\documentclass[12pt]{article}
\begin{document}
$$
E = \frac{Umin}{(r_0-r_c)^2} \left[ (r-r_0)^2-(r_c-r_0)^2 \right]
$$
\end{document}

Binary file not shown.

Before

Width:  |  Height:  |  Size: 2.5 KiB

View File

@ -1,10 +0,0 @@
\documentclass[12pt]{article}
\begin{document}
$$
% E = D \left[ 1 - \exp \left( -\alpha (r - r_0) \right) \right]^2
E = D \left[ 1 - e^{-\alpha (r - r_0)} \right]^2
$$
\end{document}

Binary file not shown.

Before

Width:  |  Height:  |  Size: 3.5 KiB

View File

@ -1,9 +0,0 @@
\documentclass[12pt]{article}
\begin{document}
$$
E = \frac{\epsilon (r - r_0)^2}{ [ \lambda^2 - (r - r_0)^2 ]}
$$
\end{document}

Binary file not shown.

Before

Width:  |  Height:  |  Size: 9.3 KiB

View File

@ -1,11 +0,0 @@
\documentclass[12pt]{article}
\begin{document}
$$
E = K (r - R_c)^ 2 (r - R_c - B_1) (r - R_c - B_2) + U_0 +
4 \epsilon \left[ \left(\frac{\sigma}{r}\right)^{12} -
\left(\frac{\sigma}{r}\right)^6 \right] + \epsilon
$$
\end{document}

Binary file not shown.

Before

Width:  |  Height:  |  Size: 11 KiB

View File

@ -1,14 +0,0 @@
\documentclass[12pt]{article}
\begin{document}
\begin{eqnarray*}
a &=& {\rm lx} \\
b^2 &=& {\rm ly}^2 + {\rm xy}^2 \\
c^2 &=& {\rm lz}^2 + {\rm xz}^2 + {\rm yz}^2 \\
\cos{\alpha} &=& \frac{{\rm xy}*{\rm xz} + {\rm ly}*{\rm yz}}{b*c} \\
\cos{\beta} &=& \frac{\rm xz}{c} \\
\cos{\gamma} &=& \frac{\rm xy}{b} \\
\end{eqnarray*}
\end{document}

Binary file not shown.

Before

Width:  |  Height:  |  Size: 10 KiB

View File

@ -1,14 +0,0 @@
\documentclass[12pt]{article}
\begin{document}
\begin{eqnarray*}
{\rm lx} &=& a \\
{\rm xy} &=& b \cos{\gamma} \\
{\rm xz} &=& c \cos{\beta}\\
{\rm ly}^2 &=& b^2 - {\rm xy}^2 \\
{\rm yz} &=& \frac{b*c \cos{\alpha} - {\rm xy}*{\rm xz}}{\rm ly} \\
{\rm lz}^2 &=& c^2 - {\rm xz}^2 - {\rm yz}^2 \\
\end{eqnarray*}
\end{document}

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.0 KiB

View File

@ -1,9 +0,0 @@
\documentclass[12pt]{article}
\begin{document}
$$
CS = \sum_{i = 1}^{N/2} | \vec{R}_i + \vec{R}_{i+N/2} |^2
$$
\end{document}

Binary file not shown.

Before

Width:  |  Height:  |  Size: 13 KiB

View File

@ -1,14 +0,0 @@
\documentclass[12pt,article]{article}
\usepackage{indentfirst}
\usepackage{amsmath}
\begin{document}
\begin{eqnarray*}
r_{c}^{fcc} & = & \frac{1}{2} \left(\frac{\sqrt{2}}{2} + 1\right) \mathrm{a} \simeq 0.8536 \:\mathrm{a} \\
r_{c}^{bcc} & = & \frac{1}{2}(\sqrt{2} + 1) \mathrm{a} \simeq 1.207 \:\mathrm{a} \\
r_{c}^{hcp} & = & \frac{1}{2}\left(1+\sqrt{\frac{4+2x^{2}}{3}}\right) \mathrm{a}
\end{eqnarray*}
\end{document}

Binary file not shown.

Before

Width:  |  Height:  |  Size: 2.5 KiB

View File

@ -1,12 +0,0 @@
\documentclass[12pt,article]{article}
\usepackage{indentfirst}
\usepackage{amsmath}
\begin{document}
$$
Rc + Rs > 2*{\rm cutoff}
$$
\end{document}

Binary file not shown.

