forked from lijiext/lammps
211 lines
6.7 KiB
Plaintext
211 lines
6.7 KiB
Plaintext
LAMMPS data file via write_data, version 5 May 2020, timestep = 0
|
|
|
|
29 atoms
|
|
5 atom types
|
|
24 bonds
|
|
5 bond types
|
|
30 angles
|
|
4 angle types
|
|
31 dihedrals
|
|
5 dihedral types
|
|
2 impropers
|
|
2 improper types
|
|
|
|
-6.024572 8.975428 xlo xhi
|
|
-7.692866 7.307134 ylo yhi
|
|
-8.086924 6.913076 zlo zhi
|
|
|
|
Masses
|
|
|
|
1 12.0107
|
|
2 4.00794
|
|
3 14.0067
|
|
4 15.9994
|
|
5 15.9994
|
|
|
|
Pair Coeffs # zero
|
|
|
|
1
|
|
2
|
|
3
|
|
4
|
|
5
|
|
|
|
Bond Coeffs # zero
|
|
|
|
1 1.5
|
|
2 1.1
|
|
3 1.3
|
|
4 1.2
|
|
5 1
|
|
|
|
Angle Coeffs # zero
|
|
|
|
1 110.1
|
|
2 111
|
|
3 120
|
|
4 108.5
|
|
|
|
Atoms # full
|
|
|
|
10 2 1 7.0000000000000007e-02 2.0185283555536988e+00 -1.4283966846517357e+00 -9.6733527271133024e-01 0 0 0
|
|
11 2 2 8.9999999999999997e-02 1.7929780509347666e+00 -1.9871047540768743e+00 -1.8840626643185674e+00 0 0 0
|
|
12 2 1 -2.7000000000000002e-01 3.0030247876861225e+00 -4.8923319967572748e-01 -1.6188658531537248e+00 0 0 0
|
|
13 2 2 8.9999999999999997e-02 4.0447273787895934e+00 -9.0131998547446246e-01 -1.6384447268320836e+00 0 0 0
|
|
14 2 2 8.9999999999999997e-02 2.6033152817257075e+00 -4.0789761505963579e-01 -2.6554413538823063e+00 0 0 0
|
|
2 1 2 3.1000000000000000e-01 3.0197083955402204e-01 2.9515239068888608e+00 -8.5689735572907566e-01 0 0 0
|
|
3 1 1 -2.0000000000000000e-02 -6.9435377880558602e-01 1.2440473127136711e+00 -6.2233801468892025e-01 0 0 0
|
|
4 1 2 8.9999999999999997e-02 -1.5771614164685133e+00 1.4915333140468066e+00 -1.2487126845040522e+00 0 0 0
|
|
6 1 1 5.1000000000000001e-01 2.9412607937706009e-01 2.2719282656652909e-01 -1.2843094067857870e+00 0 0 0
|
|
7 1 4 -5.1000000000000001e-01 3.4019871062879609e-01 -9.1277350075786561e-03 -2.4633113224304561e+00 0 0 0
|
|
19 3 2 4.2359999999999998e-01 1.5349125211132961e+00 2.6315969880333707e+00 -4.2472859440220647e+00 0 0 0
|
|
15 2 2 8.9999999999999997e-02 2.9756315249791303e+00 5.6334269722969288e-01 -1.2437650754599008e+00 0 0 0
|
|
18 3 4 -8.4719999999999995e-01 2.1384791188033843e+00 3.0177261773770208e+00 -3.5160827596876225e+00 0 0 0
|
|
20 3 2 4.2359999999999998e-01 2.7641167828863153e+00 3.6833419064000221e+00 -3.9380850623312638e+00 0 0 0
|
|
8 2 3 -4.6999999999999997e-01 1.1641187171852805e+00 -4.8375305955385234e-01 -6.7659823767368688e-01 0 0 0
|
|
9 2 2 3.1000000000000000e-01 1.3777459838125838e+00 -2.5366338669522998e-01 2.6877644730326306e-01 0 0 0
|
|
16 2 1 5.1000000000000001e-01 2.6517554244980306e+00 -2.3957110424978438e+00 3.2908335999178327e-02 0 0 0
