forked from lijiext/lammps
323 lines
10 KiB
Plaintext
323 lines
10 KiB
Plaintext
// **************************************************************************
|
||
// lj_coul_msm.cu
|
||
// -------------------
|
||
// Trung Dac Nguyen (ORNL)
|
||
//
|
||
// Device code for acceleration of the lj/cut/coul/msm pair style
|
||
//
|
||
// __________________________________________________________________________
|
||
// This file is part of the LAMMPS Accelerator Library (LAMMPS_AL)
|
||
// __________________________________________________________________________
|
||
//
|
||
// begin :
|
||
// email : nguyentd@ornl.gov
|
||
// ***************************************************************************/
|
||
|
||
#ifdef NV_KERNEL
|
||
|
||
#include "lal_aux_fun1.h"
|
||
#ifndef _DOUBLE_DOUBLE
|
||
texture<float4> pos_tex;
|
||
texture<float> q_tex;
|
||
texture<float> gcons_tex;
|
||
texture<float> dgcons_tex;
|
||
#else
|
||
texture<int4,1> pos_tex;
|
||
texture<int2> q_tex;
|
||
texture<int2> gcons_tex;
|
||
texture<int2> dgcons_tex;
|
||
#endif
|
||
|
||
#else
|
||
#define pos_tex x_
|
||
#define q_tex q_
|
||
#define gcons_tex gcons
|
||
#define dgcons_tex dgcons
|
||
#endif
|
||
|
||
/* ----------------------------------------------------------------------
|
||
compute gamma for MSM and pair styles
|
||
see Eq 4 from Parallel Computing 35 (2009) 164177
|
||
------------------------------------------------------------------------- */
|
||
|
||
ucl_inline numtyp gamma(const numtyp rho, const int order,
|
||
const __global numtyp *gcons) {
|
||
if (rho <= (numtyp)1.0) {
|
||
const int split_order = order/2;
|
||
const numtyp rho2 = rho*rho;
|
||
numtyp g; fetch(g,7*split_order+0,gcons_tex);
|
||
numtyp rho_n = rho2;
|
||
for (int n=1; n<=split_order; n++) {
|
||
numtyp tmp; fetch(tmp,7*split_order+n,gcons_tex);
|
||
g += tmp*rho_n;
|
||
rho_n *= rho2;
|
||
}
|
||
return g;
|
||
} else
|
||
return ((numtyp)1.0/rho);
|
||
}
|
||
|
||
/* ----------------------------------------------------------------------
|
||
compute the derivative of gamma for MSM and pair styles
|
||
see Eq 4 from Parallel Computing 35 (2009) 164-177
|
||
------------------------------------------------------------------------- */
|
||
|
||
ucl_inline numtyp dgamma(const numtyp rho, const int order,
|
||
const __global numtyp *dgcons) {
|
||
if (rho <= (numtyp)1.0) {
|
||
const int split_order = order/2;
|
||
const numtyp rho2 = rho*rho;
|
||
numtyp dg; fetch(dg,6*split_order+0,dgcons_tex);
|
||
dg *= rho;
|
||
numtyp rho_n = rho*rho2;
|
||
for (int n=1; n<split_order; n++) {
|
||
numtyp tmp; fetch(tmp,6*split_order+n,dgcons_tex);
|
||
dg += tmp*rho_n;
|
||
rho_n *= rho2;
|
||
}
|
||
return dg;
|
||
} else
|
||
return ((numtyp)-1.0/rho/rho);
|
||
}
|
||
|
||
__kernel void k_lj_coul_msm(const __global numtyp4 *restrict x_,
|
||
const __global numtyp4 *restrict lj1,
|
||
const __global numtyp4 *restrict lj3,
|
||
const __global numtyp *restrict gcons,
|
||
const __global numtyp *restrict dgcons,
|
||
const int lj_types,
|
||
const __global numtyp *restrict sp_lj_in,
|
||
const __global int *dev_nbor,
|
||
const __global int *dev_packed,
|
||
__global acctyp4 *restrict ans,
|
||
__global acctyp *restrict engv,
|
||
const int eflag, const int vflag, const int inum,
|
||
const int nbor_pitch,