Before

Width:  |  Height:  |  Size: 18 KiB

View File

@ -1,7 +0,0 @@
\documentstyle[12pt]{article}
\begin{document}
\[ \left< \frac{1}{1 + \exp\left[\left(U_1 - U_0 - \Delta_0^1A \right) /kT \right]} \right>_0 = \left< \frac{1}{1 + \exp\left[\left(U_0 - U_1 + \Delta_0^1A \right) /kT \right]} \right>_1 \]
\end{document}

Binary file not shown.

Before

Width:  |  Height:  |  Size: 15 KiB

View File

@ -1,10 +0,0 @@
\documentstyle[12pt]{article}
\begin{document}
\[ \Delta_0^1 A = \int_{\lambda=0}^{\lambda=1} \left( \frac{\partial
A(\lambda)}{\partial\lambda} \right)_\lambda \mathrm{d}\lambda
\approx \sum_{i=0}^{n-1} w_i \frac{A(\lambda_{i} + \delta) -
A(\lambda_i)}{\delta} \]
\end{document}

Binary file not shown.

Before

Width:  |  Height:  |  Size: 18 KiB

View File

@ -1,9 +0,0 @@
\documentstyle[12pt]{article}
\begin{document}
\[ \Delta_0^1 A = \sum_{i=0}^{n-1} \Delta_{\lambda_i}^{\lambda_{i+1}} A =
- kT \sum_{i=0}^{n-1} \ln \left< \exp \left( - \frac{U(\lambda_{i+1}) -
U(\lambda_i)}{kT} \right) \right>_{\lambda_i} \]
\end{document}

Binary file not shown.

Before

Width:  |  Height:  |  Size: 10 KiB

View File

@ -1,10 +0,0 @@
\documentstyle[12pt]{article}
\begin{document}
\begin{eqnarray*}
\lambda = 0 \quad\Rightarrow\quad U = U_{\mathrm{bg}} + U_0 \\
\lambda = 1 \quad\Rightarrow\quad U = U_{\mathrm{bg}} + U_1
\end{eqnarray*}
\end{document}

Binary file not shown.

Before

Width:  |  Height:  |  Size: 18 KiB

View File

@ -1,10 +0,0 @@
\documentstyle[12pt]{article}
\begin{document}
\[ \Delta_0^1 A = \int_{\lambda=0}^{\lambda=1} \left< \frac{\partial
U(\lambda)}{\partial\lambda} \right>_\lambda \mathrm{d}\lambda
\approx \sum_{i=0}^{n-1} w_i \left< \frac{U(\lambda_{i} + \delta) -
U(\lambda_i)}{\delta} \right>_{\lambda_i} \]
\end{document}

Binary file not shown.

Before

Width:  |  Height:  |  Size: 9.1 KiB

View File

@ -1,7 +0,0 @@
\documentstyle[12pt]{article}
\begin{document}
\[ U(\lambda) = U_{\mathrm{bg}} + U_1(\lambda) + U_0(\lambda) \]
\end{document}

Binary file not shown.

Before

Width:  |  Height:  |  Size: 15 KiB

View File

@ -1,9 +0,0 @@
\documentstyle[12pt]{article}
\begin{document}
\[ \Delta_0^1 A = - kT \sum_{i=0}^{n-1} \ln \frac{\left< V \exp \left( -
\frac{U(\lambda_{i+1}) - U(\lambda_i)}{kT} \right)
\right>_{\lambda_i}}{\left< V \right>_{\lambda_i}} \]
\end{document}

Binary file not shown.

Before

Width:  |  Height:  |  Size: 3.6 KiB

View File

@ -1,9 +0,0 @@
\documentstyle[12pt]{article}
\begin{document}
$$
{R_g}^2 = \frac{1}{M} \sum_i m_i (r_i - r_{cm})^2
$$
\end{document}

Binary file not shown.

Before

Width:  |  Height:  |  Size: 7.1 KiB

View File

@ -1,9 +0,0 @@
\documentstyle[12pt]{article}
\begin{document}
$$
NGP(t) = 3<(r(t)-r(0))^4>/(5<(r(t)-r(0))^2>^2) - 1
$$
\end{document}

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1.4 KiB

View File

@ -1,10 +0,0 @@
\documentstyle[12pt]{article}
\begin{document}
$$
I=\frac{F^{*}F}{N}
$$
\end{document}

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.8 KiB

View File

@ -1,9 +0,0 @@
\documentstyle[12pt]{article}
\begin{document}
$$
F(\mathbf{k})=\sum_{j=1}^{N}f_j(\theta)exp(2\pi i \mathbf{k}\cdot \mathbf{r}_j)
$$
\end{document}

Binary file not shown.

