mirror of https://github.com/lammps/lammps.git
update docs to cleanly translate
This commit is contained in:
parent
08d01e6417
commit
4fa0186b68
|
@ -31,7 +31,7 @@ Style *momb* computes pairwise van der Waals (vdW) and short-range
|
|||
interactions using the Morse potential and :ref:`(Grimme) <Grimme>` method
|
||||
implemented in the Many-Body Metal-Organic (MOMB) force field
|
||||
described comprehensively in :ref:`(Fichthorn) <Fichthorn>` and
|
||||
:ref:`(Zhou) <Zhou4>`. Grimme's method is widely used to correct for
|
||||
:ref:`(Zhou) <Zhou5>`. Grimme's method is widely used to correct for
|
||||
dispersion in density functional theory calculations.
|
||||
|
||||
.. math::
|
||||
|
@ -76,6 +76,6 @@ Related commands
|
|||
|
||||
**(Fichthorn)** Fichthorn, Balankura, Qi, CrystEngComm, 18(29), 5410-5417 (2016).
|
||||
|
||||
.. _Zhou4:
|
||||
.. _Zhou5:
|
||||
|
||||
**(Zhou)** Zhou, Saidi, Fichthorn, J Phys Chem C, 118(6), 3366-3374 (2014).
|
||||
|
|
|
@ -1,5 +1,4 @@
|
|||
<HTML><META HTTP-EQUIV="content-type" CONTENT="text/html;charset=utf-8">
|
||||
<PRE>.. index:: pair_style polymorphic
|
||||
.. index:: pair_style polymorphic
|
||||
|
||||
pair_style polymorphic command
|
||||
==============================
|
||||
|
@ -19,7 +18,7 @@ Examples
|
|||
.. code-block:: LAMMPS
|
||||
|
||||
pair_style polymorphic
|
||||
pair_coeff * * FeCH_BOPI.poly Fe C H
|
||||
pair_coeff * * FeCH_BOP_I.poly Fe C H
|
||||
pair_coeff * * TlBr_msw.poly Tl Br
|
||||
pair_coeff * * CuTa_eam.poly Cu Ta
|
||||
pair_coeff * * GaN_tersoff.poly Ga N
|
||||
|
@ -29,17 +28,13 @@ Description
|
|||
"""""""""""
|
||||
|
||||
The *polymorphic* pair style computes a 3-body free-form potential
|
||||
(:ref:`Zhou <Zhou3>`) for the energy E of a system of atoms as
|
||||
(:ref:`Zhou <Zhou3>`) for the energy E of a system of atoms as
|
||||
|
||||
.. math::
|
||||
|
||||
\begin{eqnarray}\nonumber
|
||||
\left\{\begin{array}{l}
|
||||
E = \frac{1}{2}\sum_{i=1}^{i=N}\sum_{j=1}^{j=N}\left[\left(1-\delta_{ij}\right)\cdot U_{IJ}\left(r_{ij}\right)-\left(1-\eta_{ij}\right)\cdot F_{IJ}\left(X_{ij}\right)\cdot V_{IJ}\left(r_{ij}\right)\right] \\
|
||||
X_{ij} = \sum_{k=i_1,k\neq j}^{i_N}W_{IK}\left(r_{ik}\right)\cdot G_{JIK}\left(\theta_{jik}\right)\cdot P_{JIK}\left(\Delta r_{jik}\right) \\
|
||||
\Delta r_{jik} = r_{ij}-\xi_{IJ}\cdot r_{ik}
|
||||
\end{array}\right.
