mirror of https://github.com/lammps/lammps.git
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@4905 f3b2605a-c512-4ea7-a41b-209d697bcdaa
This commit is contained in:
parent
60df73893f
commit
2e730cfbad
|
@ -4,20 +4,32 @@ if (test $1 = 1) then
|
|||
|
||||
cp compute_event_displace.cpp ..
|
||||
cp fix_event.cpp ..
|
||||
cp fix_neb.cpp ..
|
||||
cp neb.cpp ..
|
||||
cp prd.cpp ..
|
||||
cp temper.cpp ..
|
||||
|
||||
cp compute_event_displace.h ..
|
||||
cp fix_event.h ..
|
||||
cp fix_neb.h ..
|
||||
cp neb.h ..
|
||||
cp prd.h ..
|
||||
cp temper.h ..
|
||||
|
||||
elif (test $1 = 0) then
|
||||
|
||||
rm ../compute_event_displace.cpp
|
||||
rm ../fix_event.cpp
|
||||
rm ../fix_neb.cpp
|
||||
rm ../neb.cpp
|
||||
rm ../prd.cpp
|
||||
rm ../temper.cpp
|
||||
|
||||
rm ../compute_event_displace.h
|
||||
rm ../fix_event.h
|
||||
rm ../fix_neb.h
|
||||
rm ../neb.h
|
||||
rm ../prd.h
|
||||
rm ../temper.h
|
||||
|
||||
fi
|
|
@ -0,0 +1,299 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
|
||||
http://lammps.sandia.gov, Sandia National Laboratories
|
||||
Steve Plimpton, sjplimp@sandia.gov
|
||||
|
||||
Copyright (2003) Sandia Corporation. Under the terms of Contract
|
||||
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
|
||||
certain rights in this software. This software is distributed under
|
||||
the GNU General Public License.
|
||||
|
||||
See the README file in the top-level LAMMPS directory.
|
||||
------------------------------------------------------------------------- */
|
||||
|
||||
#include "mpi.h"
|
||||
#include "math.h"
|
||||
#include "stdlib.h"
|
||||
#include "string.h"
|
||||
#include "fix_neb.h"
|
||||
#include "universe.h"
|
||||
#include "update.h"
|
||||
#include "domain.h"
|
||||
#include "modify.h"
|
||||
#include "compute.h"
|
||||
#include "atom.h"
|
||||
#include "memory.h"
|
||||
#include "error.h"
|
||||
|
||||
using namespace LAMMPS_NS;
|
||||
|
||||
#define MIN(A,B) ((A) < (B)) ? (A) : (B)
|
||||
#define MAX(A,B) ((A) > (B)) ? (A) : (B)
|
||||
|
||||
/* ---------------------------------------------------------------------- */
|
||||
|
||||
FixNEB::FixNEB(LAMMPS *lmp, int narg, char **arg) :
|
||||
Fix(lmp, narg, arg)
|
||||
{
|
||||
if (narg != 4) error->all("Illegal fix neb command");
|
||||
|
||||
kspring = atof(arg[3]);
|
||||
if (kspring <= 0.0) error->all("Illegal fix neb command");
|
||||
|
||||
// nreplica = number of partitions
|
||||
// ireplica = which world I am in universe
|
||||
// procprev,procnext = root proc in adjacent replicas
|
||||
|
||||
nreplica = universe->nworlds;
|
||||
ireplica = universe->iworld;
|
||||
if (nreplica == 1)
|
||||
error->all("Cannot use fix neb without multiple replicas");
|
||||
if (nreplica != universe->nprocs)
|
||||
error->all("Can only use NEB with 1-processor replicas");
|
||||
|
||||
if (ireplica > 0) procprev = universe->root_proc[ireplica-1];
|
||||
else procprev = -1;
|
||||
if (ireplica < nreplica-1) procnext = universe->root_proc[ireplica+1];
|
||||
else procnext = -1;
|
||||
uworld = universe->uworld;
|
||||
|
||||
// create a new compute pe style
|
||||
// id = fix-ID + pe, compute group = all
|
||||
|
||||
int n = strlen(id) + 4;
|
||||
id_pe = new char[n];
|
||||
strcpy(id_pe,id);
|
||||
strcat(id_pe,"_pe");
|
||||
|
||||
char **newarg = new char*[3];
|
||||
newarg[0] = id_pe;
|
||||
newarg[1] = (char *) "all";
|
||||
newarg[2] = (char *) "pe";
|
||||
modify->add_compute(3,newarg);
|
||||
delete [] newarg;
|
||||
|
||||
xprev = xnext = tangent = NULL;
|
||||
}
|
||||
|
||||
/* ---------------------------------------------------------------------- */
|
||||
|
||||
FixNEB::~FixNEB()
|
||||
{
|
||||
modify->delete_compute(id_pe);
|
||||
delete [] id_pe;
|
||||
|
||||
memory->destroy_2d_double_array(xprev);
|
||||
memory->destroy_2d_double_array(xnext);
|
||||
memory->destroy_2d_double_array(tangent);
|
||||
}
|
||||
|
||||
/* ---------------------------------------------------------------------- */
|
||||
|
||||
int FixNEB::setmask()
|
||||
{
|
||||
int mask = 0;
|
||||
mask |= MIN_POST_FORCE;
|
||||
return mask;
|
||||
}
|
||||
|
||||
/* ---------------------------------------------------------------------- */
|
||||
|
||||
void FixNEB::init()
|
||||
{
|
||||
int icompute = modify->find_compute(id_pe);
|
||||
if (icompute < 0)
|
||||
error->all("Potential energy ID for fix neb does not exist");
|
||||
