forked from lijiext/lammps
411 lines
11 KiB
Fortran
411 lines
11 KiB
Fortran
*> \brief \b DLASQ5 computes one dqds transform in ping-pong form. Used by sbdsqr and sstegr.
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download DLASQ5 + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlasq5.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlasq5.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlasq5.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE DLASQ5( I0, N0, Z, PP, TAU, SIGMA, DMIN, DMIN1, DMIN2, DN,
|
|
* DNM1, DNM2, IEEE, EPS )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* LOGICAL IEEE
|
|
* INTEGER I0, N0, PP
|
|
* DOUBLE PRECISION DMIN, DMIN1, DMIN2, DN, DNM1, DNM2, TAU, SIGMA, EPS
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* DOUBLE PRECISION Z( * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> DLASQ5 computes one dqds transform in ping-pong form, one
|
|
*> version for IEEE machines another for non IEEE machines.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] I0
|
|
*> \verbatim
|
|
*> I0 is INTEGER
|
|
*> First index.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N0
|
|
*> \verbatim
|
|
*> N0 is INTEGER
|
|
*> Last index.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] Z
|
|
*> \verbatim
|
|
*> Z is DOUBLE PRECISION array, dimension ( 4*N )
|
|
*> Z holds the qd array. EMIN is stored in Z(4*N0) to avoid
|
|
*> an extra argument.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] PP
|
|
*> \verbatim
|
|
*> PP is INTEGER
|
|
*> PP=0 for ping, PP=1 for pong.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] TAU
|
|
*> \verbatim
|
|
*> TAU is DOUBLE PRECISION
|
|
*> This is the shift.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] SIGMA
|
|
*> \verbatim
|
|
*> SIGMA is DOUBLE PRECISION
|
|
*> This is the accumulated shift up to this step.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] DMIN
|
|
*> \verbatim
|
|
*> DMIN is DOUBLE PRECISION
|
|
*> Minimum value of d.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] DMIN1
|
|
*> \verbatim
|
|
*> DMIN1 is DOUBLE PRECISION
|
|
*> Minimum value of d, excluding D( N0 ).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] DMIN2
|
|
*> \verbatim
|
|
*> DMIN2 is DOUBLE PRECISION
|
|
*> Minimum value of d, excluding D( N0 ) and D( N0-1 ).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] DN
|
|
*> \verbatim
|
|
*> DN is DOUBLE PRECISION
|
|
*> d(N0), the last value of d.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] DNM1
|
|
*> \verbatim
|
|
*> DNM1 is DOUBLE PRECISION
|
|
*> d(N0-1).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] DNM2
|
|
*> \verbatim
|
|
*> DNM2 is DOUBLE PRECISION
|
|
*> d(N0-2).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] IEEE
|
|
*> \verbatim
|
|
*> IEEE is LOGICAL
|
|
*> Flag for IEEE or non IEEE arithmetic.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] EPS
|
|
*> \verbatim
|
|
*> EPS is DOUBLE PRECISION
|
|
*> This is the value of epsilon used.
|
|
*> \endverbatim
|
|
*>
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \date June 2017
|
|
*
|
|
*> \ingroup auxOTHERcomputational
|
|
*
|
|
* =====================================================================
|
|
SUBROUTINE DLASQ5( I0, N0, Z, PP, TAU, SIGMA, DMIN, DMIN1, DMIN2,
|
|
$ DN, DNM1, DNM2, IEEE, EPS )
|
|
*
|
|
* -- LAPACK computational routine (version 3.7.1) --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
* June 2017
|
|
*
|
|
* .. Scalar Arguments ..
|
|
LOGICAL IEEE
|
|
INTEGER I0, N0, PP
|
|
DOUBLE PRECISION DMIN, DMIN1, DMIN2, DN, DNM1, DNM2, TAU,
|
|
$ SIGMA, EPS
|
|
* ..
|
|
* .. Array Arguments ..
|
|
DOUBLE PRECISION Z( * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameter ..