|
||||
\end{eqnarray}
|
||||
E & = \frac{1}{2}\sum_{i=1}^{i=N}\sum_{j=1}^{j=N}\left[\left(1-\delta_{ij}\right)\cdot U_{IJ}\left(r_{ij}\right)-\left(1-\eta_{ij}\right)\cdot F_{IJ}\left(X_{ij}\right)\cdot V_{IJ}\left(r_{ij}\right)\right] \\
|
||||
X_{ij} & = \sum_{k=i_1,k\neq j}^{i_N}W_{IK}\left(r_{ik}\right)\cdot G_{JIK}\left(\theta_{jik}\right)\cdot P_{JIK}\left(\Delta r_{jik}\right) \\
|
||||
\Delta r_{jik} & = r_{ij}-\xi_{IJ}\cdot r_{ik}
|
||||
|
||||
where I, J, K represent species of atoms i, j, and k, :math:`i_1, ...,
|
||||
i_N` represents a list of *i*\ 's neighbors, :math:`\delta_{ij}` is a
|
||||
|
@ -67,137 +62,108 @@ only depends on species I and K. Note that these six functions are all
|
|||
one dimensional, and hence can be provided in a tabular
|
||||
form. This allows users to design different potentials solely based on a
|
||||
manipulation of these functions. For instance, the potential reduces a
|
||||
Stillinger-Weber potential (:ref:`SW <SW>`) if we set
|
||||
Stillinger-Weber potential (:ref:`SW <SW>`) if we set
|
||||
|
||||
.. math::
|
||||
|
||||
\begin{eqnarray}\nonumber
|
||||
\left\{\begin{array}{l}
|
||||
\eta_{ij} = \delta_{ij} (\eta = 2~or~\eta = 0),\xi_{IJ}=0 \\
|
||||
U_{IJ}\left(r\right) = A_{IJ}\cdot\epsilon_{IJ}\cdot \left(\frac{\sigma_{IJ}}{r}\right)^q\cdot \left[B_{IJ}\cdot \left(\frac{\sigma_{IJ}}{r}\right)^{p-q}-1\right]\cdot exp\left(\frac{\sigma_{IJ}}{r-a_{IJ}\cdot \sigma_{IJ}}\right) \\
|
||||
V_{IJ}\left(r\right) = \sqrt{\lambda_{IJ}\cdot \epsilon_{IJ}}\cdot exp\left(\frac{\gamma_{IJ}\cdot \sigma_{IJ}}{r-a_{IJ}\cdot \sigma_{IJ}}\right) \\
|
||||
F_{IJ}\left(X\right) = -X \\
|
||||
P_{JIK}\left(\Delta r\right) = P_{IK}\left(\Delta r\right) = 1 \\
|
||||
W_{IJ}\left(r\right) = \sqrt{\lambda_{IJ}\cdot \epsilon_{IJ}}\cdot exp\left(\frac{\gamma_{IJ}\cdot \sigma_{IJ}}{r-a_{IJ}\cdot \sigma_{IJ}}\right) \\
|
||||
G_{JIK}\left(\theta\right) = \left(cos\theta+\frac{1}{3}\right)^2
|
||||
\end{array}\right.
|
||||
\end{eqnarray}
|
||||
\eta_{ij} & = \delta_{ij} (\eta = 2~or~\eta = 0),\xi_{IJ}=0 \\
|
||||
U_{IJ}\left(r\right) & = A_{IJ}\cdot\epsilon_{IJ}\cdot \left(\frac{\sigma_{IJ}}{r}\right)^q\cdot \left[B_{IJ}\cdot \left(\frac{\sigma_{IJ}}{r}\right)^{p-q}-1\right]\cdot exp\left(\frac{\sigma_{IJ}}{r-a_{IJ}\cdot \sigma_{IJ}}\right) \\
|
||||
V_{IJ}\left(r\right) & = \sqrt{\lambda_{IJ}\cdot \epsilon_{IJ}}\cdot exp\left(\frac{\gamma_{IJ}\cdot \sigma_{IJ}}{r-a_{IJ}\cdot \sigma_{IJ}}\right) \\
|
||||
F_{IJ}\left(X\right) & = -X \\
|
||||
P_{JIK}\left(\Delta r\right) & = P_{IK}\left(\Delta r\right) = 1 \\
