forked from lijiext/lammps
748 lines
25 KiB
C++
748 lines
25 KiB
C++
// ATC header files
|
|
#include "ATC_Error.h"
|
|
#include "FE_Mesh.h"
|
|
#include "FE_Element.h"
|
|
#include "FE_Interpolate.h"
|
|
#include "LinearSolver.h"
|
|
#include "PolynomialSolver.h"
|
|
#include "Utility.h"
|
|
|
|
// Other headers
|
|
#include "math.h"
|
|
|
|
using ATC_Utility::dbl_geq;
|
|
using ATC_Utility::det3;
|
|
using std::vector;
|
|
|
|
namespace ATC {
|
|
|
|
static const int localCoordinatesMaxIterations_ = 40;
|
|
static const double localCoordinatesTolerance = 1.e-09;
|
|
|
|
|
|
// =============================================================
|
|
// class FE_Element
|
|
// =============================================================
|
|
FE_Element::FE_Element(const int nSD,
|
|
int numFaces,
|
|
int numNodes,
|
|
int numFaceNodes,
|
|
int numNodes1d)
|
|
: nSD_(nSD),
|
|
numFaces_(numFaces),
|
|
numNodes_(numNodes),
|
|
numFaceNodes_(numFaceNodes),
|
|
numNodes1d_(numNodes1d),
|
|
tolerance_(localCoordinatesTolerance),
|
|
projectionGuess_(COORDINATE_ALIGNED)
|
|
{
|
|
feInterpolate_ = NULL;
|
|
}
|
|
|
|
FE_Element::~FE_Element()
|
|
{
|
|
if (feInterpolate_) delete feInterpolate_;
|
|
}
|
|
|
|
int FE_Element::num_ips() const
|
|
{
|
|
return feInterpolate_->num_ips();
|
|
}
|
|
|
|
int FE_Element::num_face_ips() const
|
|
{
|
|
return feInterpolate_->num_face_ips();
|
|
}
|
|
|
|
void FE_Element::face_coordinates(const DENS_MAT &eltCoords,
|
|
const int faceID,
|
|
DENS_MAT & faceCoords) const
|
|
{
|
|
faceCoords.reset(nSD_, numFaceNodes_);
|
|
|
|
for (int inode=0; inode < numFaceNodes_; inode++)
|
|
{
|
|
int id = localFaceConn_(faceID,inode);
|
|
for (int isd=0; isd<nSD_; isd++) {
|
|
faceCoords(isd,inode) = eltCoords(isd,id);
|
|
}
|
|
}
|
|
}
|
|
|
|
void FE_Element::mapping(const int inode, vector<int> &mapping) const
|
|
{
|
|
for (int iSD=0; iSD<nSD_; ++iSD) {
|
|
mapping[iSD] = static_cast<int>((localCoords_(iSD,inode)+1)/2*
|
|
(numNodes1d_-1));
|
|
}
|
|
}
|
|
|
|
DENS_VEC FE_Element::local_coords_1d() const
|
|
{
|
|
DENS_VEC localCoords1d(numNodes1d_);
|
|
for (int inode1d=0; inode1d<numNodes1d_; ++inode1d) {
|
|
localCoords1d(inode1d) = (double(inode1d)/double(numNodes1d_-1))*2 - 1;
|
|
}
|
|
return localCoords1d;
|
|
}
|
|
|
|
void FE_Element::centroid(const DENS_MAT &eltCoords,
|
|
DENS_VEC ¢roid) const
|
|
{
|
|
centroid.reset(nSD_);
|
|
for (int i = 0; i < nSD_; i++) {
|
|
centroid(i) = eltCoords.row_mean(i);
|
|
}
|
|
}
|
|
|
|
// -------------------------------------------------------------
|
|
// generic conversion from global to local coordinates using
|
|
// Newton's method to solve the nonliear equation that arises
|
|
// -------------------------------------------------------------
|
|
bool FE_Element::local_coordinates(const DENS_MAT &eltCoords,
|
|
const DENS_VEC &x,
|
|
DENS_VEC &xi) const
|
|
{
|
|
// initial guess
|
|
DENS_VEC xiGuess(nSD_);
|
|
this->initial_local_coordinates(eltCoords,x,xiGuess);
|
|
// clip out-of-range guesses
|
|
if (fabs(xiGuess(0)) > 1.0) xiGuess(0) = 0.;
|
|
if (fabs(xiGuess(1)) > 1.0) xiGuess(1) = 0.;
|
|
if (fabs(xiGuess(2)) > 1.0) xiGuess(2) = 0.;
|
|
|
|
// iteratively solve the equation by calculating the global
|
|
// position of the guess and bringing the difference between it
|
|
// and the actual global position of x to zero
|
|
//
|
|
// uses Newton's method
|
|
DENS_VEC N(numNodes_);
|
|
DENS_MAT dNdr(nSD_,numNodes_);
|
|
|
|
DENS_VEC xGuess(nSD_);
|
|
DENS_VEC xDiff(nSD_);
|
|
DENS_MAT eltCoordsT = transpose(eltCoords);
|
|
int count = 0;
|
|
bool converged = false;
|
|
while (count < localCoordinatesMaxIterations_) {
|
|
feInterpolate_->compute_N_dNdr(xiGuess,N,dNdr);
|
|
xGuess = N*eltCoordsT;
|
|
xDiff = xGuess-x;
|
|
// determine if the guess is close enough.