pe = modify->compute[icompute];
|
||||
|
||||
// turn off climbing mode, NEB command turns it on after init()
|
||||
|
||||
rclimber = -1;
|
||||
|
||||
// setup xprev and xnext arrays
|
||||
|
||||
memory->destroy_2d_double_array(xprev);
|
||||
memory->destroy_2d_double_array(xnext);
|
||||
memory->destroy_2d_double_array(tangent);
|
||||
natoms = atom->nlocal;
|
||||
xprev = memory->create_2d_double_array(natoms,3,"neb:xprev");
|
||||
xnext = memory->create_2d_double_array(natoms,3,"neb:xnext");
|
||||
tangent = memory->create_2d_double_array(natoms,3,"neb:tangent");
|
||||
}
|
||||
|
||||
/* ---------------------------------------------------------------------- */
|
||||
|
||||
void FixNEB::min_setup(int vflag)
|
||||
{
|
||||
min_post_force(vflag);
|
||||
|
||||
// trigger potential energy computation on next timestep
|
||||
|
||||
pe->addstep(update->ntimestep+1);
|
||||
}
|
||||
|
||||
/* ---------------------------------------------------------------------- */
|
||||
|
||||
void FixNEB::min_post_force(int vflag)
|
||||
{
|
||||
MPI_Status status;
|
||||
double vprev,vnext,vmax,vmin;
|
||||
double delx,dely,delz;
|
||||
double delta1[3],delta2[3];
|
||||
|
||||
// veng = PE of this replica
|
||||
// vprev,vnext = PEs of adjacent replicas
|
||||
|
||||
veng = pe->compute_scalar();
|
||||
|
||||
if (ireplica < nreplica-1)
|
||||
MPI_Sendrecv(&veng,1,MPI_DOUBLE,procnext,0,
|
||||
&vprev,1,MPI_DOUBLE,procprev,0,uworld,&status);
|
||||
if (ireplica > 0)
|
||||
MPI_Sendrecv(&veng,1,MPI_DOUBLE,procprev,0,
|
||||
&vnext,1,MPI_DOUBLE,procnext,0,uworld,&status);
|
||||
|
||||
// xprev,xnext = atom coords of adjacent replicas
|
||||
// assume order of atoms in all replicas is the same
|
||||
// check that number of atoms hasn't changed
|
||||
|
||||
double **x = atom->x;
|
||||
int *mask = atom->mask;
|
||||
int nlocal = atom->nlocal;
|
||||
if (nlocal != natoms) error->one("Atom count changed in fix neb");
|
||||
|
||||
if (ireplica < nreplica-1)
|
||||
MPI_Sendrecv(x[0],3*nlocal,MPI_DOUBLE,procnext,0,
|
||||
xprev[0],3*nlocal,MPI_DOUBLE,procprev,0,uworld,&status);
|
||||
if (ireplica > 0)
|
||||
MPI_Sendrecv(x[0],3*nlocal,MPI_DOUBLE,procprev,0,
|
||||
xnext[0],3*nlocal,MPI_DOUBLE,procnext,0,uworld,&status);
|
||||
|
||||
// trigger potential energy computation on next timestep
|
||||
|
||||
pe->addstep(update->ntimestep+1);
|
||||
|
||||
// if this is first or last replica, no change to forces, just return
|
||||
|
||||
if (ireplica == 0 || ireplica == nreplica-1) {
|
||||
plen = nlen = 0.0;
|
||||
return;
|
||||
}
|
||||
|
||||
// tangent = unit tangent vector in 3N space
|
||||
// based on delta vectors between atoms and their images in adjacent replicas
|
||||
// use one or two delta vecs to compute tangent,
|
||||
// depending on relative PEs of 3 replicas
|
||||
// see Henkelman & Jonsson 2000 paper, eqs 8-11
|
||||
|
||||
if (vnext > veng && veng > vprev) {
|
||||
for (int i = 0; i < nlocal; i++)
|
||||
if (mask[i] & groupbit) {
|
||||
tangent[i][0] = xnext[i][0] - x[i][0];
|
||||
tangent[i][1] = xnext[i][1] - x[i][1];
|
||||
tangent[i][2] = xnext[i][2] - x[i][2];
|
||||
domain->minimum_image(tangent[i]);
|
||||
}
|
||||
} else if (vnext < veng && veng < vprev) {
|
||||
for (int i = 0; i < nlocal; i++)
|
||||
if (mask[i] & groupbit) {
|
||||
tangent[i][0] = x[i][0] - xprev[i][0];
|
||||
tangent[i][1] = x[i][1] - xprev[i][1];
|
||||
tangent[i][2] = x[i][2] - xprev[i][2];
|
||||
domain->minimum_image(tangent[i]);
|
||||
}
|
||||
} else {
|
||||
vmax = MAX(fabs(vnext-veng),fabs(vprev-veng));
|
||||
vmin = MIN(fabs(vnext-veng),fabs(vprev-veng));
|
||||
for (int i = 0; i < nlocal; i++)
|
||||
if (mask[i] & groupbit) {
|
||||
delta1[0] = xnext[i][0] - x[i][0];
|
||||
delta1[1] = xnext[i][1] - x[i][1];
|
||||
delta1[2] = xnext[i][2] - x[i][2];
|
||||
domain->minimum_image(delta1);
|
||||
delta2[0] = x[i][0] - xprev[i][0];
|
||||
delta2[1] = x[i][1] - xprev[i][1];
|
||||
delta2[2] = x[i][2] - xprev[i][2];
|
||||
domain->minimum_image(delta2);
|
||||
if (vnext > vprev) {
|
||||
tangent[i][0] = vmax*delta1[0] + vmin*delta2[0];
|
||||
tangent[i][1] = vmax*delta1[1] + vmin*delta2[1];
|
||||
tangent[i][2] = vmax*delta1[2] + vmin*delta2[2];
|
||||
} else {
|
||||
tangent[i][0] = vmin*delta1[0] + vmax*delta2[0];
|
||||
tangent[i][1] = vmin*delta1[1] + vmax*delta2[1];
|
||||