|
||||
W_{IJ}\left(r\right) & = \sqrt{\lambda_{IJ}\cdot \epsilon_{IJ}}\cdot exp\left(\frac{\gamma_{IJ}\cdot \sigma_{IJ}}{r-a_{IJ}\cdot \sigma_{IJ}}\right) \\
|
||||
G_{JIK}\left(\theta\right) & = \left(cos\theta+\frac{1}{3}\right)^2
|
||||
|
||||
The potential reduces to a Tersoff potential (:ref:`Tersoff <Tersoff>
|
||||
` or :ref:`Albe <poly-Albe>`) if we set
|
||||
The potential reduces to a Tersoff potential (:ref:`Tersoff <Tersoff>`
|
||||
or :ref:`Albe <poly-Albe>`) if we set
|
||||
|
||||
.. math::
|
||||
|
||||
\begin{eqnarray}\nonumber
|
||||
\left\{\begin{array}{l}
|
||||
\eta_{ij} = \delta_{ij} (\eta = 2~or~\eta = 0),\xi_{IJ}=1 \\
|
||||
U_{IJ}\left(r\right) = \frac{D_{e,IJ}}{S_{IJ}-1}\cdot exp\left[-\beta_{IJ}\sqrt{2S_{IJ}}\left(r-r_{e,IJ}\right)\right]\cdot f_{c,IJ}\left(r\right) \\
|
||||
V_{IJ}\left(r\right) = \frac{S_{IJ}\cdot D_{e,IJ}}{S_{IJ}-1}\cdot exp\left[-\beta_{IJ}\sqrt{\frac{2}{S_{IJ}}}\left(r-r_{e,IJ}\right)\right]\cdot f_{c,IJ}\left(r\right) \\
|
||||
F_{IJ}\left(X\right) = \left(1+X\right)^{-\frac{1}{2}} \\
|
||||
P_{JIK}\left(\Delta r\right) = P_{IK}\left(\Delta r\right) = exp\left(2\mu_{IK}\cdot \Delta r\right) \\
|
||||
W_{IJ}\left(r\right) = f_{c,IJ}\left(r\right) \\
|
||||
G_{JIK}\left(\theta\right) = \gamma_{IK}\left[1+\frac{c_{IK}^2}{d_{IK}^2}-\frac{c_{IK}^2}{d_{IK}^2+\left(h_{IK}+cos\theta\right)^2}\right]
|
||||
\end{array}\right.
|
||||
\end{eqnarray}
|
||||
\eta_{ij} & = \delta_{ij} (\eta = 2~or~\eta = 0),\xi_{IJ}=1 \\
|
||||
U_{IJ}\left(r\right) & = \frac{D_{e,IJ}}{S_{IJ}-1}\cdot exp\left[-\beta_{IJ}\sqrt{2S_{IJ}}\left(r-r_{e,IJ}\right)\right]\cdot f_{c,IJ}\left(r\right) \\
|
||||
V_{IJ}\left(r\right) & = \frac{S_{IJ}\cdot D_{e,IJ}}{S_{IJ}-1}\cdot exp\left[-\beta_{IJ}\sqrt{\frac{2}{S_{IJ}}}\left(r-r_{e,IJ}\right)\right]\cdot f_{c,IJ}\left(r\right) \\
|
||||
F_{IJ}\left(X\right) & = \left(1+X\right)^{-\frac{1}{2}} \\
|
||||
P_{JIK}\left(\Delta r\right) & = P_{IK}\left(\Delta r\right) = exp\left(2\mu_{IK}\cdot \Delta r\right) \\
|
||||
W_{IJ}\left(r\right) & = f_{c,IJ}\left(r\right) \\
|
||||
G_{JIK}\left(\theta\right) & = \gamma_{IK}\left[1+\frac{c_{IK}^2}{d_{IK}^2}-\frac{c_{IK}^2}{d_{IK}^2+\left(h_{IK}+cos\theta\right)^2}\right]
|
||||
|
||||
where
|
||||
|
||||
.. math::
|
||||
|
||||
\begin{eqnarray}\nonumber
|
||||
f_{c,IJ}\left(r\right)=\left\{\begin{array}{l}
|
||||
1, r\leq R_{IJ}-D_{IJ} \\
|
||||
\frac{1}{2}+\frac{1}{2}cos\left[\frac{\pi\left(r+D_{IJ}-R_{IJ}\right)}{2D_{IJ}}\right], R_{IJ}-D_{IJ} < r < R_{IJ}+D_{IJ} \\
|
||||
0, r \geq R_{IJ}+D_{IJ}
|
||||
\end{array}\right.
