forked from lijiext/lammps
354 lines
11 KiB
Fortran
354 lines
11 KiB
Fortran
*> \brief \b DGEBRD
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download DGEBRD + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgebrd.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgebrd.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgebrd.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE DGEBRD( M, N, A, LDA, D, E, TAUQ, TAUP, WORK, LWORK,
|
|
* INFO )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* INTEGER INFO, LDA, LWORK, M, N
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* DOUBLE PRECISION A( LDA, * ), D( * ), E( * ), TAUP( * ),
|
|
* $ TAUQ( * ), WORK( * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> DGEBRD reduces a general real M-by-N matrix A to upper or lower
|
|
*> bidiagonal form B by an orthogonal transformation: Q**T * A * P = B.
|
|
*>
|
|
*> If m >= n, B is upper bidiagonal; if m < n, B is lower bidiagonal.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] M
|
|
*> \verbatim
|
|
*> M is INTEGER
|
|
*> The number of rows in the matrix A. M >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The number of columns in the matrix A. N >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] A
|
|
*> \verbatim
|
|
*> A is DOUBLE PRECISION array, dimension (LDA,N)
|
|
*> On entry, the M-by-N general matrix to be reduced.
|
|
*> On exit,
|
|
*> if m >= n, the diagonal and the first superdiagonal are
|
|
*> overwritten with the upper bidiagonal matrix B; the
|
|
*> elements below the diagonal, with the array TAUQ, represent
|
|
*> the orthogonal matrix Q as a product of elementary
|
|
*> reflectors, and the elements above the first superdiagonal,
|
|
*> with the array TAUP, represent the orthogonal matrix P as
|
|
*> a product of elementary reflectors;
|
|
*> if m < n, the diagonal and the first subdiagonal are
|
|
*> overwritten with the lower bidiagonal matrix B; the
|
|
*> elements below the first subdiagonal, with the array TAUQ,
|
|
*> represent the orthogonal matrix Q as a product of
|
|
*> elementary reflectors, and the elements above the diagonal,
|
|
*> with the array TAUP, represent the orthogonal matrix P as
|
|
*> a product of elementary reflectors.
|
|
*> See Further Details.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDA
|
|
*> \verbatim
|
|
*> LDA is INTEGER
|
|
*> The leading dimension of the array A. LDA >= max(1,M).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] D
|
|
*> \verbatim
|
|
*> D is DOUBLE PRECISION array, dimension (min(M,N))
|
|
*> The diagonal elements of the bidiagonal matrix B:
|
|
*> D(i) = A(i,i).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] E
|
|
*> \verbatim
|
|
*> E is DOUBLE PRECISION array, dimension (min(M,N)-1)
|
|
*> The off-diagonal elements of the bidiagonal matrix B:
|
|
*> if m >= n, E(i) = A(i,i+1) for i = 1,2,...,n-1;
|
|
*> if m < n, E(i) = A(i+1,i) for i = 1,2,...,m-1.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] TAUQ
|
|
*> \verbatim
|
|
*> TAUQ is DOUBLE PRECISION array, dimension (min(M,N))
|
|
*> The scalar factors of the elementary reflectors which
|
|
*> represent the orthogonal matrix Q. See Further Details.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] TAUP
|
|
*> \verbatim
|
|
*> TAUP is DOUBLE PRECISION array, dimension (min(M,N))
|
|
*> The scalar factors of the elementary reflectors which
|
|
*> represent the orthogonal matrix P. See Further Details.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] WORK
|
|
*> \verbatim
|
|
*> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
|
|
*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LWORK
|
|
*> \verbatim
|
|
*> LWORK is INTEGER
|
|
*> The length of the array WORK. LWORK >= max(1,M,N).
|
|
*> For optimum performance LWORK >= (M+N)*NB, where NB
|
|
*> is the optimal blocksize.
|
|
*>
|
|
*> If LWORK = -1, then a workspace query is assumed; the routine
|
|
*> only calculates the optimal size of the WORK array, returns
|
|
*> this value as the first entry of the WORK array, and no error
|
|
*> message related to LWORK is issued by XERBLA.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INFO
|
|
*> \verbatim
|
|
*> INFO is INTEGER
|
|
*> = 0: successful exit
|
|
*> < 0: if INFO = -i, the i-th argument had an illegal value.