|
|
// if it is, take it and run
|
|
// if not, use Newton's method to update the guess
|
|
if (!dbl_geq(abs(xDiff(0)),tolerance_) &&
|
|
!dbl_geq(abs(xDiff(1)),tolerance_) &&
|
|
!dbl_geq(abs(xDiff(2)),tolerance_)) {
|
|
converged = true;
|
|
xi = xiGuess;
|
|
break;
|
|
} else {
|
|
xiGuess = xiGuess - transpose(inv(dNdr*eltCoordsT))*xDiff;
|
|
}
|
|
++count;
|
|
}
|
|
return converged;
|
|
}
|
|
|
|
// -------------------------------------------------------------
|
|
// guess for initial local coordinates
|
|
// -------------------------------------------------------------
|
|
void FE_Element::initial_local_coordinates(const DENS_MAT &eltCoords,
|
|
const DENS_VEC &x,
|
|
DENS_VEC &xi) const
|
|
{
|
|
xi.reset(nSD_);
|
|
if (projectionGuess_ == COORDINATE_ALIGNED) {
|
|
double min=0; double max=0;
|
|
for (int i=0; i<nSD_; ++i) {
|
|
bounds_in_dim(eltCoords,i,min,max);
|
|
xi(i) = 2.0*(x(i)-min)/(max-min) - 1.0;
|
|
}
|
|
}
|
|
else if (projectionGuess_ == CENTROID_LINEARIZED) {
|
|
DENS_VEC xi0(nSD_); xi0 = 0;
|
|
DENS_VEC x0(nSD_), dx(nSD_);
|
|
centroid(eltCoords,x0);
|
|
dx = x - x0;
|
|
vector<DENS_VEC> ts; ts.reserve(nSD_);
|
|
tangents(eltCoords,xi0,ts);
|
|
DENS_VEC & t1 = ts[0];
|
|
DENS_VEC & t2 = ts[1];
|
|
DENS_VEC & t3 = ts[2];
|
|
double J = det3(t1.ptr(),t2.ptr(),t3.ptr());
|
|
double J1 = det3(dx.ptr(),t2.ptr(),t3.ptr());
|
|
double J2 = det3(t1.ptr(),dx.ptr(),t3.ptr());
|
|
double J3 = det3(t1.ptr(),t2.ptr(),dx.ptr());
|
|
xi(0) = J1/J;
|
|
xi(1) = J2/J;
|
|
xi(2) = J3/J;
|
|
}
|
|
else if (projectionGuess_ == TWOD_ANALYTIC) {
|
|
// assume x-y planar and HEX8
|
|
double x0 = x(0), y0 = x(1);
|
|
double X[4] = {eltCoords(0,0),eltCoords(0,1),eltCoords(0,2),eltCoords(0,3)};
|
|
double Y[4] = {eltCoords(1,0),eltCoords(1,1),eltCoords(1,2),eltCoords(1,3)};
|
|
double c[3]={0,0,0};
|
|
c[0] = y0*X[1] - y0*X[2] - y0*X[3] + y0*X[4] - x0*Y[1] + (X[2]*Y[1])*0.5 + (X[3]*Y[1])*0.5 + x0*Y[2] - (X[1]*Y[2])*0.5 - (X[4]*Y[2])*0.5 + x0*Y[3] - (X[1]*Y[3])*0.5 - (X[4]*Y[3])*0.5 - x0*Y[4] + (X[2]*Y[4])*0.5 + (X[3]*Y[4])*0.5;
|
|
c[1] = -(y0*X[1]) + y0*X[2] - y0*X[3] + y0*X[4] + x0*Y[1] - X[2]*Y[1] - x0*Y[2] + X[1]*Y[2] + x0*Y[3] - X[4]*Y[3] - x0*Y[4] + X[3]*Y[4];
|
|
c[2] = (X[2]*Y[1])*0.5 - (X[3]*Y[1])*0.5 - (X[1]*Y[2])*0.5 + (X[4]*Y[2])*0.5 + (X[1]*Y[3])*0.5 - (X[4]*Y[3])*0.5 - (X[2]*Y[4])*0.5 + (X[3]*Y[4])*0.5;
|
|
double xi2[2]={0,0};
|
|
int nroots = solve_quadratic(c,xi2);
|
|
if (nroots == 0) throw ATC_Error("no real roots in 2D analytic projection guess");
|
|
double xi1[2]={0,0};
|
|
xi1[0] = (4*x0 - X[1] + xi2[0]*X[1] - X[2] + xi2[0]*X[2] - X[3] - xi2[0]*X[3] - X[4] - xi2[0]*X[4])/(-X[1] + xi2[0]*X[1] + X[2] - xi2[0]*X[2] + X[3] + xi2[0]*X[3] - X[4] - xi2[0]*X[4]);
|
|