|
||||
\end{eqnarray}
|
||||
|
||||
The potential reduces to a modified Stillinger-Weber potential (:ref:`Zhou <Zhou3>`) if we set
|
||||
The potential reduces to a modified Stillinger-Weber potential (:ref:`Zhou <Zhou3>`) if we set
|
||||
|
||||
.. math::
|
||||
|
||||
\begin{eqnarray}\nonumber
|
||||
\left\{\begin{array}{l}
|
||||
\eta_{ij} = \delta_{ij} (\eta = 2~or~\eta = 0),\xi_{IJ}=0 \\
|
||||
U_{IJ}\left(r\right) = \varphi_{R,IJ}\left(r\right)-\varphi_{A,IJ}\left(r\right) \\
|
||||
V_{IJ}\left(r\right) = u_{IJ}\left(r\right) \\
|
||||
F_{IJ}\left(X\right) = -X \\
|
||||
P_{JIK}\left(\Delta r\right) = P_{IK}\left(\Delta r\right) = 1 \\
|
||||
W_{IJ}\left(r\right) = u_{IJ}\left(r\right) \\
|
||||
G_{JIK}\left(\theta\right) = g_{JIK}\left(cos\theta\right)
|
||||
\end{array}\right.
|
||||
\end{eqnarray}
|
||||
\eta_{ij} & = \delta_{ij} (\eta = 2~or~\eta = 0),\xi_{IJ}=0 \\
|
||||
U_{IJ}\left(r\right) & = \varphi_{R,IJ}\left(r\right)-\varphi_{A,IJ}\left(r\right) \\
|
||||
V_{IJ}\left(r\right) & = u_{IJ}\left(r\right) \\
|
||||
F_{IJ}\left(X\right) & = -X \\
|
||||
P_{JIK}\left(\Delta r\right) & = P_{IK}\left(\Delta r\right) = 1 \\
|
||||
W_{IJ}\left(r\right) & = u_{IJ}\left(r\right) \\
|
||||
G_{JIK}\left(\theta\right) & = g_{JIK}\left(cos\theta\right)
|
||||
|
||||
|
||||
The potential reduces to a Rockett-Tersoff potential (:ref:`Wang <Wang3>`) if we set
|
||||
The potential reduces to a Rockett-Tersoff potential (:ref:`Wang <Wang3>`) if we set
|
||||
|
||||
.. math::
|
||||
|
||||
\begin{eqnarray}\nonumber
|
||||
\left\{ \begin{array}{l}
|
||||
\eta_{ij} = \delta_{ij} (\eta = 2~or~\eta = 0),\xi_{IJ}=1 \\
|
||||
U_{IJ}\left(r\right) = A_{IJ}exp\left(-\lambda_{1,IJ}\cdot r\right)f_{c,IJ}\left(r\right)f_{ca,IJ}\left(r\right) \\
|
||||
V_{IJ}\left(r\right) = \left\{\begin{array}{l}B_{IJ}exp\left(-\lambda_{2,IJ}\cdot r\right)f_{c,IJ}\left(r\right)+ \\ A_{IJ}exp\left(-\lambda_{1,IJ}\cdot r\right)f_{c,IJ}\left(r\right) \left[1-f_{ca,IJ}\left(r\right)\right]\end{array} \right\} \\
|
||||
F_{IJ}\left(X\right) = \left[1+\left(\beta_{IJ}X\right)^{n_{IJ}}\right]^{-\frac{1}{2n_{IJ}}} \\
|
||||
P_{JIK}\left(\Delta r\right) = P_{IK}\left(\Delta r\right) = exp\left(\lambda_{3,IK}\cdot \Delta r^3\right) \\
|
||||
W_{IJ}\left(r\right) = f_{c,IJ}\left(r\right) \\
|
||||
G_{JIK}\left(\theta\right) = 1+\frac{c_{IK}^2}{d_{IK}^2}-\frac{c_{IK}^2}{d_{IK}^2+\left(h_{IK}+cos\theta\right)^2}
|
||||
\end{array}\right.
