lammps/doc/pair_dpd.txt

117 lines
3.9 KiB
Plaintext

"LAMMPS WWW Site"_lws - "LAMMPS Documentation"_ld - "LAMMPS Commands"_lc :c
:link(lws,http://lammps.sandia.gov)
:link(ld,Manual.html)
:link(lc,Section_commands.html#comm)
:line
pair_style dpd command :h3
[Syntax:]
pair_style dpd T cutoff seed :pre
T = temperature (temperature units)
cutoff = global cutoff for DPD interactions (distance units)
seed = random # seed (positive integer) :ul
[Examples:]
pair_style dpd 1.0 2.5 34387
pair_coeff * * 3.0 1.0
pair_coeff 1 1 3.0 1.0 1.0 :pre
[Description:]
Style {dpd} computes a force field for dissipative particle dynamics
(DPD) following the exposition in "(Groot)"_#Groot. The force
on atom I due to atom J is given as a sum of 3 terms
:c,image(Eqs/pair_dpd.jpg)
where Fc is a conservative force, Fd is a dissipative force, and Fr is
a random force. Rij is a unit vector in the direction Ri - Rj, Vij is
the vector difference in velocities of the two atoms = Vi - Vj, alpha
is a Gaussian random number with zero mean and unit variance, dt is
the timestep size, and w(r) is a weighting factor that varies between
0 and 1. Rc is the cutoff. Sigma is set equal to sqrt(2 Kb T gamma),
where Kb is the Boltzmann constant and T is the temperature parameter
in the pair_style command.
The pairwise energy associated with this potential is only due to the
conservative force term Fc.
The following coefficients must be defined for each pair of atoms
types via the "pair_coeff"_pair_coeff.html command as in the examples
above, or in the data file or restart files read by the
"read_data"_read_data.html or "read_restart"_read_restart.html
commands:
A (force units)
gamma (force/velocity units)
cutoff (distance units) :ul
The last coefficient is optional. If not specified, the global DPD
cutoff is used. Note that sigma is set equal to sqrt(2 T gamma),
where T is the temperature set by the "pair_style"_pair_style.html
command so it does not need to be specified.
:line
[Mixing, shift, table, tail correction, restart, rRESPA info]:
This pair style does not support mixing. Thus, coefficients for all
I,J pairs must be specified explicitly.
This pair style does not support the "pair_modify"_pair_modify.html
shift option for the energy of the pair interaction.
The "pair_modify"_pair_modify.html table option is not relevant
for this pair style.
This pair style does not support the "pair_modify"_pair_modify.html
tail option for adding long-range tail corrections to energy and
pressure.
This pair style writes its information to "binary restart
files"_restart.html, so pair_style and pair_coeff commands do not need
to be specified in an input script that reads a restart file. Note
that the user-specified random number seed is stored in the restart
file, so when a simulation is restarted, each processor will
re-initialize its random number generator the same way it did
initially. This means the random forces will be random, but will not
be the same as they would have been if the original simulation had
continued past the restart time.
This pair style can only be used via the {pair} keyword of the
"run_style respa"_run_style.html command. It does not support the
{inner}, {middle}, {outer} keywords.
:line
[Restrictions:]
The default frequency for rebuilding neighbor lists is every 10 steps
(see the "neigh_modify"_neigh_modify.html command). This may be too
infrequent for DPD simulations since particles move rapidly and can
overlap by large amounts. If this setting yields a non-zero number of
"dangerous" reneighborings (printed at the end of a simulation), you
should experiment with forcing reneighboring more often and see if
system energies/trajectories change.
This pair style requires you to use the "communicate vel
yes"_communicate.html option so that velocites are stored by ghost
atoms.
[Related commands:]
"pair_coeff"_pair_coeff.html
[Default:] none
:line
:link(Groot)
[(Groot)] Groot and Warren, J Chem Phys, 107, 4423-35 (1997).