xi1[1] = (4*x0 - X[1] + xi2[1]*X[1] - X[2] + xi2[1]*X[2] - X[3] - xi2[1]*X[3] - X[4] - xi2[1]*X[4])/(-X[1] + xi2[1]*X[1] + X[2] - xi2[1]*X[2] + X[3] + xi2[1]*X[3] - X[4] - xi2[1]*X[4]);
|
|
// choose which one gives back x
|
|
xi(0) = xi1[0];
|
|
xi(1) = xi2[0];
|
|
xi(2) = 0;
|
|
}
|
|
}
|
|
|
|
|
|
bool FE_Element::range_check(const DENS_MAT &eltCoords,
|
|
const DENS_VEC &x) const
|
|
{
|
|
double min=0; double max=0;
|
|
for (int i=0; i<nSD_; ++i) {
|
|
bounds_in_dim(eltCoords,i,min,max);
|
|
if (!dbl_geq(x(i),min) || !dbl_geq(max,x(i))) return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
// -------------------------------------------------------------
|
|
// Note: Only works for convex elements with planar faces with
|
|
// outward normals
|
|
// -------------------------------------------------------------
|
|
bool FE_Element::contains_point(const DENS_MAT &eltCoords,
|
|
const DENS_VEC &x) const
|
|
{
|
|
if (! range_check(eltCoords,x) ) return false;
|
|
DENS_MAT faceCoords;
|
|
DENS_VEC normal;
|
|
normal.reset(nSD_);
|
|
DENS_VEC faceToPoint;
|
|
double dot;
|
|
bool inside = true;
|
|
for (int faceID=0; faceID<numFaces_; ++faceID) {
|
|
face_coordinates(eltCoords, faceID, faceCoords);
|
|
feInterpolate_->face_normal(faceCoords,
|
|
0,
|
|
normal);
|
|
faceToPoint = x - column(faceCoords, 0);
|
|
dot = normal.dot(faceToPoint);
|
|
if (dbl_geq(dot,0)) {
|
|
inside = false;
|
|
break;
|
|
}
|
|
}
|
|
return inside;
|
|
}
|
|
|
|
// -------------------------------------------------------------
|
|
// returns the minimum and maximum values of an element in the
|
|
// specified dimension
|
|
// -------------------------------------------------------------
|
|
void FE_Element::bounds_in_dim(const DENS_MAT &eltCoords, const int dim,
|
|
double &min, double &max) const
|
|
{
|
|
int it;
|
|
// iterate over all nodes
|
|
min = eltCoords(dim,0);
|
|
it = 1;
|
|
while (it < numNodes_) {
|
|
if (dbl_geq(min,eltCoords(dim,it))) {
|
|
if (dbl_geq(eltCoords(dim,it),min)) {
|
|
++it;
|
|
} else {
|
|
// set min to this node's coord in the specified dim, if it's
|
|
// smaller than the value previously stored
|
|
min = eltCoords(dim,it);
|
|
}
|
|
} else {
|
|
++it;
|
|
}
|
|
}
|
|
max = eltCoords(dim,0);
|
|
it = 1;
|
|
while (it < numNodes_) {
|
|
if (dbl_geq(max,eltCoords(dim,it))) {
|
|
++it;
|
|
} else {
|
|
// same, except max/larger
|
|
max = eltCoords(dim,it);
|
|
}
|
|
}
|
|
}
|
|
|
|
// -------------------------------------------------------------
|
|
// shape_function calls should stay generic at all costs
|
|
// -------------------------------------------------------------
|
|
void FE_Element::shape_function(const VECTOR &xi,
|
|
DENS_VEC &N) const
|
|
{
|
|
feInterpolate_->shape_function(xi, N);
|
|
}
|
|
|
|
void FE_Element::shape_function(const DENS_MAT eltCoords,
|
|
const VECTOR &x,
|
|
DENS_VEC &N)
|
|
{
|
|
DENS_VEC xi;
|
|
