mirror of https://github.com/lammps/lammps.git
Updated NH docs
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@3977 f3b2605a-c512-4ea7-a41b-209d697bcdaa
This commit is contained in:
parent
b037797cf4
commit
2d841e6fdf
Binary file not shown.
After Width: | Height: | Size: 42 KiB |
|
@ -0,0 +1,38 @@
|
|||
\documentclass[24pt]{article}
|
||||
|
||||
\pagestyle{empty}
|
||||
\Huge
|
||||
|
||||
\begin{document}
|
||||
|
||||
\mathchardef\mhyphen="2D
|
||||
|
||||
% The imaginary unit
|
||||
\providecommand*{\iu}%
|
||||
{\ensuremath{{\rm i}}}
|
||||
|
||||
|
||||
$$
|
||||
\exp \left(\iu{} L \Delta t \right) =
|
||||
\exp \left(\iu{} L_{\rm T\mhyphen baro} \frac{\Delta t}{2} \right)
|
||||
\exp \left(\iu{} L_{\rm T\mhyphen part} \frac{\Delta t}{2} \right)
|
||||
\exp \left(\iu{} L_{\epsilon , 2} \frac{\Delta t}{2} \right)
|
||||
\exp \left(\iu{} L_{2}^{(2)} \frac{\Delta t}{2} \right)
|
||||
$$
|
||||
$$
|
||||
\times \left[
|
||||
\exp \left(\iu{} L_{2}^{(1)} \frac{\Delta t}{2n} \right)
|
||||
\exp \left(\iu{} L_{\epsilon , 1} \frac{\Delta t}{n} \right)
|
||||
\exp \left(\iu{} L_1 \frac{\Delta t}{n} \right)
|
||||
\exp \left(\iu{} L_{2}^{(1)} \frac{\Delta t}{2n} \right)
|
||||
\right]^n
|
||||
$$
|
||||
$$
|
||||
\exp \left(\iu{} L_{2}^{(2)} \frac{\Delta t}{2} \right)
|
||||
\exp \left(\iu{} L_{\epsilon , 2} \frac{\Delta t}{2} \right)
|
||||
\exp \left(\iu{} L_{\rm T\mhyphen part} \frac{\Delta t}{2} \right)
|
||||
\exp \left(\iu{} L_{\rm T\mhyphen baro} \frac{\Delta t}{2} \right)
|
||||
+ \mathcal{O} \left(\Delta t^3 \right)
|
||||
$$
|
||||
|
||||
\end{document}
|
|
@ -73,13 +73,13 @@ When used correctly, the time-averaged temperature and stress tensor
|
|||
of the particles will match the target values specified by
|
||||
Tstart/Tstop and Pstart/Pstop.
|
||||
</P>
|
||||
<P>The equations of motion used are those of Shinoda et al in
|
||||
<P>The equations of motion used are those of Shinoda et al. in
|
||||
<A HREF = "#Shinoda">(Shinoda)</A>, which combine the hydrostatic equations of
|
||||
Martyna, Tobias and Klein in <A HREF = "#Martyna">(Martyna)</A> with the strain
|
||||
energy proposed by Parrinello and Rahman in
|
||||
<A HREF = "#Parrinello">(Parrinello)</A>. The time integration schemes follow the
|
||||
time-reversible measure-preserving integrators derived by Tuckerman et
|
||||
al in <A HREF = "#Tuckerman">(Tuckerman)</A>.
|
||||
<A HREF = "#Parrinello">(Parrinello)</A>. The time integration schemes closely
|
||||
follow the time-reversible measure-preserving Verlet and
|
||||
rRESPA integrators derived by Tuckerman et al. in <A HREF = "#Tuckerman">(Tuckerman)</A>.
|
||||
</P>
|
||||
<HR>
|
||||
|
||||
|
@ -386,19 +386,19 @@ simulation, otherwise its value is 3.