tangent[i][2] = vmin*delta1[2] + vmax*delta2[2];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// tlen,plen,nlen = lengths of tangent, prev, next vectors
|
||||
|
||||
double tlen = 0.0;
|
||||
plen = 0.0;
|
||||
nlen = 0.0;
|
||||
|
||||
for (int i = 0; i < nlocal; i++)
|
||||
if (mask[i] & groupbit) {
|
||||
tlen += tangent[i][0]*tangent[i][0] + tangent[i][1]*tangent[i][1] +
|
||||
tangent[i][2]*tangent[i][2];
|
||||
|
||||
delx = x[i][0] - xprev[i][0];
|
||||
dely = x[i][1] - xprev[i][1];
|
||||
delz = x[i][2] - xprev[i][2];
|
||||
domain->minimum_image(delx,dely,delz);
|
||||
plen += delx*delx + dely*dely + delz*delz;
|
||||
|
||||
delx = xnext[i][0] - x[i][0];
|
||||
dely = xnext[i][1] - x[i][1];
|
||||
delz = xnext[i][2] - x[i][2];
|
||||
domain->minimum_image(delx,dely,delz);
|
||||
nlen += delx*delx + dely*dely + delz*delz;
|
||||
}
|
||||
|
||||
tlen = sqrt(tlen);
|
||||
plen = sqrt(plen);
|
||||
nlen = sqrt(nlen);
|
||||
|
||||
// normalize tangent vector
|
||||
|
||||
if (tlen > 0.0) {
|
||||
double tleninv = 1.0/tlen;
|
||||
for (int i = 0; i < nlocal; i++)
|
||||
if (mask[i] & groupbit) {
|
||||
tangent[i][0] *= tleninv;
|
||||
tangent[i][1] *= tleninv;
|
||||
tangent[i][2] *= tleninv;
|
||||
}
|
||||
}
|
||||
|
||||
// reset force on each atom in this replica
|
||||
// regular NEB for all replicas except rclimber does hill-climbing NEB
|
||||
// currently have F = -Grad(V) = -Grad(V)_perp - Grad(V)_parallel
|
||||
// want F = -Grad(V)_perp + Fspring for regular NEB
|
||||
// thus Fdelta = Grad(V)_parallel + Fspring for regular NEB
|
||||
// want F = -Grad(V) + 2 Grad(V)_parallel for hill-climbing NEB
|
||||
// thus Fdelta = 2 Grad(V)_parallel for hill-climbing NEB
|
||||
// Grad(V)_parallel = (Grad(V) . utan) * utangent = -(F . utan) * utangent
|
||||
// Fspring = k (nlen - plen) * utangent
|
||||
// see Henkelman & Jonsson 2000 paper, eqs 3,4,12
|
||||
// see Henkelman & Jonsson 2000a paper, eq 5
|
||||
|
||||
double **f = atom->f;
|
||||
|
||||
double dot = 0.0;
|
||||
for (int i = 0; i < nlocal; i++)
|
||||
if (mask[i] & groupbit)
|
||||
dot += f[i][0]*tangent[i][0] + f[i][1]*tangent[i][1] +
|
||||
f[i][2]*tangent[i][2];
|
||||
|
||||
double prefactor;
|
||||
if (ireplica == rclimber) prefactor = -2.0*dot;
|
||||
else prefactor = -dot + kspring*(nlen-plen);
|
||||
|
||||
for (int i = 0; i < nlocal; i++)
|
||||
if (mask[i] & groupbit) {
|
||||
f[i][0] += prefactor*tangent[i][0];
|
||||
f[i][1] += prefactor*tangent[i][1];
|
||||
f[i][2] += prefactor*tangent[i][2];
|
||||
}
|
||||
}
|
|
@ -0,0 +1,56 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
|
||||
http://lammps.sandia.gov, Sandia National Laboratories
|
||||
Steve Plimpton, sjplimp@sandia.gov
|
||||
|
||||
Copyright (2003) Sandia Corporation. Under the terms of Contract
|
||||
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
|
||||
certain rights in this software. This software is distributed under
|
||||
the GNU General Public License.
|
||||
|
||||
See the README file in the top-level LAMMPS directory.
|
||||
------------------------------------------------------------------------- */
|
||||
|
||||
#ifdef FIX_CLASS
|
||||
|
||||
FixStyle(neb,FixNEB)
|
||||
|
||||
#else
|
||||
|
||||
#ifndef LMP_FIX_NEB_H
|
||||
#define LMP_FIX_NEB_H
|
||||
|
||||
#include "fix.h"
|
||||
|
||||
namespace LAMMPS_NS {
|
||||
|
||||
class FixNEB : public Fix {
|
||||
public:
|
||||
double veng,plen,nlen;
|
||||
int rclimber;
|
||||
|
||||
FixNEB(class LAMMPS *, int, char **);
|
||||
~FixNEB();
|
||||
int setmask();
|
||||
void init();
|
||||
void min_setup(int);
|
||||
void min_post_force(int);
|
||||
|
||||
private:
|
||||
double kspring;
|
||||
int ireplica,nreplica;
|
||||
int procnext,procprev;
|
||||
MPI_Comm uworld;
|
||||
|
||||
char *id_pe;
|
||||
class Compute *pe;
|
||||
|
||||
int natoms;
|
||||
double **xprev,**xnext;
|
||||
double **tangent;
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
#endif
|
||||
#endif
|
|
@ -0,0 +1,389 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
|
||||
http://lammps.sandia.gov, Sandia National Laboratories
|
||||
Steve Plimpton, sjplimp@sandia.gov
|
||||
|
||||
Copyright (2003) Sandia Corporation. Under the terms of Contract
|
||||
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
|
||||
certain rights in this software. This software is distributed under
|
||||
the GNU General Public License.
|
||||
|
||||
See the README file in the top-level LAMMPS directory.