local_coordinates(eltCoords, x, xi);
|
|
|
|
feInterpolate_->shape_function(xi, N);
|
|
}
|
|
|
|
void FE_Element::shape_function(const DENS_MAT eltCoords,
|
|
const VECTOR &x,
|
|
DENS_VEC &N,
|
|
DENS_MAT &dNdx)
|
|
{
|
|
DENS_VEC xi;
|
|
local_coordinates(eltCoords, x, xi);
|
|
|
|
feInterpolate_->shape_function(eltCoords, xi, N, dNdx);
|
|
}
|
|
|
|
void FE_Element::shape_function_derivatives(const DENS_MAT eltCoords,
|
|
const VECTOR &x,
|
|
DENS_MAT &dNdx)
|
|
{
|
|
DENS_VEC xi;
|
|
local_coordinates(eltCoords, x, xi);
|
|
|
|
feInterpolate_->shape_function_derivatives(eltCoords, xi, dNdx);
|
|
}
|
|
|
|
|
|
void FE_Element::shape_function(const DENS_MAT eltCoords,
|
|
DENS_MAT &N,
|
|
vector<DENS_MAT> &dN,
|
|
DIAG_MAT &weights)
|
|
{
|
|
feInterpolate_->shape_function(eltCoords, N, dN, weights);
|
|
}
|
|
|
|
void FE_Element::face_shape_function(const DENS_MAT &eltCoords,
|
|
const int faceID,
|
|
DENS_MAT &N,
|
|
DENS_MAT &n,
|
|
DIAG_MAT &weights)
|
|
{
|
|
DENS_MAT faceCoords;
|
|
face_coordinates(eltCoords, faceID, faceCoords);
|
|
|
|
feInterpolate_->face_shape_function(eltCoords, faceCoords, faceID,
|
|
N, n, weights);
|
|
}
|
|
|
|
void FE_Element::face_shape_function(const DENS_MAT &eltCoords,
|
|
const int faceID,
|
|
DENS_MAT &N,
|
|
vector<DENS_MAT> &dN,
|
|
vector<DENS_MAT> &Nn,
|
|
DIAG_MAT &weights)
|
|
{
|
|
DENS_MAT faceCoords;
|
|
face_coordinates(eltCoords, faceID, faceCoords);
|
|
|
|
feInterpolate_->face_shape_function(eltCoords, faceCoords, faceID,
|
|
N, dN, Nn, weights);
|
|
}
|
|
|
|
double FE_Element::face_normal(const DENS_MAT &eltCoords,
|
|
const int faceID,
|
|
int ip,
|
|
DENS_VEC &normal)
|
|
{
|
|
DENS_MAT faceCoords;
|
|
face_coordinates(eltCoords, faceID, faceCoords);
|
|
|
|
double J = feInterpolate_->face_normal(faceCoords, ip, normal);
|
|
return J;
|
|
}
|
|
|
|
void FE_Element::tangents(const DENS_MAT &eltCoords,
|
|
const DENS_VEC & localCoords,
|
|
vector<DENS_VEC> &tangents,
|
|
const bool normalize) const
|
|
{
|
|
feInterpolate_->tangents(eltCoords,localCoords,tangents,normalize);
|
|
}
|
|
|
|
|
|
// =============================================================
|
|
// class FE_ElementHex
|
|
// =============================================================
|
|
FE_ElementHex::FE_ElementHex(int numNodes,
|
|
int numFaceNodes,
|
|
int numNodes1d)
|
|
: FE_Element(3, // number of spatial dimensions
|
|
6, // number of faces
|
|
numNodes,
|
|
numFaceNodes,
|
|
numNodes1d)
|
|
{
|
|
// 3 --- 2
|
|
// /| /|
|
|
// / 0 --/ 1 y
|
|
// 7 --- 6 / |
|
|
// | |/ |
|
|
// 4 --- 5 -----x
|
|
// /
|
|
// /
|
|
// z
|
|
|
|
// Basic properties of element:
|
|
vol_ = 8.0;
|
|
faceArea_ = 4.0;
|
|
|
|
// Order-specific information:
|
|
if (numNodes != 8 &&
|
|
numNodes != 20 &&
|
|
numNodes != 27) {
|
|
throw ATC_Error("Unrecognized interpolation order specified "
