lammps/lib/gpu/lal_re_squared.cpp

319 lines
12 KiB
C++

/***************************************************************************
re_squared.cpp
-------------------
W. Michael Brown
Host code for RE-Squared potential acceleration
__________________________________________________________________________
This file is part of the LAMMPS Accelerator Library (LAMMPS_AL)
__________________________________________________________________________
begin : Fri May 06 2011
email : brownw@ornl.gov
***************************************************************************/
#if defined(USE_OPENCL)
#include "re_squared_cl.h"
#include "re_squared_lj_cl.h"
#elif defined(USE_CUDART)
const char *re_squared=0;
const char *re_squared_lj=0;
#else
#include "re_squared_cubin.h"
#include "re_squared_lj_cubin.h"
#endif
#include "lal_re_squared.h"
#include <cassert>
using namespace LAMMPS_AL;
#define RESquaredT RESquared<numtyp, acctyp>
extern Device<PRECISION,ACC_PRECISION> device;
template <class numtyp, class acctyp>
RESquaredT::RESquared() : BaseEllipsoid<numtyp,acctyp>(),
_allocated(false) {
}
template <class numtyp, class acctyp>
RESquaredT::~RESquared() {
clear();
}
template <class numtyp, class acctyp>
int RESquaredT::bytes_per_atom(const int max_nbors) const {
return this->bytes_per_atom(max_nbors);
}
template <class numtyp, class acctyp>
int RESquaredT::init(const int ntypes, double **host_shape, double **host_well,
double **host_cutsq, double **host_sigma,
double **host_epsilon, int **h_form, double **host_lj1,
double **host_lj2, double **host_lj3, double **host_lj4,
double **host_offset, const double *host_special_lj,
const int nlocal, const int nall, const int max_nbors,
const int maxspecial, const double cell_size,
const double gpu_split, FILE *_screen) {
int success;
success=this->init_base(nlocal,nall,max_nbors,maxspecial,cell_size,gpu_split,
_screen,ntypes,h_form,re_squared,re_squared_lj,
"k_resquared",true);
if (success!=0)
return success;
// If atom type constants fit in shared memory use fast kernel
int lj_types=ntypes;
_shared_types=false;
int max_shared_types=this->device->max_shared_types();
if (lj_types<=max_shared_types && this->block_size()>=max_shared_types) {
lj_types=max_shared_types;
_shared_types=true;
}
_lj_types=lj_types;
// Allocate a host write buffer for copying type data
UCL_H_Vec<numtyp> host_write(lj_types*lj_types*32,*(this->ucl_device),
UCL_WRITE_ONLY);
for (int i=0; i<lj_types*lj_types; i++)
host_write[i]=0.0;
sigma_epsilon.alloc(lj_types*lj_types,*(this->ucl_device),UCL_READ_ONLY);
this->atom->type_pack2(ntypes,lj_types,sigma_epsilon,host_write,
host_sigma,host_epsilon);
this->cut_form.alloc(lj_types*lj_types,*(this->ucl_device),UCL_READ_ONLY);
this->atom->type_pack2(ntypes,lj_types,this->cut_form,host_write,
host_cutsq,h_form);
lj1.alloc(lj_types*lj_types,*(this->ucl_device),UCL_READ_ONLY);
this->atom->type_pack4(ntypes,lj_types,lj1,host_write,host_lj1,host_lj2,
host_cutsq,h_form);
lj3.alloc(lj_types*lj_types,*(this->ucl_device),UCL_READ_ONLY);
this->atom->type_pack4(ntypes,lj_types,lj3,host_write,host_lj3,host_lj4,
host_offset);
dev_error.alloc(1,*(this->ucl_device),UCL_WRITE_ONLY);
dev_error.zero();
// Allocate, cast and asynchronous memcpy of constant data
// Copy data for bonded interactions