|
||||
------------------------------------------------------------------------- */
|
||||
|
||||
#include "mpi.h"
|
||||
#include "math.h"
|
||||
#include "stdlib.h"
|
||||
#include "string.h"
|
||||
#include "neb.h"
|
||||
#include "universe.h"
|
||||
#include "atom.h"
|
||||
#include "update.h"
|
||||
#include "domain.h"
|
||||
#include "min.h"
|
||||
#include "modify.h"
|
||||
#include "fix.h"
|
||||
#include "fix_neb.h"
|
||||
#include "output.h"
|
||||
#include "thermo.h"
|
||||
#include "finish.h"
|
||||
#include "timer.h"
|
||||
#include "memory.h"
|
||||
#include "error.h"
|
||||
|
||||
using namespace LAMMPS_NS;
|
||||
|
||||
#define CHUNK 1000
|
||||
#define MAXLINE 256
|
||||
|
||||
/* ---------------------------------------------------------------------- */
|
||||
|
||||
NEB::NEB(LAMMPS *lmp) : Pointers(lmp) {}
|
||||
|
||||
/* ---------------------------------------------------------------------- */
|
||||
|
||||
NEB::~NEB()
|
||||
{
|
||||
MPI_Comm_free(&roots);
|
||||
memory->destroy_2d_double_array(all);
|
||||
delete [] rdist;
|
||||
}
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
perform NEB on multiple replicas
|
||||
------------------------------------------------------------------------- */
|
||||
|
||||
void NEB::command(int narg, char **arg)
|
||||
{
|
||||
if (domain->box_exist == 0)
|
||||
error->all("NEB command before simulation box is defined");
|
||||
|
||||
if (narg != 5) error->universe_all("Illegal NEB command");
|
||||
|
||||
double ftol = atof(arg[0]);
|
||||
int n1steps = atoi(arg[1]);
|
||||
int n2steps = atoi(arg[2]);
|
||||
int nevery = atoi(arg[3]);
|
||||
char *infile = arg[4];
|
||||
|
||||
// error checks
|
||||
|
||||
if (ftol < 0.0) error->all("Illegal NEB command");
|
||||
if (nevery == 0) error->universe_all("Illegal NEB command");
|
||||
if (n1steps % nevery || n2steps % nevery)
|
||||
error->universe_all("Illegal NEB command");
|
||||
|
||||
// replica info
|
||||
|
||||
nreplica = universe->nworlds;
|
||||
ireplica = universe->iworld;
|
||||
me_universe = universe->me;
|
||||
uworld = universe->uworld;
|
||||
MPI_Comm_rank(world,&me);
|
||||
|
||||
// create MPI communicator for root proc from each world
|
||||
|
||||
int color;
|
||||
if (me == 0) color = 0;
|
||||
else color = 1;
|
||||
MPI_Comm_split(uworld,color,0,&roots);
|
||||
|
||||
// error checks
|
||||
|
||||
if (nreplica == 1) error->all("Cannot use NEB without multiple replicas");
|
||||
if (nreplica != universe->nprocs)
|
||||
error->all("Can only use NEB with 1-processor replicas");
|
||||
if (atom->sortfreq > 0)
|
||||
error->all("Cannot use NEB with atom_modify sort enabled");
|
||||
if (atom->map_style == 0)
|
||||
error->all("Cannot use NEB unless atom map exists");
|
||||
|
||||
int ineb,idamp;
|
||||
for (ineb = 0; ineb < modify->nfix; ineb++)
|
||||
if (strcmp(modify->fix[ineb]->style,"neb") == 0) break;
|
||||
if (ineb == modify->nfix) error->all("NEB requires use of fix neb");
|
||||
|
||||
fneb = (FixNEB *) modify->fix[ineb];
|
||||
all = memory->create_2d_double_array(nreplica,3,"neb:all");
|
||||
rdist = new double[nreplica];
|
||||
|
||||
// initialize LAMMPS
|
||||
|
||||
update->whichflag = 2;
|
||||
update->etol = 0.0;
|
||||
update->ftol = ftol;
|
||||
|
||||
lmp->init();
|
||||
|
||||
if (update->minimize->searchflag)
|
||||
error->all("NEB requires damped dynamics minimizer");
|
||||
|
||||
// read in file of final state atom coords and reset my coords
|
||||
|
||||
readfile(infile);
|
||||
|
||||
// setup regular NEB minimizaiton
|
||||
|
||||
if (me_universe == 0 && universe->uscreen)
|
||||
fprintf(universe->uscreen,"Setting up regular NEB ...\n");
|
||||
|
||||
update->beginstep = update->firststep = update->ntimestep;
|
||||
update->endstep = update->laststep = update->firststep + n1steps;
|
||||
update->nsteps = n1steps;
|
||||
update->max_eval = n1steps;
|
||||
|
||||
update->minimize->setup();
|
||||
|
||||
if (me_universe == 0) {
|
||||
if (universe->uscreen)
|
||||
fprintf(universe->uscreen,"Step RD1 PE1 RD2 PE2 ... RDN PEN\n");
|
||||
if (universe->ulogfile)
|
||||
fprintf(universe->ulogfile,"Step RD1 PE1 RD2 PE2 ... RDN PEN\n");
|
||||
}
|
||||
print_status();
|
||||
|
||||
// perform regular NEB for n1steps or until all replicas converged
|
||||
// retrieve PE values from fix NEB and print every nevery iterations
|
||||
// break induced by MPI_Allreduce() and MPI_Bcast()
|
||||
// only if all replicas have stop_condition > 0
|
||||
|
||||
int flag,flagall;
|
||||
|
||||
timer->barrier_start(TIME_LOOP);
|
||||
|
||||
while (update->minimize->niter < n1steps) {
|
||||
update->minimize->run(nevery,1);
|
||||
print_status();
|
||||
if (me == 0) {
|
||||
flag = update->minimize->stop_condition;
|
||||
MPI_Allreduce(&flag,&flagall,1,MPI_INT,MPI_MIN,roots);
|
||||
}
|
||||
MPI_Bcast(&flagall,1,MPI_INT,0,world);
|
||||
if (flagall) break;
|
||||
}
|
||||
|
||||
timer->barrier_stop(TIME_LOOP);
|
||||
|
||||
update->minimize->cleanup();
|
||||
|
||||
Finish finish(lmp);
|
||||
finish.end(1);
|
||||
|
||||
// switch fix NEB to climbing mode
|
||||
|
||||
double vmax = all[0][0];
|
||||
int top = 0;
|
||||