|
|
"for element class: \n"
|
|
" element only knows how to construct lin "
|
|
"and quad elments.");
|
|
}
|
|
|
|
localCoords_.resize(nSD_,numNodes_);
|
|
localFaceConn_ = Array2D<int>(numFaces_,numFaceNodes_);
|
|
|
|
// Matrix of local nodal coordinates
|
|
localCoords_(0,0) = -1; localCoords_(0,4) = -1;
|
|
localCoords_(1,0) = -1; localCoords_(1,4) = -1;
|
|
localCoords_(2,0) = -1; localCoords_(2,4) = 1;
|
|
//
|
|
localCoords_(0,1) = 1; localCoords_(0,5) = 1;
|
|
localCoords_(1,1) = -1; localCoords_(1,5) = -1;
|
|
localCoords_(2,1) = -1; localCoords_(2,5) = 1;
|
|
//
|
|
localCoords_(0,2) = 1; localCoords_(0,6) = 1;
|
|
localCoords_(1,2) = 1; localCoords_(1,6) = 1;
|
|
localCoords_(2,2) = -1; localCoords_(2,6) = 1;
|
|
//
|
|
localCoords_(0,3) = -1; localCoords_(0,7) = -1;
|
|
localCoords_(1,3) = 1; localCoords_(1,7) = 1;
|
|
localCoords_(2,3) = -1; localCoords_(2,7) = 1;
|
|
if (numNodes >= 20) {
|
|
// only for quads
|
|
localCoords_(0,8) = 0; localCoords_(0,14) = 1;
|
|
localCoords_(1,8) = -1; localCoords_(1,14) = 1;
|
|
localCoords_(2,8) = -1; localCoords_(2,14) = 0;
|
|
//
|
|
localCoords_(0,9) = 1; localCoords_(0,15) = -1;
|
|
localCoords_(1,9) = 0; localCoords_(1,15) = 1;
|
|
localCoords_(2,9) = -1; localCoords_(2,15) = 0;
|
|
//
|
|
localCoords_(0,10) = 0; localCoords_(0,16) = 0;
|
|
localCoords_(1,10) = 1; localCoords_(1,16) = -1;
|
|
localCoords_(2,10) = -1; localCoords_(2,16) = 1;
|
|
//
|
|
localCoords_(0,11) = -1; localCoords_(0,17) = 1;
|
|
localCoords_(1,11) = 0; localCoords_(1,17) = 0;
|
|
localCoords_(2,11) = -1; localCoords_(2,17) = 1;
|
|
//
|
|
localCoords_(0,12) = -1; localCoords_(0,18) = 0;
|
|
localCoords_(1,12) = -1; localCoords_(1,18) = 1;
|
|
localCoords_(2,12) = 0; localCoords_(2,18) = 1;
|
|
//
|
|
localCoords_(0,13) = 1; localCoords_(0,19) = -1;
|
|
localCoords_(1,13) = -1; localCoords_(1,19) = 0;
|
|
localCoords_(2,13) = 0; localCoords_(2,19) = 1;
|
|
if (numNodes >= 27) {
|
|
// only for quads
|
|
localCoords_(0,20) = 0; localCoords_(0,24) = 1;
|
|
localCoords_(1,20) = 0; localCoords_(1,24) = 0;
|
|
localCoords_(2,20) = 0; localCoords_(2,24) = 0;
|
|
//
|
|
localCoords_(0,21) = 0; localCoords_(0,25) = 0;
|
|
localCoords_(1,21) = 0; localCoords_(1,25) = -1;
|
|
localCoords_(2,21) = -1; localCoords_(2,25) = 0;
|
|
//
|
|
localCoords_(0,22) = 0; localCoords_(0,26) = 0;
|
|
localCoords_(1,22) = 0; localCoords_(1,26) = 1;
|
|
localCoords_(2,22) = 1; localCoords_(2,26) = 0;
|
|
//
|
|
localCoords_(0,23) = -1;
|
|
localCoords_(1,23) = 0;
|
|
localCoords_(2,23) = 0;
|
|
}
|
|
}
|
|
|
|
// Matrix of local face connectivity
|
|
// -x // +x
|
|
localFaceConn_(0,0) = 0; localFaceConn_(1,0) = 1;
|
|
localFaceConn_(0,1) = 4; localFaceConn_(1,1) = 2;
|
|
localFaceConn_(0,2) = 7; localFaceConn_(1,2) = 6;
|
|