|
||||
\end{eqnarray}
|
||||
\eta_{ij} & = \delta_{ij} (\eta = 2~or~\eta = 0),\xi_{IJ}=1 \\
|
||||
U_{IJ}\left(r\right) & = A_{IJ}exp\left(-\lambda_{1,IJ}\cdot r\right)f_{c,IJ}\left(r\right)f_{ca,IJ}\left(r\right) \\
|
||||
V_{IJ}\left(r\right) & = \left\{\begin{array}{l}B_{IJ}exp\left(-\lambda_{2,IJ}\cdot r\right)f_{c,IJ}\left(r\right)+ \\ A_{IJ}exp\left(-\lambda_{1,IJ}\cdot r\right)f_{c,IJ}\left(r\right) \left[1-f_{ca,IJ}\left(r\right)\right]\end{array} \right\} \\
|
||||
F_{IJ}\left(X\right) & = \left[1+\left(\beta_{IJ}X\right)^{n_{IJ}}\right]^{-\frac{1}{2n_{IJ}}} \\
|
||||
P_{JIK}\left(\Delta r\right) & = P_{IK}\left(\Delta r\right) = exp\left(\lambda_{3,IK}\cdot \Delta r^3\right) \\
|
||||
W_{IJ}\left(r\right) & = f_{c,IJ}\left(r\right) \\
|
||||
G_{JIK}\left(\theta\right) & = 1+\frac{c_{IK}^2}{d_{IK}^2}-\frac{c_{IK}^2}{d_{IK}^2+\left(h_{IK}+cos\theta\right)^2}
|
||||
|
||||
where :math:`f_{ca,IJ}(r)` is similar to the :math:`f_{c,IJ}(r)` defined above:
|
||||
|
||||
.. math::
|
||||
|
||||
\begin{eqnarray}\nonumber
|
||||
f_{ca,IJ}\left(r\right)=\left\{\begin{array}{l}
|
||||
1, r\leq R_{a,IJ}-D_{a,IJ} \\
|
||||
\frac{1}{2}+\frac{1}{2}cos\left[\frac{\pi\left(r+D_{a,IJ}-R_{a,IJ}\right)}{2D_{a,IJ}}\right], R_{a,IJ}-D_{a,IJ} < r < R_{a,IJ}+D_{a,IJ} \\
|
||||
0, r \geq R_{a,IJ}+D_{a,IJ}
|
||||
\end{array}\right.
|
||||
\end{eqnarray}
|
||||
|
||||
The potential becomes embedded atom method (:ref:`Daw <poly-Daw>`) if we set
|
||||
The potential becomes embedded atom method (:ref:`Daw <poly-Daw>`) if we set
|
||||
|
||||
.. math::
|
||||
|
||||
\begin{eqnarray}\nonumber
|
||||
\left\{\begin{array}{l}
|
||||
\eta_{ij} = 1-\delta_{ij} (\eta = 1),\xi_{IJ}=0 \\
|
||||
U_{IJ}\left(r\right) = \phi_{IJ}\left(r\right) \\
|
||||
V_{IJ}\left(r\right) = 1 \\
|
||||
F_{II}\left(X\right) = -2F_I\left(X\right) \\
|
||||
P_{JIK}\left(\Delta r\right) = P_{IK}\left(\Delta r\right) = 1 \\
|
||||
W_{IJ}\left(r\right) = f_{J}\left(r\right) \\
|
||||
G_{JIK}\left(\theta\right) = 1
|
||||
\end{array}\right.
|
||||
\end{eqnarray}
|
||||
\eta_{ij} & = 1-\delta_{ij} (\eta = 1),\xi_{IJ}=0 \\
|
||||
U_{IJ}\left(r\right) & = \phi_{IJ}\left(r\right) \\
|
||||
V_{IJ}\left(r\right) & = 1 \\
|
||||
F_{II}\left(X\right) & = -2F_I\left(X\right) \\
|
||||
P_{JIK}\left(\Delta r\right) & = P_{IK}\left(\Delta r\right) = 1 \\
|
||||
W_{IJ}\left(r\right) & = f_{J}\left(r\right) \\
|
||||
G_{JIK}\left(\theta\right) & = 1
|
||||
|
||||
In the embedded atom method case, :math:`\phi_{IJ}(r)` is the pair
|
||||
energy, :math:`F_I(X)` is the embedding energy, *X* is the local
|
||||
electron density, and :math:`f_J(r)` is the atomic electron density function.