for (int m = 1; m < nreplica; m++)
|
||||
if (vmax < all[m][0]) {
|
||||
vmax = all[m][0];
|
||||
top = m;
|
||||
}
|
||||
|
||||
// setup climbing NEB minimization
|
||||
// must reinitialize minimizer so it re-creates its fix MINIMIZE
|
||||
|
||||
if (me_universe == 0 && universe->uscreen)
|
||||
fprintf(universe->uscreen,"Setting up climbing NEB ...\n");
|
||||
|
||||
update->beginstep = update->firststep = update->ntimestep;
|
||||
update->endstep = update->laststep = update->firststep + n2steps;
|
||||
update->nsteps = n2steps;
|
||||
update->max_eval = n2steps;
|
||||
|
||||
update->minimize->init();
|
||||
fneb->rclimber = top;
|
||||
update->minimize->setup();
|
||||
|
||||
if (me_universe == 0) {
|
||||
if (universe->uscreen)
|
||||
fprintf(universe->uscreen,"Step RD1 PE1 RD2 PE2 ... RDN PEN\n");
|
||||
if (universe->ulogfile)
|
||||
fprintf(universe->ulogfile,"Step RD1 PE1 RD2 PE2 ... RDN PEN\n");
|
||||
}
|
||||
print_status();
|
||||
|
||||
// perform climbing NEB for n2steps or until all replicas converged
|
||||
// retrieve PE values from fix NEB and print every nevery iterations
|
||||
// break induced by MPI_Allreduce() and MPI_Bcast()
|
||||
// only if all replicas have stop_condition > 0
|
||||
|
||||
timer->barrier_start(TIME_LOOP);
|
||||
|
||||
while (update->minimize->niter < n2steps) {
|
||||
update->minimize->run(nevery,1);
|
||||
print_status();
|
||||
if (me == 0) {
|
||||
flag = update->minimize->stop_condition;
|
||||
MPI_Allreduce(&flag,&flagall,1,MPI_INT,MPI_MIN,roots);
|
||||
}
|
||||
MPI_Bcast(&flagall,1,MPI_INT,0,world);
|
||||
if (flagall) break;
|
||||
}
|
||||
|
||||
timer->barrier_stop(TIME_LOOP);
|
||||
|
||||
update->minimize->cleanup();
|
||||
|
||||
finish.end(1);
|
||||
|
||||
update->whichflag = 0;
|
||||
update->firststep = update->laststep = 0;
|
||||
update->beginstep = update->endstep = 0;
|
||||
}
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
read target coordinates from file, store with appropriate atom
|
||||
adjust coords of each atom based on ireplica
|
||||
new coord = replica fraction between current and final state
|
||||
------------------------------------------------------------------------- */
|
||||
|
||||
void NEB::readfile(char *file)
|
||||
{
|
||||
if (me_universe == 0) {
|
||||
if (screen) fprintf(screen,"Reading NEB target file %s ...\n",file);
|
||||
open(file);
|
||||
}
|
||||
|
||||
double fraction = ireplica/(nreplica-1.0);
|
||||
|
||||
double **x = atom->x;
|
||||
int *image = atom->image;
|
||||
int nlocal = atom->nlocal;
|
||||
|
||||
char *buffer = new char[CHUNK*MAXLINE];
|
||||
char *ptr,*next,*bufptr;
|
||||
int i,m,nlines,tag;
|
||||
double xx,yy,zz,delx,dely,delz;
|
||||
|
||||
int firstline = 1;
|
||||
int ncount = 0;
|
||||
int eof = 0;
|
||||
|
||||
while (!eof) {
|
||||
if (me_universe == 0) {
|
||||
m = 0;
|
||||
for (nlines = 0; nlines < CHUNK; nlines++) {
|
||||
ptr = fgets(&buffer[m],MAXLINE,fp);
|
||||
if (ptr == NULL) break;
|
||||
m += strlen(&buffer[m]);
|
||||
}
|
||||
if (ptr == NULL) eof = 1;
|
||||
buffer[m++] = '\n';
|
||||
}
|
||||
|
||||
MPI_Bcast(&eof,1,MPI_INT,0,uworld);
|
||||
MPI_Bcast(&nlines,1,MPI_INT,0,uworld);
|
||||
MPI_Bcast(&m,1,MPI_INT,0,uworld);
|
||||
MPI_Bcast(buffer,m,MPI_CHAR,0,uworld);
|
||||
|
||||
bufptr = buffer;
|
||||
for (i = 0; i < nlines; i++) {
|
||||
next = strchr(bufptr,'\n');
|
||||
*next = '\0';
|
||||
|
||||
if (firstline) {
|
||||
if (atom->count_words(bufptr) == 4) firstline = 0;
|
||||
else error->all("Incorrect format in NEB target file");
|
||||
}
|
||||
|
||||
sscanf(bufptr,"%d %lg %lg %lg",&tag,&xx,&yy,&zz);
|
||||
|
||||
// adjust atom coord based on replica fraction
|
||||
// ignore image flags of final x
|
||||
// new x is displacement from old x
|
||||
// if final x is across periodic boundary:
|
||||
// new x may be outside box
|
||||
// will be remapped back into box when simulation starts
|
||||
// its image flags will be adjusted appropriately
|
||||
|
||||
m = atom->map(tag);
|
||||
if (m >= 0 && m < nlocal) {
|
||||
delx = xx - x[m][0];
|
||||
dely = yy - x[m][1];
|
||||
delz = zz - x[m][2];
|
||||
domain->minimum_image(delx,dely,delz);
|
||||
x[m][0] += fraction*delx;
|
||||
x[m][1] += fraction*dely;
|
||||
x[m][2] += fraction*delz;
|
||||
ncount++;
|
||||
}
|
||||
|
||||
bufptr = next + 1;
|
||||
}
|
||||
}
|
||||
|
||||
// clean up
|
||||
|
||||
delete [] buffer;
|
||||
|
||||
if (me_universe == 0) {
|
||||
if (compressed) pclose(fp);
|
||||
else fclose(fp);
|
||||
}
|
||||
}
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
universe proc 0 opens NEB data file
|
||||
test if gzipped
|
||||
------------------------------------------------------------------------- */
|
||||
|
||||
void NEB::open(char *file)
|
||||
{
|
||||
compressed = 0;
|
||||
char *suffix = file + strlen(file) - 3;
|
||||
if (suffix > file && strcmp(suffix,".gz") == 0) compressed = 1;
|
||||
if (!compressed) fp = fopen(file,"r");
|
||||
else {
|
||||
#ifdef LAMMPS_GZIP
|
||||
char gunzip[128];
|
||||
sprintf(gunzip,"gunzip -c %s",file);
|
||||
fp = popen(gunzip,"r");
|
||||
#else
|
||||
error->one("Cannot open gzipped file");
|
||||