Before

Width:  |  Height:  |  Size: 6.9 KiB

View File

@ -1,10 +0,0 @@
\documentstyle[12pt]{article}
\begin{document}
$$
f_j\left ( \frac{sin(\theta)}{\lambda} \right )=\sum_{i}^{5}
a_i exp\left ( -b_i \frac{sin^{2}(\theta)}{\lambda^{2}} \right )
$$
\end{document}

Binary file not shown.

Before

Width:  |  Height:  |  Size: 19 KiB

View File

@ -1,11 +0,0 @@
\documentclass[24pt]{article}
\pagestyle{empty}
\begin{document}
\begin{eqnarray*}
\theta_0 = {\tt rfac0} \frac{r-r_{min0}}{R_{ii'}-r_{min0}} \pi
\end{eqnarray*}
\end{document}

Binary file not shown.

Before

Width:  |  Height:  |  Size: 17 KiB

View File

@ -1,11 +0,0 @@
\documentclass[24pt]{article}
\pagestyle{empty}
\begin{document}
\begin{eqnarray*}
u^j_{m,m'} = U^j_{m,m'}(0,0,0) + \sum_{r_{ii'} < R_{ii'}}{f_c(r_{ii'}) w_{i'} U^j_{m,m'}(\theta_0,\theta,\phi)}
\end{eqnarray*}
\end{document}

Binary file not shown.

Before

Width:  |  Height:  |  Size: 19 KiB

View File

@ -1,16 +0,0 @@
\documentclass[24pt]{article}
\pagestyle{empty}
\begin{document}
\newcommand{\hcoeff}[9]{H\!\!{\tiny\begin{array}{l}#1 #2 #3 \\ #4 #5 #6 \\ #7 #8 #9 \end{array}}}
\begin{equation}
B_{j_1,j_2,j} = \\
\sum_{m_1,m'_1=-j_1}^{j_1}\sum_{m_2,m'_2=-j_2}^{j_2}\sum_{m,m'=-j}^{j} (u^j_{m,m'})^*
\hcoeff{j}{m}{m'}{j_1}{\!m_1}{\!m'_1}{j_2}{m_2}{m'_2}
u^{j_1}_{m_1,m'_1} u^{j_2}_{m_2,m'_2}
\end{equation}
\end{document}

Binary file not shown.

Before

Width:  |  Height:  |  Size: 35 KiB

View File

@ -1,14 +0,0 @@
\documentclass[24pt]{article}
\pagestyle{empty}
\begin{document}
\begin{eqnarray*}
\label{eqn:f_c}
f_c(r) & = & \frac{1}{2}(\cos(\pi \frac{r-r_{min0}}{R_{ii'}-r_{min0}}) + 1), r \leq R_{ii'} \\
& = & 0, r > R_{ii'}
\end{eqnarray*}
\end{document}

Binary file not shown.

Before

Width:  |  Height:  |  Size: 14 KiB

View File

@ -1,12 +0,0 @@
\documentclass[24pt]{article}
\pagestyle{empty}
\begin{document}
\begin{equation}
- \sum_{i' \in I} \frac{\partial {B^{i'}_{j_1,j_2,j} }}{\partial {\bf r}_i}
\end{equation}
\end{document}

Binary file not shown.

Before

Width:  |  Height:  |  Size: 17 KiB

View File

@ -1,12 +0,0 @@
\documentclass[24pt]{article}
\pagestyle{empty}
\begin{document}
\begin{eqnarray*}
- {\bf r}_i \otimes \sum_{i' \in I} \frac{\partial {B^{i'}_{j_1,j_2,j}}}{\partial {\bf r}_i}
\end{eqnarray*}
\end{document}

Binary file not shown.

Before

Width:  |  Height:  |  Size: 2.3 KiB

View File

@ -1,10 +0,0 @@
\documentstyle[12pt]{article}
\begin{document}
$$
I=Lp(\theta)\frac{F^{*}F}{N}
$$
\end{document}

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.7 KiB

View File

@ -1,9 +0,0 @@
\documentstyle[12pt]{article}
\begin{document}
$$
F(\mathbf{k})=\sum_{j=1}^{N}f_j(\theta)exp(2\pi i \mathbf{k}\cdot \mathbf{r}_j)
$$
\end{document}

Some files were not shown because too many files have changed in this diff Show More