|
|
17 2 4 -5.1000000000000001e-01 2.2309964792710639e+00 -2.1022918943319384e+00 1.1491948328949437e+00 0 0 0
|
|
1 1 3 -4.6999999999999997e-01 -2.7993683669226832e-01 2.4726588069312840e+00 -1.7200860244148433e-01 0 0 0
|
|
5 1 2 8.9999999999999997e-02 -8.9501761359359255e-01 9.3568128743071344e-01 4.0227731871484346e-01 0 0 0
|
|
21 4 5 -8.4719999999999995e-01 4.9064454390208301e+00 -4.0751205255383196e+00 -3.6215576073601046e+00 0 0 0
|
|
22 4 2 4.2359999999999998e-01 4.3687453488627543e+00 -4.2054270536772504e+00 -4.4651491269372565e+00 0 0 0
|
|
23 4 2 4.2359999999999998e-01 5.7374928154769504e+00 -3.5763355905184966e+00 -3.8820297194230728e+00 0 0 0
|
|
24 5 5 -8.4719999999999995e-01 2.0684115301174013e+00 3.1518221747664397e+00 3.1554242678474576e+00 0 0 0
|
|
25 5 2 4.2359999999999998e-01 1.2998381073113014e+00 3.2755513587518097e+00 2.5092990173114837e+00 0 0 0
|
|
26 5 2 4.2359999999999998e-01 2.5807438597688113e+00 4.0120175892854135e+00 3.2133398379059099e+00 0 0 0
|
|
27 6 5 -8.4719999999999995e-01 -1.9613581876744359e+00 -4.3556300596085160e+00 2.1101467673534788e+00 0 0 0
|
|
28 6 2 4.2359999999999998e-01 -2.7406520384725965e+00 -4.0207251278130975e+00 1.5828689861678511e+00 0 0 0
|
|
29 6 2 4.2359999999999998e-01 -1.3108232656499081e+00 -3.5992986322410760e+00 2.2680459788743503e+00 0 0 0
|
|
|
|
Velocities
|
|
|
|
1 7.7867804888392077e-04 5.8970331623292821e-04 -2.2179517633030531e-04
|
|
2 2.7129529964126462e-03 4.6286427111164284e-03 3.5805549693846352e-03
|
|
3 -1.2736791029204805e-03 1.6108674226414498e-03 -3.3618185901550799e-04
|
|
4 -9.2828595122009308e-04 -1.2537885319521818e-03 -4.1204974953432108e-03
|
|
5 -1.1800848061603740e-03 7.5424401975844038e-04 6.9023177964912290e-05
|
|
6 -3.0914004879905335e-04 1.2755385764678133e-03 7.9574303350202582e-04
|
|
7 -1.1037894966874103e-04 -7.6764845099077425e-04 -7.7217630460203659e-04
|
|
8 3.9060281273221989e-04 -8.1444231918053418e-04 1.5134641148324972e-04
|
|
9 1.2475530960659720e-03 -2.6608454451432528e-03 1.1117602907112732e-03
|
|
10 4.5008983776042893e-04 4.9530197647538077e-04 -2.3336234361093645e-04
|
|
11 -3.6977669078869707e-04 -1.5289071951960539e-03 -2.9176389881837113e-03
|
|
12 1.0850834530183159e-03 -6.4965897903201833e-04 -1.2971152622619948e-03
|
|
13 4.0754559196230639e-03 3.5043502394946119e-03 -7.8324487687854666e-04
|
|
14 -1.3837220448746613e-04 -4.0656048637594394e-03 -3.9333461173944500e-03
|
|
15 -4.3301707382721859e-03 -3.1802661664634938e-03 3.2037919043360571e-03
|
|