#endif
|
||||
}
|
||||
|
||||
if (fp == NULL) {
|
||||
char str[128];
|
||||
sprintf(str,"Cannot open file %s",file);
|
||||
error->one(str);
|
||||
}
|
||||
}
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
query fix NEB for PE of each replica
|
||||
proc 0 prints current NEB status
|
||||
------------------------------------------------------------------------- */
|
||||
|
||||
void NEB::print_status()
|
||||
{
|
||||
double one[3];
|
||||
one[0] = fneb->veng;
|
||||
one[1] = fneb->plen;
|
||||
one[2] = fneb->nlen;
|
||||
if (output->thermo->normflag) one[0] /= atom->natoms;
|
||||
if (me == 0) MPI_Allgather(one,3,MPI_DOUBLE,&all[0][0],3,MPI_DOUBLE,roots);
|
||||
|
||||
rdist[0] = 0.0;
|
||||
for (int i = 1; i < nreplica; i++)
|
||||
rdist[i] = rdist[i-1] + all[i][1];
|
||||
double endpt = rdist[nreplica-1] = rdist[nreplica-2] + all[nreplica-2][2];
|
||||
for (int i = 1; i < nreplica; i++)
|
||||
rdist[i] /= endpt;
|
||||
|
||||
if (me_universe == 0) {
|
||||
if (universe->uscreen) {
|
||||
fprintf(universe->uscreen,"%d ",update->ntimestep);
|
||||
for (int i = 0; i < nreplica; i++)
|
||||
fprintf(universe->uscreen,"%g %g ",rdist[i],all[i][0]);
|
||||
fprintf(universe->uscreen,"\n");
|
||||
}
|
||||
if (universe->ulogfile) {
|
||||
fprintf(universe->ulogfile,"%d ",update->ntimestep);
|
||||
for (int i = 0; i < nreplica; i++)
|
||||
fprintf(universe->ulogfile,"%g %g ",rdist[i],all[i][0]);
|
||||
fprintf(universe->ulogfile,"\n");
|
||||
fflush(universe->ulogfile);
|
||||
}
|
||||
}
|
||||
}
|
|
@ -0,0 +1,54 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
|
||||
http://lammps.sandia.gov, Sandia National Laboratories
|
||||
Steve Plimpton, sjplimp@sandia.gov
|
||||
|
||||
Copyright (2003) Sandia Corporation. Under the terms of Contract
|
||||
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
|
||||
certain rights in this software. This software is distributed under
|
||||
the GNU General Public License.
|
||||
|
||||
See the README file in the top-level LAMMPS directory.
|
||||
------------------------------------------------------------------------- */
|
||||
|
||||
#ifdef COMMAND_CLASS
|
||||
|
||||
CommandStyle(neb,NEB)
|
||||
|
||||
#else
|
||||
|
||||
#ifndef LMP_NEB_H
|
||||
#define LMP_NEB_H
|
||||
|
||||
#include "stdio.h"
|
||||
#include "pointers.h"
|
||||
|
||||
namespace LAMMPS_NS {
|
||||
|
||||
class NEB : protected Pointers {
|
||||
public:
|
||||
NEB(class LAMMPS *);
|
||||
~NEB();
|
||||
void command(int, char **);
|
||||
|
||||
private:
|
||||
int me,me_universe; // my proc ID in world and universe
|
||||
int ireplica,nreplica;
|
||||
MPI_Comm uworld;
|
||||
MPI_Comm roots; // MPI comm with 1 root proc from each world
|
||||
FILE *fp;
|
||||
int compressed;
|
||||
|
||||
class FixNEB *fneb;
|
||||
double **all; // PE,plen,nlen from each replica
|
||||
double *rdist; // normalize reaction distance, 0 to 1
|
||||
|
||||
void readfile(char *);
|
||||
void open(char *);
|
||||
void print_status();
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
#endif
|
||||
#endif
|
|
@ -0,0 +1,357 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
|
||||
http://lammps.sandia.gov, Sandia National Laboratories
|
||||
Steve Plimpton, sjplimp@sandia.gov
|
||||
|
||||
Copyright (2003) Sandia Corporation. Under the terms of Contract
|
||||
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
|
||||
certain rights in this software. This software is distributed under
|
||||
the GNU General Public License.
|
||||
|
||||
See the README file in the top-level LAMMPS directory.
|
||||
------------------------------------------------------------------------- */
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
Contributing author: Mark Sears (SNL)
|
||||
------------------------------------------------------------------------- */
|
||||
|
||||
#include "math.h"
|
||||
#include "stdlib.h"
|
||||
#include "string.h"
|
||||
#include "temper.h"
|
||||
#include "universe.h"
|
||||
#include "domain.h"
|
||||
#include "atom.h"
|
||||
#include "update.h"
|
||||
#include "integrate.h"
|
||||
#include "modify.h"
|
||||
#include "compute.h"
|
||||
#include "force.h"
|
||||
#include "output.h"
|
||||
#include "thermo.h"
|
||||
#include "fix.h"
|
||||
#include "random_park.h"
|
||||
#include "finish.h"
|
||||
#include "timer.h"
|
||||
#include "memory.h"
|
||||
#include "error.h"
|
||||
|
||||
using namespace LAMMPS_NS;
|
||||
|
||||
// #define TEMPER_DEBUG 1
|
||||
|
||||
/* ---------------------------------------------------------------------- */
|
||||
|
||||
Temper::Temper(LAMMPS *lmp) : Pointers(lmp) {}
|
||||
|
||||
/* ---------------------------------------------------------------------- */
|
||||
|
||||
Temper::~Temper()
|
||||
{
|
||||
MPI_Comm_free(&roots);
|
||||
if (ranswap) delete ranswap;
|
||||
delete ranboltz;
|
||||
delete [] set_temp;
|
||||
delete [] temp2world;
|
||||
delete [] world2temp;
|
||||
delete [] world2root;
|
||||
}
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
perform tempering with inter-world swaps
|
||||
------------------------------------------------------------------------- */
|
||||
|
||||