|
|||
follows. The notation means there are tchain values for eta, followed
|
||||
by tchain for eta_dot, followed by ndof for omega, etc:
|
||||
</P>
|
||||
<UL><LI>eta<B>tchain</B> = particle thermostat displacements
|
||||
<LI>eta_dot<B>tchain</B> = particle thermostat velocities
|
||||
<LI>omega<B>ndof</B> = barostat displacements
|
||||
<LI>omega_dot<B>ndof</B> = barostat velocities
|
||||
<LI>etap<B>pchain</B> = barostat thermostat displacements
|
||||
<LI>etap_dot<B>pchain</B> = barostat thermostat velocities
|
||||
<LI>PE_eta<B>tchain</B> = potential energy of each particle thermostat displacement
|
||||
<LI>KE_eta_dot<B>tchain</B> = kinetic energy of each particle thermostat velocity
|
||||
<LI>PE_omega<B>ndof</B> = potential energy of each barostat displacement
|
||||
<LI>KE_omega_dot<B>ndof</B> = kinetic energy of each barostat velocity
|
||||
<LI>PE_etap<B>pchain</B> = potential energy of each barostat thermostat displacement
|
||||
<LI>KE_etap_dot<B>pchain</B> = kinetic energy of each barostat thermostat velocity
|
||||
<LI>PE_strain<B>1</B> = scalar strain energy
|
||||
<UL><LI>eta[tchain] = particle thermostat displacements
|
||||
<LI>eta_dot[tchain] = particle thermostat velocities
|
||||
<LI>omega[ndof] = barostat displacements
|
||||
<LI>omega_dot[ndof] = barostat velocities
|
||||
<LI>etap[pchain] = barostat thermostat displacements
|
||||
<LI>etap_dot[pchain] = barostat thermostat velocities
|
||||
<LI>PE_eta[tchain] = potential energy of each particle thermostat displacement
|
||||
<LI>KE_eta_dot[tchain] = kinetic energy of each particle thermostat velocity
|
||||
<LI>PE_omega[ndof] = potential energy of each barostat displacement
|
||||
<LI>KE_omega_dot[ndof] = kinetic energy of each barostat velocity
|
||||
<LI>PE_etap[pchain] = potential energy of each barostat thermostat displacement
|
||||
<LI>KE_etap_dot[pchain] = kinetic energy of each barostat thermostat velocity
|
||||
<LI>PE_strain[1] = scalar strain energy
|
||||
</UL>
|
||||
<P>These fixes can ramp their external temperature and pressure over
|
||||
multiple runs, using the <I>start</I> and <I>stop</I> keywords of the
|
||||
|
@ -408,6 +408,25 @@ how to do this.
|
|||
<P>These fixes are not invoked during <A HREF = "minimize.html">energy
|
||||
minimization</A>.
|
||||
</P>
|
||||
<P>These fixes can be used with either the <I>verlet</I> or <I>respa</I>
|
||||
<A HREF = "run_style.html">integrators</A>. When using one of the barostat fixes
|
||||
with <I>respa</I>, LAMMPS uses an integrator constructed
|
||||
according to the following factorization of the Liouville propagator
|
||||
(for two rRESPA levels):
|
||||
</P>
|
||||
<CENTER><IMG SRC = "Eqs/fix_nh1.jpg">
|
||||
</CENTER>
|
||||
<P>This factorization differs somewhat from that of Tuckerman et al., in that
|
||||
the barostat is only updated at the outermost rRESPA level, whereas
|
||||
Tuckerman's factorization requires splitting the pressure into pieces
|
||||
corresponding to the forces computed at each rRESPA level. In theory, the
|
||||
latter method will exhibit better numerical stability. In practice,
|
||||
because Pdamp is normally chosen to be a large multiple of the
|
||||
outermost rRESPA timestep, the barostat dynamics are not the
|
||||
limiting factor for numerical stability. Both
|
||||
factorizations are time-reversible and can be shown to preserve the phase
|
||||
space measure of the underlying non-Hamiltonian equations of motion.
|
||||
</P>
|
||||
<P><B>Restrictions:</B>
|
||||
</P>
|
||||
<P>Non-periodic dimensions cannot be barostatted. <I>Z</I>, <I>xz</I>, and <I>yz</I>,
|
||||
|
@ -425,7 +444,7 @@ is not allowed in the Nose/Hoover formulation.
|
|||
</P>
|
||||
<P><B>Related commands:</B>
|
||||
</P>
|
||||
<P><A HREF = "fix_nve.html">fix nve</A>, <A HREF = "fix_modify.html">fix_modify</A>
|
||||
<P><A HREF = "fix_nve.html">fix nve</A>, <A HREF = "fix_modify.html">fix_modify</A>, <A HREF = "run_style.html">run_style</A>
|
||||
</P>
|
||||
<P><B>Default:</B>
|
||||
</P>
|
||||
|
|
|
@ -65,13 +65,13 @@ When used correctly, the time-averaged temperature and stress tensor
|
|||
of the particles will match the target values specified by
|
||||
Tstart/Tstop and Pstart/Pstop.
|
||||
|
||||
The equations of motion used are those of Shinoda et al in
|
||||
The equations of motion used are those of Shinoda et al. in
|
||||
"(Shinoda)"_#Shinoda, which combine the hydrostatic equations of
|
||||
Martyna, Tobias and Klein in "(Martyna)"_#Martyna with the strain
|
||||
energy proposed by Parrinello and Rahman in
|
||||
"(Parrinello)"_#Parrinello. The time integration schemes follow the
|
||||
time-reversible measure-preserving integrators derived by Tuckerman et
|
||||
al in "(Tuckerman)"_#Tuckerman.