localFaceConn_(0,3) = 3; localFaceConn_(1,3) = 5;
|
|
if (numNodes >= 20) {
|
|
localFaceConn_(0,4) = 12; localFaceConn_(1,4) = 9;
|
|
localFaceConn_(0,5) = 19; localFaceConn_(1,5) = 14;
|
|
localFaceConn_(0,6) = 15; localFaceConn_(1,6) = 17;
|
|
localFaceConn_(0,7) = 11; localFaceConn_(1,7) = 13;
|
|
if (numNodes >= 27) {
|
|
localFaceConn_(0,8) = 23; localFaceConn_(1,8) = 24;
|
|
}
|
|
}
|
|
|
|
// -y // +y
|
|
localFaceConn_(2,0) = 0; localFaceConn_(3,0) = 3;
|
|
localFaceConn_(2,1) = 1; localFaceConn_(3,1) = 7;
|
|
localFaceConn_(2,2) = 5; localFaceConn_(3,2) = 6;
|
|
localFaceConn_(2,3) = 4; localFaceConn_(3,3) = 2;
|
|
if (numNodes >= 20) {
|
|
localFaceConn_(2,4) = 8; localFaceConn_(3,4) = 15;
|
|
localFaceConn_(2,5) = 13; localFaceConn_(3,5) = 18;
|
|
localFaceConn_(2,6) = 16; localFaceConn_(3,6) = 14;
|
|
localFaceConn_(2,7) = 12; localFaceConn_(3,7) = 10;
|
|
if (numNodes >= 27) {
|
|
localFaceConn_(2,8) = 25; localFaceConn_(3,8) = 26;
|
|
}
|
|
}
|
|
|
|
// -z // +z
|
|
localFaceConn_(4,0) = 0; localFaceConn_(5,0) = 4;
|
|
localFaceConn_(4,1) = 3; localFaceConn_(5,1) = 5;
|
|
localFaceConn_(4,2) = 2; localFaceConn_(5,2) = 6;
|
|
localFaceConn_(4,3) = 1; localFaceConn_(5,3) = 7;
|
|
if (numNodes >= 20) {
|
|
localFaceConn_(4,4) = 8; localFaceConn_(5,4) = 16;
|
|
localFaceConn_(4,5) = 11; localFaceConn_(5,5) = 17;
|
|
localFaceConn_(4,6) = 10; localFaceConn_(5,6) = 18;
|
|
localFaceConn_(4,7) = 9; localFaceConn_(5,7) = 19;
|
|
if (numNodes >= 27) {
|
|
localFaceConn_(4,8) = 21; localFaceConn_(5,8) = 22;
|
|
}
|
|
}
|
|
|
|
if (numNodes == 8) {
|
|
feInterpolate_ = new FE_InterpolateCartLin(this);
|
|
} else if (numNodes == 20) {
|
|
feInterpolate_ = new FE_InterpolateCartSerendipity(this);
|
|
} else if (numNodes == 27) {
|
|
feInterpolate_ = new FE_InterpolateCartLagrange(this);
|
|
}
|
|
|
|
// determine alignment and skewness to see which guess we should use
|
|
|
|
}
|
|
|
|
FE_ElementHex::~FE_ElementHex()
|
|
{
|
|
// Handled by base class
|
|
}
|
|
|
|
void FE_ElementHex::set_quadrature(FeIntQuadrature type)
|
|
{
|
|
feInterpolate_->set_quadrature(HEXA,type);
|
|
}
|
|
|
|
bool FE_ElementHex::contains_point(const DENS_MAT &eltCoords,
|
|
const DENS_VEC &x) const
|
|
{
|
|
if (! range_check(eltCoords,x) ) return false;
|
|
|
|
DENS_VEC xi;
|
|
bool converged = local_coordinates(eltCoords,x,xi);
|
|
if (!converged) return false;
|
|
for (int i=0; i<nSD_; ++i) {
|
|
if (!dbl_geq(1.0,abs(xi(i)))) return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// =============================================================
|
|
// class FE_ElementRect
|
|
// =============================================================
|
|
FE_ElementRect::FE_ElementRect()
|
|
: FE_ElementHex(8,4,2)
|
|
{
|
|
// Handled by hex class
|
|
}
|
|
|
|
FE_ElementRect::~FE_ElementRect()
|
|
{
|
|