special_lj.alloc(4,*(this->ucl_device),UCL_READ_ONLY);
host_write[0]=static_cast<numtyp>(host_special_lj[0]);
host_write[1]=static_cast<numtyp>(host_special_lj[1]);
host_write[2]=static_cast<numtyp>(host_special_lj[2]);
host_write[3]=static_cast<numtyp>(host_special_lj[3]);
ucl_copy(special_lj,host_write,4,false);
// Copy shape, well, sigma, epsilon, and cutsq onto GPU
// - cast if necessary
shape.alloc(ntypes,*(this->ucl_device),UCL_READ_ONLY);
for (int i=0; i<ntypes; i++) {
host_write[i*4]=host_shape[i][0];
host_write[i*4+1]=host_shape[i][1];
host_write[i*4+2]=host_shape[i][2];
}
UCL_H_Vec<numtyp4> view4;
view4.view((numtyp4*)host_write.begin(),shape.numel(),*(this->ucl_device));
ucl_copy(shape,view4,false);
well.alloc(ntypes,*(this->ucl_device),UCL_READ_ONLY);
for (int i=0; i<ntypes; i++) {
host_write[i*4]=host_well[i][0];
host_write[i*4+1]=host_well[i][1];
host_write[i*4+2]=host_well[i][2];
}
view4.view((numtyp4*)host_write.begin(),well.numel(),*(this->ucl_device));
ucl_copy(well,view4,false);
_allocated=true;
this->_max_bytes=sigma_epsilon.row_bytes()+this->cut_form.row_bytes()+
lj1.row_bytes()+lj3.row_bytes()+special_lj.row_bytes()+
shape.row_bytes()+well.row_bytes();
return 0;
}
template <class numtyp, class acctyp>
void RESquaredT::clear() {
if (!_allocated)
return;
UCL_H_Vec<int> err_flag(1,*(this->ucl_device));
ucl_copy(err_flag,dev_error,false);
if (err_flag[0] == 2)
std::cerr << "BAD MATRIX INVERSION IN FORCE COMPUTATION.\n";
err_flag.clear();
_allocated=false;
dev_error.clear();
lj1.clear();
lj3.clear();
sigma_epsilon.clear();
this->cut_form.clear();
shape.clear();
well.clear();
special_lj.clear();
this->clear_base();
}
template <class numtyp, class acctyp>
double RESquaredT::host_memory_usage() const {
return this->host_memory_usage_base()+sizeof(RESquaredT)+
4*sizeof(numtyp);
}
// ---------------------------------------------------------------------------
// Calculate energies, forces, and torques
// ---------------------------------------------------------------------------
template <class numtyp, class acctyp>
void RESquaredT::loop(const bool _eflag, const bool _vflag) {
const int BX=this->block_size();
int eflag, vflag;
if (_eflag)
eflag=1;
else
eflag=0;
if (_vflag)
vflag=1;
else
vflag=0;
int GX=0, NGX;
int stride=this->nbor->nbor_pitch();
int ainum=this->ans->inum();
if (this->_multiple_forms) {
if (this->_last_ellipse>0) {
// ------------ ELLIPSE_ELLIPSE ---------------
this->time_nbor1.start();
GX=static_cast<int>(ceil(static_cast<double>(this->_last_ellipse)/
(BX/this->_threads_per_atom)));
NGX=static_cast<int>(ceil(static_cast<double>(this->_last_ellipse)/BX));
this->pack_nbors(NGX,BX, 0, this->_last_ellipse,ELLIPSE_ELLIPSE,
ELLIPSE_ELLIPSE,_shared_types,_lj_types);
this->time_nbor1.stop();
this->time_ellipsoid.start();
this->k_ellipsoid.set_size(GX,BX);
this->k_ellipsoid.run(&this->atom->x, &this->atom->quat,
&this->shape, &this->well, &this->special_lj,
&this->sigma_epsilon, &this->_lj_types,
&this->nbor->dev_nbor, &stride,
&this->ans->force,&ainum, &this->ans->engv,
&this->dev_error, &eflag, &vflag,
&this->_last_ellipse, &this->_threads_per_atom);
this->time_ellipsoid.stop();
// ------------ ELLIPSE_SPHERE ---------------
this->time_nbor2.start();
this->pack_nbors(NGX,BX, 0, this->_last_ellipse,ELLIPSE_SPHERE,