|
||||
"(Parrinello)"_#Parrinello. The time integration schemes closely
|
||||
follow the time-reversible measure-preserving Verlet and
|
||||
rRESPA integrators derived by Tuckerman et al. in "(Tuckerman)"_#Tuckerman.
|
||||
|
||||
:line
|
||||
|
||||
|
@ -378,19 +378,19 @@ The order of values in the global vector and their meaning is as
|
|||
follows. The notation means there are tchain values for eta, followed
|
||||
by tchain for eta_dot, followed by ndof for omega, etc:
|
||||
|
||||
eta[tchain] = particle thermostat displacements
|
||||
eta_dot[tchain] = particle thermostat velocities
|
||||
omega[ndof] = barostat displacements
|
||||
omega_dot[ndof] = barostat velocities
|
||||
etap[pchain] = barostat thermostat displacements
|
||||
etap_dot[pchain] = barostat thermostat velocities
|
||||
PE_eta[tchain] = potential energy of each particle thermostat displacement
|
||||
KE_eta_dot[tchain] = kinetic energy of each particle thermostat velocity
|
||||
PE_omega[ndof] = potential energy of each barostat displacement
|
||||
KE_omega_dot[ndof] = kinetic energy of each barostat velocity
|
||||
PE_etap[pchain] = potential energy of each barostat thermostat displacement
|
||||
KE_etap_dot[pchain] = kinetic energy of each barostat thermostat velocity
|
||||
PE_strain[1] = scalar strain energy :ul
|
||||
eta\[tchain\] = particle thermostat displacements
|
||||
eta_dot\[tchain\] = particle thermostat velocities
|
||||
omega\[ndof\] = barostat displacements
|
||||
omega_dot\[ndof\] = barostat velocities
|
||||
etap\[pchain\] = barostat thermostat displacements
|
||||
etap_dot\[pchain\] = barostat thermostat velocities
|
||||
PE_eta\[tchain\] = potential energy of each particle thermostat displacement
|
||||
KE_eta_dot\[tchain\] = kinetic energy of each particle thermostat velocity
|
||||
PE_omega\[ndof\] = potential energy of each barostat displacement
|
||||
KE_omega_dot\[ndof\] = kinetic energy of each barostat velocity
|
||||
PE_etap\[pchain\] = potential energy of each barostat thermostat displacement
|
||||
KE_etap_dot\[pchain\] = kinetic energy of each barostat thermostat velocity
|
||||
PE_strain\[1\] = scalar strain energy :ul
|
||||
|
||||
These fixes can ramp their external temperature and pressure over
|
||||
multiple runs, using the {start} and {stop} keywords of the
|
||||
|
@ -400,6 +400,26 @@ how to do this.
|
|||
These fixes are not invoked during "energy
|
||||
minimization"_minimize.html.
|
||||
|
||||
These fixes can be used with either the {verlet} or {respa}
|
||||
"integrators"_run_style.html. When using one of the barostat fixes
|
||||
with {respa}, LAMMPS uses an integrator constructed
|
||||
according to the following factorization of the Liouville propagator
|
||||
(for two rRESPA levels):
|
||||
|
||||
:c,image(Eqs/fix_nh1.jpg)
|
||||
|
||||
This factorization differs somewhat from that of Tuckerman et al., in that
|
||||
the barostat is only updated at the outermost rRESPA level, whereas
|
||||
Tuckerman's factorization requires splitting the pressure into pieces
|
||||
corresponding to the forces computed at each rRESPA level. In theory, the
|
||||
latter method will exhibit better numerical stability. In practice,
|
||||
because Pdamp is normally chosen to be a large multiple of the
|
||||
outermost rRESPA timestep, the barostat dynamics are not the
|
||||
limiting factor for numerical stability. Both
|
||||
factorizations are time-reversible and can be shown to preserve the phase
|
||||
space measure of the underlying non-Hamiltonian equations of motion.
|
||||
|
||||
|
||||
[Restrictions:]
|
||||
|
||||
Non-periodic dimensions cannot be barostatted. {Z}, {xz}, and {yz},
|
||||
|
@ -417,7 +437,7 @@ is not allowed in the Nose/Hoover formulation.
|
|||
|
||||
[Related commands:]
|
||||
|
||||
"fix nve"_fix_nve.html, "fix_modify"_fix_modify.html
|
||||
"fix nve"_fix_nve.html, "fix_modify"_fix_modify.html, "run_style"_run_style.html
|
||||
|
||||
[Default:]
|
||||
|
||||
|
|
Loading…
Reference in New Issue