mirror of https://github.com/lammps/lammps.git
Added GJF Langevin method
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@10046 f3b2605a-c512-4ea7-a41b-209d697bcdaa
This commit is contained in:
parent
fe71627776
commit
51814ba9bd
|
@ -34,6 +34,9 @@
|
|||
<PRE> <I>angmom</I> value = <I>no</I> or scale
|
||||
<I>no</I> = do not thermostat rotational degrees of freedom via the angular momentum
|
||||
factor = do thermostat rotational degrees of freedom via the angular momentum and apply numeric factor as discussed below
|
||||
<I>gjf</I> value = <I>no</I> or <I>yes</I>
|
||||
<I>no</I> = use standard formulation
|
||||
<I>yes</I> = use Gronbech-Jensen/Farago formulation
|
||||
<I>omega</I> value = <I>no</I> or <I>yes</I>
|
||||
<I>no</I> = do not thermostat rotational degrees of freedom via the angular velocity
|
||||
<I>yes</I> = do thermostat rotational degrees of freedom via the angular velocity
|
||||
|
@ -235,6 +238,19 @@ to zero by subtracting off an equal part of it from each atom in the
|
|||
group. As a result, the center-of-mass of a system with zero initial
|
||||
momentum will not drift over time.
|
||||
</P>
|
||||
<P>The keyword <I>gjf</I> can be used to run the
|
||||
<A HREF = "#Gronbech-Jensen">Gronbech-Jensen/Farago </A>
|
||||
time-discretization of the Langevin model. The effective random force
|
||||
is composed of
|
||||
the average of two random forces representing half-contributions from
|
||||
the previous and current time intervals. This discretization has been shown
|
||||
to be consistent with the underlying physical model of Langevin dynamics
|
||||
and produces the correct statistical distribution of energy for large
|
||||
timesteps, up to the numerical stability limit. A typical simulation
|
||||
with flexible hydrogen-carbon covalent bonds
|
||||
can be run with a timestep of 3 fs, instead of 1 fs with the
|
||||
standard Langevin method.
|
||||
</P>
|
||||
<HR>
|
||||
|
||||
<P><B>Restart, fix_modify, output, run start/stop, minimize info:</B>
|
||||
|
@ -281,7 +297,7 @@ dpd/tstat</A>
|
|||
<P><B>Default:</B>
|
||||
</P>
|
||||
<P>The option defaults are angmom = no, omega = no, scale = 1.0 for all
|
||||
types, tally = no, zero = no.
|
||||
types, tally = no, zero = no, gjf = no.
|
||||
</P>
|
||||
<HR>
|
||||
|
||||
|
@ -291,6 +307,10 @@ types, tally = no, zero = no.
|
|||
</P>
|
||||
<A NAME = "Schneider"></A>
|
||||
|
||||
<P><B>(Schneider)</B> Schneider and Stoll, Phys Rev B, 17, 1302 (1978).
|
||||
<P><B>(Schneider)</B> Schneider and Stoll, Phys Rev B, 17, 1302 (1978).
|
||||
</P>
|
||||
<A NAME = "Gronbech-Jensen"></A>
|
||||
|
||||
<P><B>(Gronbech-Jensen)</B> Gronbech-Jensen, Hayre, and Farago, arXiv:1303.7011.v2; Gronbech-Jensen and Farago, Mol. Phys. 111 (2013);
|
||||
</P>
|
||||
</HTML>
|
||||
|
|
|
@ -23,6 +23,9 @@ keyword = {angmom} or {omega} or {scale} or {tally} or {zero} :l
|
|||
{angmom} value = {no} or scale
|
||||
{no} = do not thermostat rotational degrees of freedom via the angular momentum
|
||||
factor = do thermostat rotational degrees of freedom via the angular momentum and apply numeric factor as discussed below
|
||||
{gjf} value = {no} or {yes}
|
||||
{no} = use standard formulation
|
||||
{yes} = use Gronbech-Jensen/Farago formulation
|
||||
{omega} value = {no} or {yes}
|
||||
{no} = do not thermostat rotational degrees of freedom via the angular velocity
|
||||
{yes} = do thermostat rotational degrees of freedom via the angular velocity
|
||||
|
@ -223,6 +226,19 @@ to zero by subtracting off an equal part of it from each atom in the
|
|||
group. As a result, the center-of-mass of a system with zero initial
|
||||
momentum will not drift over time.
|
||||
|
||||
The keyword {gjf} can be used to run the
|
||||
"Gronbech-Jensen/Farago "_#Gronbech-Jensen
|
||||
time-discretization of the Langevin model. The effective random force
|
||||
is composed of
|
||||
the average of two random forces representing half-contributions from
|
||||
the previous and current time intervals. This discretization has been shown
|
||||
to be consistent with the underlying physical model of Langevin dynamics
|
||||
and produces the correct statistical distribution of energy for large
|
||||
timesteps, up to the numerical stability limit. A typical simulation
|
||||
with flexible hydrogen-carbon covalent bonds
|
||||
can be run with a timestep of 3 fs, instead of 1 fs with the
|
||||
standard Langevin method.
|
||||
|
||||
:line
|
||||
|
||||
[Restart, fix_modify, output, run start/stop, minimize info:]
|
||||
|
@ -269,7 +285,7 @@ dpd/tstat"_pair_dpd.html
|
|||
[Default:]
|
||||
|
||||
The option defaults are angmom = no, omega = no, scale = 1.0 for all
|
||||
types, tally = no, zero = no.
|
||||
types, tally = no, zero = no, gjf = no.
|
||||
|
||||
:line
|
||||
|
||||
|
@ -277,4 +293,7 @@ types, tally = no, zero = no.
|
|||
[(Dunweg)] Dunweg and Paul, Int J of Modern Physics C, 2, 817-27 (1991).
|
||||
|
||||
:link(Schneider)
|
||||
[(Schneider)] Schneider and Stoll, Phys Rev B, 17, 1302 (1978).
|
||||
[(Schneider)] Schneider and Stoll, Phys Rev B, 17, 1302 (1978).
|
||||
|
||||
:link(Gronbech-Jensen)
|
||||
[(Gronbech-Jensen)] Gronbech-Jensen, Hayre, and Farago, arXiv:1303.7011.v2; Gronbech-Jensen and Farago, Mol. Phys. 111 (2013);
|
||||
|
|
Loading…
Reference in New Issue