// Handled by base class
|
|
}
|
|
|
|
bool FE_ElementRect::contains_point(const DENS_MAT &eltCoords,
|
|
const DENS_VEC &x) const
|
|
{
|
|
return range_check(eltCoords,x);
|
|
}
|
|
|
|
// much faster than the unstructured method
|
|
bool FE_ElementRect::local_coordinates(const DENS_MAT &eltCoords,
|
|
const DENS_VEC &x,
|
|
DENS_VEC &xi) const
|
|
{
|
|
xi.reset(nSD_);
|
|
double min = 0.0;
|
|
double max = 0.0;
|
|
for (int iSD=0; iSD<nSD_; ++iSD) {
|
|
min = eltCoords(iSD,0);
|
|
max = eltCoords(iSD,6);
|
|
xi(iSD) = 2.0*(x(iSD)-min)/(max-min) - 1.0;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
// =============================================================
|
|
// class FE_ElementTet
|
|
// =============================================================
|
|
FE_ElementTet::FE_ElementTet(int numNodes,
|
|
int numFaceNodes,
|
|
int numNodes1d)
|
|
: FE_Element(3, // number of spatial dimensions
|
|
4, // number of faces
|
|
numNodes,
|
|
numFaceNodes,
|
|
numNodes1d)
|
|
{
|
|
// t
|
|
// ^
|
|
// |
|
|
// |
|
|
// s
|
|
// 3 .7
|
|
// |\```--- .
|
|
// | \ ```--2 .
|
|
// | \ .|
|
|
// | \ . |
|
|
// | . \ |
|
|
// | . \ |
|
|
// |.___________\| -------> r
|
|
// 0 1
|
|
//
|
|
// (This is as dictated by the EXODUSII standard.)
|
|
//
|
|
// The face opposite point 1 has r = 0,
|
|
// 2 has s = 0,
|
|
// 3 has t = 0,
|
|
// 0 has u = 0.
|
|
|
|
// Basic properties of element:
|
|
vol_ = 1.0/6.0; // local volume
|
|
faceArea_ = 1.0/2.0;
|
|
|
|
// Order-specific information:
|
|
if (numNodes != 4 && numNodes != 10) {
|
|
throw ATC_Error("Unrecognized interpolation order specified "
|
|
"for element class: \n"
|
|
" element only knows how to construct lin "
|
|
"and quad elments.");
|
|
}
|
|
|
|
localCoords_.resize(nSD_+1, numNodes_);
|
|
localFaceConn_ = Array2D<int>(numFaces_,numFaceNodes_);
|
|
|
|
// Matrix of local nodal coordinates
|
|
//
|
|
// Remember, there's actually another coordinate too (u), coming
|
|
// out from the third non-normal face. But we can deal with it on
|
|
// the fly; these coordinates are barycentric, such that
|
|
// r + s + t + u = 1 always. As such we only need to deal with r,
|
|
// s, and t and the computations become easy.
|
|
//
|
|
// The first three axes correspond to x, y, and z (essentially),
|
|
// for the canonical element.
|
|
|
|
// Everyone gets these nodes...
|
|
localCoords_(0,0) = 0; localCoords_(0,2) = 0;
|
|
localCoords_(1,0) = 0; localCoords_(1,2) = 1;
|
|
localCoords_(2,0) = 0; localCoords_(2,2) = 0;
|
|
localCoords_(3,0) = 1; localCoords_(3,2) = 0;
|
|
//
|
|
localCoords_(0,1) = 1; localCoords_(0,3) = 0;
|
|
localCoords_(1,1) = 0; localCoords_(1,3) = 0;
|
|
localCoords_(2,1) = 0; localCoords_(2,3) = 1;
|
|
localCoords_(3,1) = 0; localCoords_(3,3) = 0;
|
|
if (numNodes >= 10) {
|
|
// ...quads get even more!