ELLIPSE_SPHERE,_shared_types,_lj_types);
this->time_nbor2.stop();
this->time_ellipsoid2.start();
this->k_ellipsoid_sphere.set_size(GX,BX);
this->k_ellipsoid_sphere.run(&this->atom->x, &this->atom->quat,
&this->shape, &this->well, &this->special_lj,
&this->sigma_epsilon, &this->_lj_types,
&this->nbor->dev_nbor, &stride,
&this->ans->force,&ainum,
&this->ans->engv, &this->dev_error,
&eflag, &vflag, &this->_last_ellipse,
&this->_threads_per_atom);
this->time_ellipsoid2.stop();
if (this->_last_ellipse==this->ans->inum()) {
this->time_nbor3.zero();
this->time_ellipsoid3.zero();
this->time_lj.zero();
return;
}
// ------------ SPHERE_ELLIPSE ---------------
this->time_nbor3.start();
GX=static_cast<int>(ceil(static_cast<double>(this->ans->inum()-
this->_last_ellipse)/
(BX/this->_threads_per_atom)));
NGX=static_cast<int>(ceil(static_cast<double>(this->ans->inum()-
this->_last_ellipse)/BX));
this->pack_nbors(NGX,BX,this->_last_ellipse,this->ans->inum(),
SPHERE_ELLIPSE,SPHERE_ELLIPSE,_shared_types,_lj_types);
this->time_nbor3.stop();
this->time_ellipsoid3.start();
this->k_sphere_ellipsoid.set_size(GX,BX);
this->k_sphere_ellipsoid.run(&this->atom->x, &this->atom->quat,
&this->shape, &this->well, &this->special_lj,
&this->sigma_epsilon, &this->_lj_types,
&this->nbor->dev_nbor, &stride,
&this->ans->force, &this->ans->engv,
&this->dev_error, &eflag, &vflag,
&this->_last_ellipse, &ainum,
&this->_threads_per_atom);
this->time_ellipsoid3.stop();
} else {
GX=static_cast<int>(ceil(static_cast<double>(this->ans->inum()-
this->_last_ellipse)/
(BX/this->_threads_per_atom)));
this->ans->force.zero();
this->ans->engv.zero();
this->time_nbor1.zero();
this->time_ellipsoid.zero();
this->time_nbor2.zero();
this->time_ellipsoid2.zero();
this->time_nbor3.zero();
this->time_ellipsoid3.zero();
}
// ------------ LJ ---------------
this->time_lj.start();
if (this->_last_ellipse<this->ans->inum()) {
if (this->_shared_types) {
this->k_lj_fast.set_size(GX,BX);
this->k_lj_fast.run(&this->atom->x, &this->lj1, &this->lj3,
&this->special_lj, &stride,
&this->nbor->dev_packed, &this->ans->force,
&this->ans->engv, &this->dev_error,
&eflag, &vflag, &this->_last_ellipse, &ainum,
&this->_threads_per_atom);
} else {
this->k_lj.set_size(GX,BX);
this->k_lj.run(&this->atom->x, &this->lj1, &this->lj3,
&this->_lj_types, &this->special_lj, &stride,
&this->nbor->dev_packed, &this->ans->force,
&this->ans->engv, &this->dev_error, &eflag, &vflag,
&this->_last_ellipse, &ainum, &this->_threads_per_atom);
}
}
this->time_lj.stop();
} else {
GX=static_cast<int>(ceil(static_cast<double>(this->ans->inum())/
(BX/this->_threads_per_atom)));
NGX=static_cast<int>(ceil(static_cast<double>(this->ans->inum())/BX));
this->time_nbor1.start();
this->pack_nbors(NGX, BX, 0, this->ans->inum(),SPHERE_SPHERE,
ELLIPSE_ELLIPSE,_shared_types,_lj_types);
this->time_nbor1.stop();
this->time_ellipsoid.start();
this->k_ellipsoid.set_size(GX,BX);
this->k_ellipsoid.run(&this->atom->x, &this->atom->quat,
&this->shape, &this->well, &this->special_lj,
&this->sigma_epsilon, &this->_lj_types,
&this->nbor->dev_nbor, &stride, &this->ans->force,
&ainum, &this->ans->engv, &this->dev_error,
&eflag, &vflag, &ainum, &this->_threads_per_atom);
this->time_ellipsoid.stop();
}
}
template class RESquared<PRECISION,ACC_PRECISION>;