|
||||
|
||||
The potential reduces to another type of Tersoff potential
|
||||
(:ref:`Zhou <Zhou4>`) if we set
|
||||
(:ref:`Zhou <Zhou4>`) if we set
|
||||
|
||||
.. math::
|
||||
|
||||
\begin{eqnarray}\nonumber
|
||||
\left\{\begin{array}{l}
|
||||
\eta_{ij} = \delta_{ij} (\eta = 3),\xi_{IJ}=1 \\
|
||||
U_{IJ}\left(r\right) = \frac{D_{e,IJ}}{S_{IJ}-1}\cdot exp\left[-\beta_{IJ}\sqrt{2S_{IJ}}\left(r-r_{e,IJ}\right)\right]\cdot f_{c,IJ}\left(r\right) \cdot T_{IJ}\left(r\right)+V_{ZBL,IJ}\left(r\right)\left[1-T_{IJ}\left(r\right)\right] \\
|
||||
V_{IJ}\left(r\right) = \frac{S_{IJ}\cdot D_{e,IJ}}{S_{IJ}-1}\cdot exp\left[-\beta_{IJ}\sqrt{\frac{2}{S_{IJ}}}\left(r-r_{e,IJ}\right)\right]\cdot f_{c,IJ}\left(r\right) \cdot T_{IJ}\left(r\right) \\
|
||||
F_{IJ}\left(X\right) = \left(1+X\right)^{-\frac{1}{2}} \\
|
||||
P_{JIK}\left(\Delta r\right) = \omega_{JIK} \cdot exp\left(\alpha_{JIK}\cdot \Delta r\right) \\
|
||||
W_{IJ}\left(r\right) = f_{c,IJ}\left(r\right) \\
|
||||
G_{JIK}\left(\theta\right) = \gamma_{JIK}\left[1+\frac{c_{JIK}^2}{d_{JIK}^2}-\frac{c_{JIK}^2}{d_{JIK}^2+\left(h_{JIK}+cos\theta\right)^2}\right] \\
|
||||
T_{IJ}\left(r\right) = \frac{1}{1+exp\left[-b_{f,IJ}\left(r-r_{f,IJ}\right)\right]} \\
|
||||
V_{ZBL,IJ}\left(r\right) = 14.4 \cdot \frac{Z_I \cdot Z_J}{r}\sum_{k=1}^{4}\mu_k \cdot exp\left[-\nu_k \left(Z_I^{0.23}+Z_J^{0.23}\right) r\right]
|
||||
\end{array}\right.
|
||||
\end{eqnarray}
|
||||
\eta_{ij} & = \delta_{ij} (\eta = 3),\xi_{IJ}=1 \\
|
||||
U_{IJ}\left(r\right) & = \frac{D_{e,IJ}}{S_{IJ}-1}\cdot exp\left[-\beta_{IJ}\sqrt{2S_{IJ}}\left(r-r_{e,IJ}\right)\right]\cdot f_{c,IJ}\left(r\right) \cdot T_{IJ}\left(r\right)+V_{ZBL,IJ}\left(r\right)\left[1-T_{IJ}\left(r\right)\right] \\
|
||||
V_{IJ}\left(r\right) & = \frac{S_{IJ}\cdot D_{e,IJ}}{S_{IJ}-1}\cdot exp\left[-\beta_{IJ}\sqrt{\frac{2}{S_{IJ}}}\left(r-r_{e,IJ}\right)\right]\cdot f_{c,IJ}\left(r\right) \cdot T_{IJ}\left(r\right) \\
|
||||
F_{IJ}\left(X\right) & = \left(1+X\right)^{-\frac{1}{2}} \\
|
||||
P_{JIK}\left(\Delta r\right) & = \omega_{JIK} \cdot exp\left(\alpha_{JIK}\cdot \Delta r\right) \\
|
||||
W_{IJ}\left(r\right) & = f_{c,IJ}\left(r\right) \\
|
||||
G_{JIK}\left(\theta\right) & = \gamma_{JIK}\left[1+\frac{c_{JIK}^2}{d_{JIK}^2}-\frac{c_{JIK}^2}{d_{JIK}^2+\left(h_{JIK}+cos\theta\right)^2}\right] \\
|
||||
T_{IJ}\left(r\right) & = \frac{1}{1+exp\left[-b_{f,IJ}\left(r-r_{f,IJ}\right)\right]} \\
|
||||
V_{ZBL,IJ}\left(r\right) & = 14.4 \cdot \frac{Z_I \cdot Z_J}{r}\sum_{k=1}^{4}\mu_k \cdot exp\left[-\nu_k \left(Z_I^{0.23}+Z_J^{0.23}\right) r\right]
|
||||
|
||||
where :math:`f_{c,IJ}(r)` is the as defined above. This Tersoff potential
|
||||
differs from the one above because the :math:`\P_{JIK}(\Delta r)` function
|
||||
differs from the one above because the :math:`P_{JIK}(\Delta r)` function
|
||||
is now dependent on all three species I, J, and K.