16 -9.6715751018414326e-05 -5.0016572678960377e-04 1.4945658875149626e-03
|
|
17 6.5692180538157174e-04 3.6635779995305095e-04 8.3495414466050911e-04
|
|
18 -6.0936815808025862e-04 -9.3774557532468582e-04 -3.3558072507805731e-04
|
|
19 -6.9919768291957119e-04 -3.6060777270430031e-03 4.2833405289822791e-03
|
|
20 4.7777805013736515e-03 5.1003745845520452e-03 1.8002873923729241e-03
|
|
21 -9.5568188553430398e-04 1.6594630943762931e-04 -1.8199788009966615e-04
|
|
22 -3.3137518957653462e-03 -2.8683968287936054e-03 3.6384389958326871e-03
|
|
23 2.4209481134686401e-04 -4.5457709985051130e-03 2.7663581642115042e-03
|
|
24 2.5447450568861086e-04 4.8412447786110117e-04 -4.8021914527341357e-04
|
|
25 4.3722771097312743e-03 -4.5184411669545515e-03 2.5200952006556795e-03
|
|
26 -1.9250110555001179e-03 -3.0342169883610837e-03 3.5062814567984532e-03
|
|
27 -2.6510179146429716e-04 3.6306203629019116e-04 -5.6235585400647747e-04
|
|
28 -2.3068708109787484e-04 -8.5663070212203200e-04 2.1302563179109169e-03
|
|
29 -2.5054744388303732e-03 -1.6773997805290820e-04 2.8436699761004796e-03
|
|
|
|
Bonds
|
|
|
|
1 5 1 2
|
|
2 3 1 3
|
|
3 2 3 4
|
|
4 2 3 5
|
|
5 1 3 6
|
|
6 3 6 8
|
|
7 4 6 7
|
|
8 5 8 9
|
|
9 3 8 10
|
|
10 2 10 11
|
|
11 1 10 12
|
|
12 1 10 16
|
|
13 2 12 13
|
|
14 2 12 14
|
|
15 2 12 15
|
|
16 4 16 17
|
|
17 5 18 19
|
|
18 5 18 20
|
|
19 5 21 22
|
|
20 5 21 23
|
|
21 5 24 25
|
|
22 5 24 26
|
|
23 5 27 28
|
|
24 5 27 29
|
|
|
|
Angles
|
|
|
|
1 4 2 1 3
|
|
2 4 1 3 5
|
|
3 4 1 3 4
|
|
4 4 1 3 6
|
|
5 4 4 3 5
|
|
6 2 5 3 6
|
|
7 2 4 3 6
|
|
8 3 3 6 7
|
|
9 3 3 6 8
|
|
10 3 7 6 8
|
|
11 2 6 8 9
|
|
12 2 9 8 10
|
|
13 3 6 8 10
|
|
14 2 8 10 11
|
|
15 3 8 10 16
|
|
16 2 11 10 12
|
|
17 1 12 10 16
|
|
18 1 8 10 12
|
|
19 2 11 10 16
|
|
20 2 10 12 15
|
|
21 2 10 12 14
|
|
22 2 10 12 13
|
|
23 4 13 12 15
|
|
24 4 13 12 14
|
|
25 4 14 12 15
|
|
26 4 10 16 17
|
|
27 1 19 18 20
|
|
28 1 22 21 23
|
|
29 1 25 24 26
|
|
30 1 28 27 29
|
|
|
|
Dihedrals
|
|
|
|
1 2 2 1 3 6
|
|
2 2 2 1 3 4
|
|
3 3 2 1 3 5
|
|
4 1 1 3 6 8
|
|
5 1 1 3 6 7
|
|
6 5 4 3 6 8
|
|
7 5 4 3 6 7
|
|
8 5 5 3 6 8
|
|
9 5 5 3 6 7
|
|
10 4 3 6 8 9
|
|
11 3 3 6 8 10
|
|
12 3 7 6 8 9
|
|
13 4 7 6 8 10
|
|
14 2 6 8 10 12
|
|
15 2 6 8 10 16
|
|
16 2 6 8 10 11
|
|
17 2 9 8 10 12
|
|
18 4 9 8 10 16
|
|
19 5 9 8 10 11
|
|
20 5 8 10 12 13
|
|
21 1 8 10 12 14
|
|
22 5 8 10 12 15
|
|
23 4 8 10 16 17
|
|
24 5 11 10 12 13
|
|
25 5 11 10 12 14
|
|
26 5 11 10 12 15
|
|
27 2 11 10 16 17
|
|
28 2 12 10 16 17
|
|
29 5 16 10 12 13
|
|
30 5 16 10 12 14
|
|
31 5 16 10 12 15
|
|
|
|
Impropers
|
|
|
|
1 1 6 3 8 7
|
|
2 2 8 6 10 9
|