|
|
DOUBLE PRECISION ZERO, HALF
|
|
PARAMETER ( ZERO = 0.0D0, HALF = 0.5 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
INTEGER J4, J4P2
|
|
DOUBLE PRECISION D, EMIN, TEMP, DTHRESH
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC MIN
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
IF( ( N0-I0-1 ).LE.0 )
|
|
$ RETURN
|
|
*
|
|
DTHRESH = EPS*(SIGMA+TAU)
|
|
IF( TAU.LT.DTHRESH*HALF ) TAU = ZERO
|
|
IF( TAU.NE.ZERO ) THEN
|
|
J4 = 4*I0 + PP - 3
|
|
EMIN = Z( J4+4 )
|
|
D = Z( J4 ) - TAU
|
|
DMIN = D
|
|
DMIN1 = -Z( J4 )
|
|
*
|
|
IF( IEEE ) THEN
|
|
*
|
|
* Code for IEEE arithmetic.
|
|
*
|
|
IF( PP.EQ.0 ) THEN
|
|
DO 10 J4 = 4*I0, 4*( N0-3 ), 4
|
|
Z( J4-2 ) = D + Z( J4-1 )
|
|
TEMP = Z( J4+1 ) / Z( J4-2 )
|
|
D = D*TEMP - TAU
|
|
DMIN = MIN( DMIN, D )
|
|
Z( J4 ) = Z( J4-1 )*TEMP
|
|
EMIN = MIN( Z( J4 ), EMIN )
|
|
10 CONTINUE
|
|
ELSE
|
|
DO 20 J4 = 4*I0, 4*( N0-3 ), 4
|
|
Z( J4-3 ) = D + Z( J4 )
|
|
TEMP = Z( J4+2 ) / Z( J4-3 )
|
|
D = D*TEMP - TAU
|
|
DMIN = MIN( DMIN, D )
|
|
Z( J4-1 ) = Z( J4 )*TEMP
|
|
EMIN = MIN( Z( J4-1 ), EMIN )
|
|
20 CONTINUE
|
|
END IF
|
|
*
|
|
* Unroll last two steps.
|
|
*
|
|
DNM2 = D
|
|
DMIN2 = DMIN
|
|
J4 = 4*( N0-2 ) - PP
|
|
J4P2 = J4 + 2*PP - 1
|
|
Z( J4-2 ) = DNM2 + Z( J4P2 )
|
|
Z( J4 ) = Z( J4P2+2 )*( Z( J4P2 ) / Z( J4-2 ) )
|
|
DNM1 = Z( J4P2+2 )*( DNM2 / Z( J4-2 ) ) - TAU
|
|
DMIN = MIN( DMIN, DNM1 )
|
|
*
|
|
DMIN1 = DMIN
|
|
J4 = J4 + 4
|
|
J4P2 = J4 + 2*PP - 1
|
|
Z( J4-2 ) = DNM1 + Z( J4P2 )
|
|
Z( J4 ) = Z( J4P2+2 )*( Z( J4P2 ) / Z( J4-2 ) )
|
|
DN = Z( J4P2+2 )*( DNM1 / Z( J4-2 ) ) - TAU
|
|
DMIN = MIN( DMIN, DN )
|
|
*
|
|
ELSE
|
|
*
|
|
* Code for non IEEE arithmetic.
|
|
*
|
|
IF( PP.EQ.0 ) THEN
|
|
DO 30 J4 = 4*I0, 4*( N0-3 ), 4
|
|
Z( J4-2 ) = D + Z( J4-1 )
|
|
IF( D.LT.ZERO ) THEN
|
|
RETURN
|
|
ELSE
|
|
Z( J4 ) = Z( J4+1 )*( Z( J4-1 ) / Z( J4-2 ) )
|
|
D = Z( J4+1 )*( D / Z( J4-2 ) ) - TAU
|
|
END IF
|
|
DMIN = MIN( DMIN, D )
|
|
EMIN = MIN( EMIN, Z( J4 ) )
|
|
30 CONTINUE
|
|
ELSE
|
|
DO 40 J4 = 4*I0, 4*( N0-3 ), 4
|
|
Z( J4-3 ) = D + Z( J4 )
|
|
IF( D.LT.ZERO ) THEN
|
|
RETURN
|
|
ELSE
|
|
Z( J4-1 ) = Z( J4+2 )*( Z( J4 ) / Z( J4-3 ) )
|
|
D = Z( J4+2 )*( D / Z( J4-3 ) ) - TAU
|
|
END IF
|
|
DMIN = MIN( DMIN, D )
|
|
EMIN = MIN( EMIN, Z( J4-1 ) )
|
|
40 CONTINUE
|
|
END IF
|
|
*
|
|
* Unroll last two steps.