|
||||
|
||||
If the tabulated functions are created using the parameters of sw,
|
||||
|
@ -251,7 +217,7 @@ and are ignored by LAMMPS. The next line lists two numbers:
|
|||
|
||||
.. parsed-literal::
|
||||
|
||||
ntypes :math:`\eta`
|
||||
ntypes eta
|
||||
|
||||
Here ntypes represent total number of species defined in the potential
|
||||
file, :math:`\eta = 1` reduces to embedded atom method, :math:`\eta = 3`
|
||||
|
@ -291,10 +257,10 @@ The next ntypes\*(ntypes+1)/2 lines contain two numbers:
|
|||
|
||||
.. parsed-literal::
|
||||
|
||||
cut :math:`xi`(1)
|
||||
cut :math:`xi`(2)
|
||||
cut xi(1)
|
||||
cut xi(2)
|
||||
...
|
||||
cut :math:`xi`(ntypes\*(ntypes+1)/2)
|
||||
cut xi(ntypes\*(ntypes+1)/2)
|
||||
|
||||
Here cut means the cutoff distance of the pair functions, :math:`\xi` is
|
||||
the same as defined in the potential functions above. The
|
||||
|
@ -323,10 +289,10 @@ For each of the F functions, nx values are listed.
|
|||
|
||||
**Mixing, shift, table tail correction, restart**\ :
|
||||
|
||||
This pair styles does not support the :doc:`pair_modify <pair_modify>`
|
||||
This pair styles does not support the :doc:`pair_modify <pair_modify>`
|
||||
shift, table, and tail options.
|
||||
|
||||
This pair style does not write their information to :doc:`binary restart files <restart>`, since it is stored in potential files. Thus, you
|
||||
This pair style does not write their information to :doc:`binary restart files <restart>`, since it is stored in potential files. Thus, you
|
||||
need to re-specify the pair_style and pair_coeff commands in an input
|
||||
script that reads a restart file.
|
||||
|
||||
|
@ -340,20 +306,20 @@ input script. If using read_data, atomic masses must be defined in the
|
|||
atomic structure data file.
|
||||
|
||||
This pair style is part of the MANYBODY package. It is only enabled if
|
||||
LAMMPS was built with that package. See the :doc:`Build package <Build_package>` doc page for more info.
|
||||
LAMMPS was built with that package. See the :doc:`Build package <Build_package>` doc page for more info.
|
||||
|
||||
This pair potential requires the :doc:`newtion <newton>` setting to be
|
||||
This pair potential requires the :doc:`newtion <newton>` setting to be
|
||||
"on" for pair interactions.
|
||||
|
||||
The potential files provided with LAMMPS (see the potentials
|
||||
directory) are parameterized for metal :doc:`units <units>`. You can use
|
||||
directory) are parameterized for metal :doc:`units <units>`. You can use
|
||||
any LAMMPS units, but you would need to create your own potential
|
||||
files.
|
||||
|
||||
Related commands
|
||||
""""""""""""""""
|
||||
|
||||
:doc:`pair_coeff <pair_coeff>`
|
||||
:doc:`pair_coeff <pair_coeff>`
|
||||
|
||||
----------
|
||||
|
||||
|
|
Loading…
Reference in New Issue