lammps/doc/pair_dipole.txt

133 lines
4.8 KiB
Plaintext
Raw Normal View History

"LAMMPS WWW Site"_lws - "LAMMPS Documentation"_ld - "LAMMPS Commands"_lc :c
:link(lws,http://lammps.sandia.gov)
:link(ld,Manual.html)
:link(lc,Section_commands.html#comm)
:line
pair_style dipole/cut command :h3
[Syntax:]
pair_style dipole/cut cutoff (cutoff2) :pre
cutoff = global cutoff LJ (and Coulombic if only 1 arg) (distance units)
cutoff2 = global cutoff for Coulombic (optional) (distance units) :ul
[Examples:]
pair_style dipole/cut 10.0
pair_coeff * * 1.0 1.0
pair_coeff 2 3 1.0 1.0 2.5 4.0 :pre
[Description:]
Style {dipole/cut} computes interactions bewteen pairs of particles
that each have a charge and/or a point dipole moment. In addition to
the usual Lennard-Jones interaction between the particles (Elj) the
charge-charge (Eqq), charge-dipole (Eqp), and dipole-dipole (Epp)
interactions are computed by these formulas for the energy (E), force
(F), and torque (T) between particles I and J.
:c,image(Eqs/pair_dipole.jpg)
where qi and qj are the charges on the two particles, pi and pj are
the dipole moment vectors of the two particles, r is their separation
distance, and the vector r = Ri - Rj is the separation vector between
the two particles. Note that Eqq and Fqq are simply Coulombic energy
and force, Fij = -Fji as symmetric forces, and Tij != -Tji since the
torques do not act symmetrically. These formulas are discussed in
"(Allen)"_#Allen and in "(Toukmaji)"_#Toukmaji.
If one cutoff is specified in the pair_style command, it is used for
both the LJ and Coulombic (q,p) terms. If two cutoffs are specified,
they are used as cutoffs for the LJ and Coulombic (q,p) terms
respectively.
Use of this pair style requires the use of the "fix
nve/dipole"_fix_nve_dipole.html command to integrate rotation of the
dipole moments. Additionally, "atom_style dipole"_atom_style.html
should be used since it defines the point dipoles and their rotational
state. The magnitude of the dipole moment for each type of particle
can be defined by the "dipole"_dipole.html command or in the "Dipoles"
section of the data file read in by the "read_data"_read_data.html
command. Their initial orientation can be defined by the "set
dipole"_set.html command or in the "Atoms" section of the data file.
The following coefficients must be defined for each pair of atoms
types via the "pair_coeff"_pair_coeff.html command as in the examples
above, or in the data file or restart files read by the
"read_data"_read_data.html or "read_restart"_read_restart.html
commands, or by mixing as described below:
epsilon (energy units)
sigma (distance units)
cutoff1 (distance units)
cutoff2 (distance units) :ul
The latter 2 coefficients are optional. If not specified, the global
LJ and Coulombic cutoffs specified in the pair_style command are used.
If only one cutoff is specified, it is used as the cutoff for both LJ
and Coulombic interactions for this type pair. If both coefficients
are specified, they are used as the LJ and Coulombic cutoffs for this
type pair.
:line
[Mixing, shift, table, tail correction, per-atom energy/stress, and
restart info]:
For atom type pairs I,J and I != J, the epsilon and sigma coefficients
and cutoff distances for this pair style can be mixed. The default
mix value is {geometric}. See the "pair_modify" command for details.
For atom type pairs I,J and I != J, the A, sigma, d1, and d2
coefficients and cutoff distance for this pair style can be mixed. A
is an energy value mixed like a LJ epsilon. D1 and d2 are distance
values and are mixed like sigma. The default mix value is
{geometric}. See the "pair_modify" command for details.
This pair style supports the "pair_modify"_pair_modify.html shift
option for the energy of the Lennard-Jones portion of the pair
interaction.
The "pair_modify"_pair_modify.html table option is not relevant
for this pair style.
This pair style does not support the "pair_modify"_pair_modify.html
tail option for adding long-range tail corrections to energy and
pressure.
This pair style can calculate per-atom energy and stress, as used by
the "compute epair/atom"_compute_epair_atom.html, "compute
stress/atom"_compute_stress_atom.html, and "dump custom"_dump.html
commands.
This pair style writes its information to "binary restart
files"_restart.html, so pair_style and pair_coeff commands do not need
to be specified in an input script that reads a restart file.
[Restrictions:]
This style is part of the "dipole" package. It is only enabled if
LAMMPS was built with that package. See the "Making
LAMMPS"_Section_start.html#2_3 section for more info.
[Related commands:]
"pair_coeff"_pair_coeff.html, "fix nve/dipole"_fix_nve_dipole.html,
"compute temp/dipole"_compute_temp_dipole.html
[Default:] none
:line
:link(Allen)
[(Allen)] Allen and Tildesley, Computer Simulation of Liquids,
Clarendon Press, Oxford, 1987.
:link(Toukmaji)
[(Toukmaji)] Toukmaji, Sagui, Board, and Darden, J Chem Phys, 113,
10913 (2000).