|
|
*
|
|
DNM2 = D
|
|
DMIN2 = DMIN
|
|
J4 = 4*( N0-2 ) - PP
|
|
J4P2 = J4 + 2*PP - 1
|
|
Z( J4-2 ) = DNM2 + Z( J4P2 )
|
|
IF( DNM2.LT.ZERO ) THEN
|
|
RETURN
|
|
ELSE
|
|
Z( J4 ) = Z( J4P2+2 )*( Z( J4P2 ) / Z( J4-2 ) )
|
|
DNM1 = Z( J4P2+2 )*( DNM2 / Z( J4-2 ) ) - TAU
|
|
END IF
|
|
DMIN = MIN( DMIN, DNM1 )
|
|
*
|
|
DMIN1 = DMIN
|
|
J4 = J4 + 4
|
|
J4P2 = J4 + 2*PP - 1
|
|
Z( J4-2 ) = DNM1 + Z( J4P2 )
|
|
IF( DNM1.LT.ZERO ) THEN
|
|
RETURN
|
|
ELSE
|
|
Z( J4 ) = Z( J4P2+2 )*( Z( J4P2 ) / Z( J4-2 ) )
|
|
DN = Z( J4P2+2 )*( DNM1 / Z( J4-2 ) ) - TAU
|
|
END IF
|
|
DMIN = MIN( DMIN, DN )
|
|
*
|
|
END IF
|
|
ELSE
|
|
* This is the version that sets d's to zero if they are small enough
|
|
J4 = 4*I0 + PP - 3
|
|
EMIN = Z( J4+4 )
|
|
D = Z( J4 ) - TAU
|
|
DMIN = D
|
|
DMIN1 = -Z( J4 )
|
|
IF( IEEE ) THEN
|
|
*
|
|
* Code for IEEE arithmetic.
|
|
*
|
|
IF( PP.EQ.0 ) THEN
|
|
DO 50 J4 = 4*I0, 4*( N0-3 ), 4
|
|
Z( J4-2 ) = D + Z( J4-1 )
|
|
TEMP = Z( J4+1 ) / Z( J4-2 )
|
|
D = D*TEMP - TAU
|
|
IF( D.LT.DTHRESH ) D = ZERO
|
|
DMIN = MIN( DMIN, D )
|
|
Z( J4 ) = Z( J4-1 )*TEMP
|
|
EMIN = MIN( Z( J4 ), EMIN )
|
|
50 CONTINUE
|
|
ELSE
|
|
DO 60 J4 = 4*I0, 4*( N0-3 ), 4
|
|
Z( J4-3 ) = D + Z( J4 )
|
|
TEMP = Z( J4+2 ) / Z( J4-3 )
|
|
D = D*TEMP - TAU
|
|
IF( D.LT.DTHRESH ) D = ZERO
|
|
DMIN = MIN( DMIN, D )
|
|
Z( J4-1 ) = Z( J4 )*TEMP
|
|
EMIN = MIN( Z( J4-1 ), EMIN )
|
|
60 CONTINUE
|
|
END IF
|
|
*
|
|
* Unroll last two steps.