void Temper::command(int narg, char **arg)
|
||||
{
|
||||
if (universe->nworlds == 1)
|
||||
error->all("Must have more than one processor partition to temper");
|
||||
if (domain->box_exist == 0)
|
||||
error->all("Temper command before simulation box is defined");
|
||||
if (narg != 6 && narg != 7) error->universe_all("Illegal temper command");
|
||||
|
||||
int nsteps = atoi(arg[0]);
|
||||
nevery = atoi(arg[1]);
|
||||
double temp = atof(arg[2]);
|
||||
|
||||
for (whichfix = 0; whichfix < modify->nfix; whichfix++)
|
||||
if (strcmp(arg[3],modify->fix[whichfix]->id) == 0) break;
|
||||
if (whichfix == modify->nfix)
|
||||
error->universe_all("Tempering fix ID is not defined");
|
||||
|
||||
seed_swap = atoi(arg[4]);
|
||||
seed_boltz = atoi(arg[5]);
|
||||
|
||||
my_set_temp = universe->iworld;
|
||||
if (narg == 7) my_set_temp = atoi(arg[6]);
|
||||
|
||||
// swap frequency must evenly divide total # of timesteps
|
||||
|
||||
if (nevery == 0) error->universe_all("Invalid frequency in temper command");
|
||||
nswaps = nsteps/nevery;
|
||||
if (nswaps*nevery != nsteps)
|
||||
error->universe_all("Non integer # of swaps in temper command");
|
||||
|
||||
// fix style must be appropriate for temperature control
|
||||
|
||||
if ((strcmp(modify->fix[whichfix]->style,"nvt") != 0) &&
|
||||
(strcmp(modify->fix[whichfix]->style,"langevin") != 0) &&
|
||||
(strcmp(modify->fix[whichfix]->style,"temp/berendsen") != 0) &&
|
||||
(strcmp(modify->fix[whichfix]->style,"temp/rescale") != 0))
|
||||
error->universe_all("Tempering temperature fix is not valid");
|
||||
|
||||
// setup for long tempering run
|
||||
|
||||
update->whichflag = 1;
|
||||
update->nsteps = nsteps;
|
||||
update->beginstep = update->firststep = update->ntimestep;
|
||||
update->endstep = update->laststep = update->firststep + nsteps;
|
||||
|
||||
lmp->init();
|
||||
|
||||
// local storage
|
||||
|
||||
me_universe = universe->me;
|
||||
MPI_Comm_rank(world,&me);
|
||||
nworlds = universe->nworlds;
|
||||
iworld = universe->iworld;
|
||||
boltz = force->boltz;
|
||||
|
||||
// pe_compute = ptr to thermo_pe compute
|
||||
// notify compute it will be called at first swap
|
||||
|
||||
int id = modify->find_compute("thermo_pe");
|
||||
if (id < 0) error->all("Tempering could not find thermo_pe compute");
|
||||
Compute *pe_compute = modify->compute[id];
|
||||
pe_compute->addstep(update->ntimestep + nevery);
|
||||
|
||||
// create MPI communicator for root proc from each world
|
||||
|
||||
int color;
|
||||
if (me == 0) color = 0;
|
||||
else color = 1;
|
||||
MPI_Comm_split(universe->uworld,color,0,&roots);
|
||||
|
||||
// RNGs for swaps and Boltzmann test
|
||||
// warm up Boltzmann RNG
|
||||
|
||||
if (seed_swap) ranswap = new RanPark(lmp,seed_swap);
|
||||
else ranswap = NULL;
|
||||
ranboltz = new RanPark(lmp,seed_boltz + me_universe);
|
||||
for (int i = 0; i < 100; i++) ranboltz->uniform();
|
||||
|
||||
// world2root[i] = global proc that is root proc of world i
|
||||
|
||||
world2root = new int[nworlds];
|
||||
if (me == 0)
|
||||
MPI_Allgather(&me_universe,1,MPI_INT,world2root,1,MPI_INT,roots);
|
||||
MPI_Bcast(world2root,nworlds,MPI_INT,0,world);
|
||||
|
||||
// create static list of set temperatures
|
||||
// allgather tempering arg "temp" across root procs
|
||||
// bcast from each root to other procs in world
|
||||
|
||||
set_temp = new double[nworlds];
|
||||
if (me == 0) MPI_Allgather(&temp,1,MPI_DOUBLE,set_temp,1,MPI_DOUBLE,roots);
|
||||
MPI_Bcast(set_temp,nworlds,MPI_DOUBLE,0,world);
|
||||
|
||||
// create world2temp only on root procs from my_set_temp
|
||||
// create temp2world on root procs from world2temp,
|
||||
// then bcast to all procs within world
|
||||
|
||||
world2temp = new int[nworlds];
|
||||
temp2world = new int[nworlds];
|
||||
if (me == 0) {
|
||||
MPI_Allgather(&my_set_temp,1,MPI_INT,world2temp,1,MPI_INT,roots);
|
||||
for (int i = 0; i < nworlds; i++) temp2world[world2temp[i]] = i;
|
||||
}
|
||||
MPI_Bcast(temp2world,nworlds,MPI_INT,0,world);
|
||||
|
||||
// if restarting tempering, reset temp target of Fix to current my_set_temp
|
||||
|
||||
if (narg == 7) {
|
||||
double new_temp = set_temp[my_set_temp];
|
||||
modify->fix[whichfix]->reset_target(new_temp);
|
||||
}
|
||||
|
||||
// setup tempering runs
|
||||
|
||||
int i,which,partner,swap,partner_set_temp,partner_world;
|
||||
double pe,pe_partner,boltz_factor,new_temp;
|
||||
MPI_Status status;
|
||||
|
||||
if (me_universe == 0 && universe->uscreen)
|
||||
fprintf(universe->uscreen,"Setting up tempering ...\n");
|
||||
|
||||
update->integrate->setup();
|
||||
|
||||
if (me_universe == 0) {
|
||||
if (universe->uscreen) {
|
||||
fprintf(universe->uscreen,"Step");
|
||||
for (int i = 0; i < nworlds; i++)
|
||||
fprintf(universe->uscreen," T%d",i);
|
||||
fprintf(universe->uscreen,"\n");
|
||||
}
|
||||
if (universe->ulogfile) {
|
||||
fprintf(universe->ulogfile,"Step");
|
||||
for (int i = 0; i < nworlds; i++)
|
||||
fprintf(universe->ulogfile," T%d",i);
|
||||
fprintf(universe->ulogfile,"\n");
|
||||
}
|
||||
print_status();
|
||||
}
|
||||
|
||||
timer->barrier_start(TIME_LOOP);
|
||||
|
||||