|
|
localCoords_(0,4) = 0.5; localCoords_(0,5) = 0.5;
|
|
localCoords_(1,4) = 0.0; localCoords_(1,5) = 0.5;
|
|
localCoords_(2,4) = 0.0; localCoords_(2,5) = 0.0;
|
|
localCoords_(3,4) = 0.5; localCoords_(3,5) = 0.0;
|
|
//
|
|
localCoords_(0,6) = 0.0; localCoords_(0,7) = 0.0;
|
|
localCoords_(1,6) = 0.5; localCoords_(1,7) = 0.0;
|
|
localCoords_(2,6) = 0.0; localCoords_(2,7) = 0.5;
|
|
localCoords_(3,6) = 0.5; localCoords_(3,7) = 0.5;
|
|
//
|
|
localCoords_(0,8) = 0.5; localCoords_(0,9) = 0.0;
|
|
localCoords_(1,8) = 0.0; localCoords_(1,9) = 0.5;
|
|
localCoords_(2,8) = 0.5; localCoords_(2,9) = 0.5;
|
|
localCoords_(3,8) = 0.0; localCoords_(3,9) = 0.0;
|
|
}
|
|
|
|
// Matrix of local face connectivity:
|
|
// ...opposite point 0, ...opposite point 2,
|
|
localFaceConn_(0,0) = 1; localFaceConn_(2,0) = 0;
|
|
localFaceConn_(0,1) = 2; localFaceConn_(2,1) = 1;
|
|
localFaceConn_(0,2) = 3; localFaceConn_(2,2) = 3;
|
|
|
|
// ...opposite point 1, ...opposite point 3.
|
|
localFaceConn_(1,0) = 2; localFaceConn_(3,0) = 0;
|
|
localFaceConn_(1,1) = 0; localFaceConn_(3,1) = 2;
|
|
localFaceConn_(1,2) = 3; localFaceConn_(3,2) = 1;
|
|
|
|
feInterpolate_ = new FE_InterpolateSimpLin(this);
|
|
}
|
|
|
|
FE_ElementTet::~FE_ElementTet()
|
|
{
|
|
// Handled by base class
|
|
}
|
|
|
|
void FE_ElementTet::set_quadrature(FeIntQuadrature type)
|
|
{
|
|
feInterpolate_->set_quadrature(TETRA,type);
|
|
}
|
|
|
|
bool FE_ElementTet::local_coordinates(const DENS_MAT &eltCoords,
|
|
const DENS_VEC &x,
|
|
DENS_VEC &xi) const
|
|
{
|
|
DENS_MAT T(nSD_, numNodes_-1);
|
|
DENS_VEC r(nSD_);
|
|
for (int iSD=0; iSD<nSD_; ++iSD) {
|
|
for (int inode=1; inode<numNodes_; ++inode) {
|
|
T(iSD, inode-1) = eltCoords(iSD, inode) -
|
|
eltCoords(iSD, 0);
|
|
}
|
|
r(iSD) = x(iSD) - eltCoords(iSD, 0);
|
|
}
|
|
MultMv(inv(T), r, xi, false, 1.0, 0.0);
|
|
return true;
|
|
}
|
|
|
|
bool FE_ElementTet::contains_point(const DENS_MAT &eltCoords,
|
|
const DENS_VEC &x) const
|
|
{
|
|
if (! range_check(eltCoords,x) ) return false;
|
|
DENS_VEC xi(nSD_);
|
|
bool converged = local_coordinates(eltCoords, x, xi);
|
|
if (! converged) return false;
|
|
double sum = 0.0;
|
|
bool inside = true;
|
|
for (int iSD = 0; iSD < nSD_; ++iSD) {
|
|
if (dbl_geq(xi(iSD),1.0) || dbl_geq(0.0,xi(iSD))) {
|
|
inside = false;
|
|
break;
|
|
}
|
|
sum += xi(iSD);
|
|
}
|
|
if (dbl_geq(sum,1.0)) inside = false;
|
|
return inside;
|
|
}
|
|
|
|
|
|
}; // namespace ATC
|