|
|
*
|
|
DNM2 = D
|
|
DMIN2 = DMIN
|
|
J4 = 4*( N0-2 ) - PP
|
|
J4P2 = J4 + 2*PP - 1
|
|
Z( J4-2 ) = DNM2 + Z( J4P2 )
|
|
Z( J4 ) = Z( J4P2+2 )*( Z( J4P2 ) / Z( J4-2 ) )
|
|
DNM1 = Z( J4P2+2 )*( DNM2 / Z( J4-2 ) ) - TAU
|
|
DMIN = MIN( DMIN, DNM1 )
|
|
*
|
|
DMIN1 = DMIN
|
|
J4 = J4 + 4
|
|
J4P2 = J4 + 2*PP - 1
|
|
Z( J4-2 ) = DNM1 + Z( J4P2 )
|
|
Z( J4 ) = Z( J4P2+2 )*( Z( J4P2 ) / Z( J4-2 ) )
|
|
DN = Z( J4P2+2 )*( DNM1 / Z( J4-2 ) ) - TAU
|
|
DMIN = MIN( DMIN, DN )
|
|
*
|
|
ELSE
|
|
*
|
|
* Code for non IEEE arithmetic.
|
|
*
|
|
IF( PP.EQ.0 ) THEN
|
|
DO 70 J4 = 4*I0, 4*( N0-3 ), 4
|
|
Z( J4-2 ) = D + Z( J4-1 )
|
|
IF( D.LT.ZERO ) THEN
|
|
RETURN
|
|
ELSE
|
|
Z( J4 ) = Z( J4+1 )*( Z( J4-1 ) / Z( J4-2 ) )
|
|
D = Z( J4+1 )*( D / Z( J4-2 ) ) - TAU
|
|
END IF
|
|
IF( D.LT.DTHRESH) D = ZERO
|
|
DMIN = MIN( DMIN, D )
|
|
EMIN = MIN( EMIN, Z( J4 ) )
|
|
70 CONTINUE
|
|
ELSE
|
|
DO 80 J4 = 4*I0, 4*( N0-3 ), 4
|
|
Z( J4-3 ) = D + Z( J4 )
|
|
IF( D.LT.ZERO ) THEN
|
|
RETURN
|
|
ELSE
|
|
Z( J4-1 ) = Z( J4+2 )*( Z( J4 ) / Z( J4-3 ) )
|
|
D = Z( J4+2 )*( D / Z( J4-3 ) ) - TAU
|
|
END IF
|
|
IF( D.LT.DTHRESH) D = ZERO
|
|
DMIN = MIN( DMIN, D )
|
|
EMIN = MIN( EMIN, Z( J4-1 ) )
|
|
80 CONTINUE
|
|
END IF
|
|
*
|
|
* Unroll last two steps.
|
|
*
|
|
DNM2 = D
|
|
DMIN2 = DMIN
|
|
J4 = 4*( N0-2 ) - PP
|
|
J4P2 = J4 + 2*PP - 1
|
|
Z( J4-2 ) = DNM2 + Z( J4P2 )
|
|
IF( DNM2.LT.ZERO ) THEN
|
|
RETURN
|
|
ELSE
|
|
Z( J4 ) = Z( J4P2+2 )*( Z( J4P2 ) / Z( J4-2 ) )
|
|
DNM1 = Z( J4P2+2 )*( DNM2 / Z( J4-2 ) ) - TAU
|
|
END IF
|
|
DMIN = MIN( DMIN, DNM1 )
|
|
*
|
|
DMIN1 = DMIN
|
|
J4 = J4 + 4
|
|
J4P2 = J4 + 2*PP - 1
|
|
Z( J4-2 ) = DNM1 + Z( J4P2 )
|
|
IF( DNM1.LT.ZERO ) THEN
|
|
RETURN
|
|
ELSE
|
|
Z( J4 ) = Z( J4P2+2 )*( Z( J4P2 ) / Z( J4-2 ) )
|
|
DN = Z( J4P2+2 )*( DNM1 / Z( J4-2 ) ) - TAU
|
|
END IF
|
|
DMIN = MIN( DMIN, DN )
|
|
*
|
|
END IF
|
|
END IF
|
|
*
|
|
Z( J4+2 ) = DN
|
|
Z( 4*N0-PP ) = EMIN
|
|
RETURN
|
|
*
|
|
* End of DLASQ5
|
|
*
|
|
END
|