|
||
const __global numtyp *restrict q_,
|
||
const numtyp cut_coulsq, const numtyp qqrd2e,
|
||
const int order, const int t_per_atom) {
|
||
int tid, ii, offset;
|
||
atom_info(t_per_atom,ii,tid,offset);
|
||
|
||
__local numtyp sp_lj[8];
|
||
sp_lj[0]=sp_lj_in[0];
|
||
sp_lj[1]=sp_lj_in[1];
|
||
sp_lj[2]=sp_lj_in[2];
|
||
sp_lj[3]=sp_lj_in[3];
|
||
sp_lj[4]=sp_lj_in[4];
|
||
sp_lj[5]=sp_lj_in[5];
|
||
sp_lj[6]=sp_lj_in[6];
|
||
sp_lj[7]=sp_lj_in[7];
|
||
|
||
acctyp energy=(acctyp)0;
|
||
acctyp e_coul=(acctyp)0;
|
||
acctyp4 f;
|
||
f.x=(acctyp)0; f.y=(acctyp)0; f.z=(acctyp)0;
|
||
acctyp virial[6];
|
||
for (int i=0; i<6; i++)
|
||
virial[i]=(acctyp)0;
|
||
|
||
if (ii<inum) {
|
||
int nbor, nbor_end;
|
||
int i, numj;
|
||
__local int n_stride;
|
||
nbor_info(dev_nbor,dev_packed,nbor_pitch,t_per_atom,ii,offset,i,numj,
|
||
n_stride,nbor_end,nbor);
|
||
|
||
numtyp4 ix; fetch4(ix,i,pos_tex); //x_[i];
|
||
numtyp qtmp; fetch(qtmp,i,q_tex);
|
||
int itype=ix.w;
|
||
|
||
numtyp cut_coul = ucl_sqrt(cut_coulsq);
|
||
|
||
for ( ; nbor<nbor_end; nbor+=n_stride) {
|
||
int j=dev_packed[nbor];
|
||
|
||
numtyp factor_lj, factor_coul;
|
||
factor_lj = sp_lj[sbmask(j)];
|
||
factor_coul = (numtyp)1.0-sp_lj[sbmask(j)+4];
|
||
j &= NEIGHMASK;
|
||
|
||
numtyp4 jx; fetch4(jx,j,pos_tex); //x_[j];
|
||
int jtype=jx.w;
|
||
|
||
// Compute r12
|
||
numtyp delx = ix.x-jx.x;
|
||
numtyp dely = ix.y-jx.y;
|
||
numtyp delz = ix.z-jx.z;
|
||
numtyp rsq = delx*delx+dely*dely+delz*delz;
|
||
|
||
int mtype=itype*lj_types+jtype;
|
||
if (rsq<lj1[mtype].z) {
|
||
numtyp r2inv=ucl_recip(rsq);
|
||
numtyp forcecoul, force_lj, force, r6inv, prefactor, egamma, fgamma;
|
||
|
||
if (rsq < lj1[mtype].w) {
|
||
r6inv = r2inv*r2inv*r2inv;
|
||
force_lj = factor_lj*r6inv*(lj1[mtype].x*r6inv-lj1[mtype].y);
|
||
} else
|
||
force_lj = (numtyp)0.0;
|
||
|
||
if (rsq < cut_coulsq) {
|
||
numtyp r = ucl_rsqrt(r2inv);
|
||
fetch(prefactor,j,q_tex);
|
||
prefactor *= qqrd2e * qtmp/r;
|
||
numtyp rho = r/cut_coul;
|
||
egamma = (numtyp)1.0 - rho*gamma(rho, order, gcons);
|
||
fgamma = (numtyp)1.0 + (rsq/cut_coulsq)*dgamma(rho, order, dgcons);
|
||
forcecoul = prefactor * fgamma;
|
||
} else
|
||
forcecoul = (numtyp)0.0;
|
||
|
||
force = (force_lj + forcecoul) * r2inv;
|
||
|
||
f.x+=delx*force;
|
||
f.y+=dely*force;
|
||
f.z+=delz*force;
|
||
|
||
if (eflag>0) {
|
||
if (rsq < cut_coulsq)
|
||
e_coul += prefactor*(egamma-factor_coul);
|
||
if (rsq < lj1[mtype].w) {
|
||
numtyp e=r6inv*(lj3[mtype].x*r6inv-lj3[mtype].y);
|
||
energy+=factor_lj*(e-lj3[mtype].z);
|
||
}
|
||
}
|
||
if (vflag>0) {
|
||
virial[0] += delx*delx*force;
|
||
virial[1] += dely*dely*force;
|
||
virial[2] += delz*delz*force;
|
||
virial[3] += delx*dely*force;
|
||
virial[4] += delx*delz*force;
|
||
virial[5] += dely*delz*force;
|
||
}
|
||
}
|
||
|
||
} // for nbor
|
||
store_answers_q(f,energy,e_coul,virial,ii,inum,tid,t_per_atom,offset,eflag,
|
||
vflag,ans,engv);
|
||
} // if ii
|
||
}
|
||
|
||
__kernel void k_lj_coul_msm_fast(const __global numtyp4 *restrict x_,
|
||
const __global numtyp4 *restrict lj1_in,
|
||
const __global numtyp4 *restrict lj3_in,
|
||
const __global numtyp *restrict gcons,
|
||
const __global numtyp *restrict dgcons,
|
||
const __global numtyp *restrict sp_lj_in,
|
||
const __global int *dev_nbor,