for (int iswap = 0; iswap < nswaps; iswap++) {
|
||||
|
||||
// run for nevery timesteps
|
||||
|
||||
update->integrate->run(nevery);
|
||||
|
||||
// compute PE
|
||||
// notify compute it will be called at next swap
|
||||
|
||||
pe = pe_compute->compute_scalar();
|
||||
pe_compute->addstep(update->ntimestep + nevery);
|
||||
|
||||
// which = which of 2 kinds of swaps to do (0,1)
|
||||
|
||||
if (!ranswap) which = iswap % 2;
|
||||
else if (ranswap->uniform() < 0.5) which = 0;
|
||||
else which = 1;
|
||||
|
||||
// partner_set_temp = which set temp I am partnering with for this swap
|
||||
|
||||
if (which == 0) {
|
||||
if (my_set_temp % 2 == 0) partner_set_temp = my_set_temp + 1;
|
||||
else partner_set_temp = my_set_temp - 1;
|
||||
} else {
|
||||
if (my_set_temp % 2 == 1) partner_set_temp = my_set_temp + 1;
|
||||
else partner_set_temp = my_set_temp - 1;
|
||||
}
|
||||
|
||||
// partner = proc ID to swap with
|
||||
// if partner = -1, then I am not a proc that swaps
|
||||
|
||||
partner = -1;
|
||||
if (me == 0 && partner_set_temp >= 0 && partner_set_temp < nworlds) {
|
||||
partner_world = temp2world[partner_set_temp];
|
||||
partner = world2root[partner_world];
|
||||
}
|
||||
|
||||
// swap with a partner, only root procs in each world participate
|
||||
// hi proc sends PE to low proc
|
||||
// lo proc make Boltzmann decision on whether to swap
|
||||
// lo proc communicates decision back to hi proc
|
||||
|
||||
swap = 0;
|
||||
if (partner != -1) {
|
||||
if (me_universe > partner)
|
||||
MPI_Send(&pe,1,MPI_DOUBLE,partner,0,universe->uworld);
|
||||
else
|
||||
MPI_Recv(&pe_partner,1,MPI_DOUBLE,partner,0,universe->uworld,&status);
|
||||
|
||||
if (me_universe < partner) {
|
||||
boltz_factor = (pe - pe_partner) *
|
||||
(1.0/(boltz*set_temp[my_set_temp]) -
|
||||
1.0/(boltz*set_temp[partner_set_temp]));
|
||||
if (boltz_factor >= 0.0) swap = 1;
|
||||
else if (ranboltz->uniform() < exp(boltz_factor)) swap = 1;
|
||||
}
|
||||
|
||||
if (me_universe < partner)
|
||||
MPI_Send(&swap,1,MPI_INT,partner,0,universe->uworld);
|
||||
else
|
||||
MPI_Recv(&swap,1,MPI_INT,partner,0,universe->uworld,&status);
|
||||
|
||||
#ifdef TEMPER_DEBUG
|
||||
if (me_universe < partner)
|
||||
printf("SWAP %d & %d: yes = %d,Ts = %d %d, PEs = %g %g, Bz = %g %g\n",
|
||||
me_universe,partner,swap,my_set_temp,partner_set_temp,
|
||||
pe,pe_partner,boltz_factor,exp(boltz_factor));
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
// bcast swap result to other procs in my world
|
||||
|
||||
MPI_Bcast(&swap,1,MPI_INT,0,world);
|
||||
|
||||
// rescale kinetic energy via velocities if move is accepted
|
||||
|
||||
if (swap) scale_velocities(partner_set_temp,my_set_temp);
|
||||
|
||||
// if my world swapped, all procs in world reset temp target of Fix
|
||||
|
||||
if (swap) {
|
||||
new_temp = set_temp[partner_set_temp];
|
||||
modify->fix[whichfix]->reset_target(new_temp);
|
||||
}
|
||||
|
||||
// update my_set_temp and temp2world on every proc
|
||||
// root procs update their value if swap took place
|
||||
// allgather across root procs
|
||||
// bcast within my world
|
||||
|
||||
if (swap) my_set_temp = partner_set_temp;
|
||||
if (me == 0) {
|
||||
MPI_Allgather(&my_set_temp,1,MPI_INT,world2temp,1,MPI_INT,roots);
|
||||
for (i = 0; i < nworlds; i++) temp2world[world2temp[i]] = i;
|
||||
}
|
||||
MPI_Bcast(temp2world,nworlds,MPI_INT,0,world);
|
||||
|
||||
// print out current swap status
|
||||
|
||||
if (me_universe == 0) print_status();
|
||||
}
|
||||
|
||||
timer->barrier_stop(TIME_LOOP);
|
||||
|
||||
update->integrate->cleanup();
|
||||
|
||||
Finish finish(lmp);
|
||||
finish.end(1);
|
||||
|
||||
update->whichflag = 0;
|
||||
update->firststep = update->laststep = 0;
|
||||
update->beginstep = update->endstep = 0;
|
||||
}
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
scale kinetic energy via velocities a la Sugita
|
||||
------------------------------------------------------------------------- */
|
||||
|
||||
void Temper::scale_velocities(int t_partner, int t_me)
|
||||
{
|
||||
double sfactor = sqrt(set_temp[t_partner]/set_temp[t_me]);
|
||||
|
||||
double **v = atom->v;
|
||||
int nlocal = atom->nlocal;
|
||||
|
||||
for (int i = 0; i < nlocal; i++) {
|
||||
v[i][0] = v[i][0]*sfactor;
|
||||
v[i][1] = v[i][1]*sfactor;
|
||||
v[i][2] = v[i][2]*sfactor;
|
||||
}
|
||||
}
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
proc 0 prints current tempering status
|
||||
------------------------------------------------------------------------- */
|
||||
|
||||
void Temper::print_status()
|
||||
{
|
||||
if (universe->uscreen) {
|
||||
fprintf(universe->uscreen,"%d ",update->ntimestep);
|
||||
for (int i = 0; i < nworlds; i++)
|
||||
fprintf(universe->uscreen,"%d ",world2temp[i]);
|
||||
fprintf(universe->uscreen,"\n");
|
||||
}
|
||||
if (universe->ulogfile) {
|
||||
fprintf(universe->ulogfile,"%d ",update->ntimestep);
|
||||
for (int i = 0; i < nworlds; i++)
|
||||
fprintf(universe->ulogfile,"%d ",world2temp[i]);
|
||||
fprintf(universe->ulogfile,"\n");
|
||||
fflush(universe->ulogfile);
|
||||
}
|
||||
}
|
Loading…
Reference in New Issue