|
||
const __global int *dev_packed,
|
||
__global acctyp4 *restrict ans,
|
||
__global acctyp *restrict engv,
|
||
const int eflag, const int vflag,
|
||
const int inum, const int nbor_pitch,
|
||
const __global numtyp *restrict q_,
|
||
const numtyp cut_coulsq, const numtyp qqrd2e,
|
||
const int order, const int t_per_atom) {
|
||
int tid, ii, offset;
|
||
atom_info(t_per_atom,ii,tid,offset);
|
||
|
||
__local numtyp4 lj1[MAX_SHARED_TYPES*MAX_SHARED_TYPES];
|
||
__local numtyp4 lj3[MAX_SHARED_TYPES*MAX_SHARED_TYPES];
|
||
__local numtyp sp_lj[8];
|
||
if (tid<8)
|
||
sp_lj[tid]=sp_lj_in[tid];
|
||
if (tid<MAX_SHARED_TYPES*MAX_SHARED_TYPES) {
|
||
lj1[tid]=lj1_in[tid];
|
||
if (eflag>0)
|
||
lj3[tid]=lj3_in[tid];
|
||
}
|
||
|
||
acctyp energy=(acctyp)0;
|
||
acctyp e_coul=(acctyp)0;
|
||
acctyp4 f;
|
||
f.x=(acctyp)0; f.y=(acctyp)0; f.z=(acctyp)0;
|
||
acctyp virial[6];
|
||
for (int i=0; i<6; i++)
|
||
virial[i]=(acctyp)0;
|
||
|
||
__syncthreads();
|
||
|
||
if (ii<inum) {
|
||
int nbor, nbor_end;
|
||
int i, numj;
|
||
__local int n_stride;
|
||
nbor_info(dev_nbor,dev_packed,nbor_pitch,t_per_atom,ii,offset,i,numj,
|
||
n_stride,nbor_end,nbor);
|
||
|
||
numtyp4 ix; fetch4(ix,i,pos_tex); //x_[i];
|
||
numtyp qtmp; fetch(qtmp,i,q_tex);
|
||
int iw=ix.w;
|
||
int itype=fast_mul((int)MAX_SHARED_TYPES,iw);
|
||
|
||
numtyp cut_coul = ucl_sqrt(cut_coulsq);
|
||
|
||
for ( ; nbor<nbor_end; nbor+=n_stride) {
|
||
int j=dev_packed[nbor];
|
||
|
||
numtyp factor_lj, factor_coul;
|
||
factor_lj = sp_lj[sbmask(j)];
|
||
factor_coul = (numtyp)1.0-sp_lj[sbmask(j)+4];
|
||
j &= NEIGHMASK;
|
||
|
||
numtyp4 jx; fetch4(jx,j,pos_tex); //x_[j];
|
||
int mtype=itype+jx.w;
|
||
|
||
// Compute r12
|
||
numtyp delx = ix.x-jx.x;
|
||
numtyp dely = ix.y-jx.y;
|
||
numtyp delz = ix.z-jx.z;
|
||
numtyp rsq = delx*delx+dely*dely+delz*delz;
|
||
|
||
if (rsq<lj1[mtype].z) {
|
||
numtyp r2inv=ucl_recip(rsq);
|
||
numtyp forcecoul, force_lj, force, r6inv, prefactor, egamma, fgamma;
|
||
|
||
if (rsq < lj1[mtype].w) {
|
||
r6inv = r2inv*r2inv*r2inv;
|
||
force_lj = factor_lj*r6inv*(lj1[mtype].x*r6inv-lj1[mtype].y);
|
||
} else
|
||
force_lj = (numtyp)0.0;
|
||
|
||
if (rsq < cut_coulsq) {
|
||
numtyp r = ucl_rsqrt(r2inv);
|
||
fetch(prefactor,j,q_tex);
|
||
prefactor *= qqrd2e * qtmp/r;
|
||
numtyp rho = r/cut_coul;
|
||
egamma = (numtyp)1.0 - rho*gamma(rho, order, gcons);
|
||
fgamma = (numtyp)1.0 + (rsq/cut_coulsq)*dgamma(rho, order, dgcons);
|
||
forcecoul = prefactor * fgamma;
|
||
} else
|
||
forcecoul = (numtyp)0.0;
|
||
|
||
force = (force_lj + forcecoul) * r2inv;
|
||
|
||
f.x+=delx*force;
|
||
f.y+=dely*force;
|
||
f.z+=delz*force;
|
||
|
||
if (eflag>0) {
|
||
if (rsq < cut_coulsq)
|
||
e_coul += prefactor*(egamma-factor_coul);
|
||
if (rsq < lj1[mtype].w) {
|
||
numtyp e=r6inv*(lj3[mtype].x*r6inv-lj3[mtype].y);
|
||
energy+=factor_lj*(e-lj3[mtype].z);
|
||
}
|
||
}
|
||
if (vflag>0) {
|
||
virial[0] += delx*delx*force;
|
||
virial[1] += dely*dely*force;
|
||
virial[2] += delz*delz*force;
|
||
virial[3] += delx*dely*force;
|
||
virial[4] += delx*delz*force;
|
||
virial[5] += dely*delz*force;
|
||
}
|
||
}
|
||
|
||
} // for nbor
|
||
store_answers_q(f,energy,e_coul,virial,ii,inum,tid,t_per_atom,offset,eflag,
|
||
vflag,ans,engv);
|
||
} // if ii
|
||
}
|
||
|