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \date June 2017
|
|
*
|
|
*> \ingroup doubleGEcomputational
|
|
*
|
|
*> \par Further Details:
|
|
* =====================
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> The matrices Q and P are represented as products of elementary
|
|
*> reflectors:
|
|
*>
|
|
*> If m >= n,
|
|
*>
|
|
*> Q = H(1) H(2) . . . H(n) and P = G(1) G(2) . . . G(n-1)
|
|
*>
|
|
*> Each H(i) and G(i) has the form:
|
|
*>
|
|
*> H(i) = I - tauq * v * v**T and G(i) = I - taup * u * u**T
|
|
*>
|
|
*> where tauq and taup are real scalars, and v and u are real vectors;
|
|
*> v(1:i-1) = 0, v(i) = 1, and v(i+1:m) is stored on exit in A(i+1:m,i);
|
|
*> u(1:i) = 0, u(i+1) = 1, and u(i+2:n) is stored on exit in A(i,i+2:n);
|
|
*> tauq is stored in TAUQ(i) and taup in TAUP(i).
|
|
*>
|
|
*> If m < n,
|
|
*>
|
|
*> Q = H(1) H(2) . . . H(m-1) and P = G(1) G(2) . . . G(m)
|
|
*>
|
|
*> Each H(i) and G(i) has the form:
|
|
*>
|
|
*> H(i) = I - tauq * v * v**T and G(i) = I - taup * u * u**T
|
|
*>
|
|
*> where tauq and taup are real scalars, and v and u are real vectors;
|
|
*> v(1:i) = 0, v(i+1) = 1, and v(i+2:m) is stored on exit in A(i+2:m,i);
|
|
*> u(1:i-1) = 0, u(i) = 1, and u(i+1:n) is stored on exit in A(i,i+1:n);
|
|
*> tauq is stored in TAUQ(i) and taup in TAUP(i).
|
|
*>
|
|
*> The contents of A on exit are illustrated by the following examples:
|
|
*>
|
|
*> m = 6 and n = 5 (m > n): m = 5 and n = 6 (m < n):
|
|
*>
|
|
*> ( d e u1 u1 u1 ) ( d u1 u1 u1 u1 u1 )
|
|
*> ( v1 d e u2 u2 ) ( e d u2 u2 u2 u2 )
|
|
*> ( v1 v2 d e u3 ) ( v1 e d u3 u3 u3 )
|
|
*> ( v1 v2 v3 d e ) ( v1 v2 e d u4 u4 )
|
|
*> ( v1 v2 v3 v4 d ) ( v1 v2 v3 e d u5 )
|
|
*> ( v1 v2 v3 v4 v5 )
|
|
*>
|
|
*> where d and e denote diagonal and off-diagonal elements of B, vi
|
|
*> denotes an element of the vector defining H(i), and ui an element of
|
|
*> the vector defining G(i).
|
|
*> \endverbatim
|
|
*>
|
|
* =====================================================================
|
|
SUBROUTINE DGEBRD( M, N, A, LDA, D, E, TAUQ, TAUP, WORK, LWORK,
|
|
$ INFO )
|
|
*
|
|
* -- LAPACK computational routine (version 3.7.1) --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
* June 2017
|
|
*
|
|
* .. Scalar Arguments ..
|
|
INTEGER INFO, LDA, LWORK, M, N
|
|
* ..
|
|
* .. Array Arguments ..
|
|
DOUBLE PRECISION A( LDA, * ), D( * ), E( * ), TAUP( * ),
|
|
$ TAUQ( * ), WORK( * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
DOUBLE PRECISION ONE
|
|
PARAMETER ( ONE = 1.0D+0 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
LOGICAL LQUERY
|
|
INTEGER I, IINFO, J, LDWRKX, LDWRKY, LWKOPT, MINMN, NB,
|
|
$ NBMIN, NX
|
|
DOUBLE PRECISION WS
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL DGEBD2, DGEMM, DLABRD, XERBLA
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC DBLE, MAX, MIN
|
|
* ..
|
|
* .. External Functions ..
|
|
INTEGER ILAENV
|
|
EXTERNAL ILAENV
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Test the input parameters
|
|
*
|
|
INFO = 0
|
|
NB = MAX( 1, ILAENV( 1, 'DGEBRD', ' ', M, N, -1, -1 ) )
|
|
LWKOPT = ( M+N )*NB
|
|
WORK( 1 ) = DBLE( LWKOPT )
|
|
LQUERY = ( LWORK.EQ.-1 )
|
|
IF( M.LT.0 ) THEN
|
|
INFO = -1
|
|
ELSE IF( N.LT.0 ) THEN
|
|
INFO = -2
|
|
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
|
|
INFO = -4
|
|
ELSE IF( LWORK.LT.MAX( 1, M, N ) .AND. .NOT.LQUERY ) THEN
|
|
INFO = -10
|
|
END IF
|
|
IF( INFO.LT.0 ) THEN
|
|
CALL XERBLA( 'DGEBRD', -INFO )
|
|
RETURN
|
|
ELSE IF( LQUERY ) THEN
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Quick return if possible
|
|
*
|
|
MINMN = MIN( M, N )
|
|
IF( MINMN.EQ.0 ) THEN
|
|
WORK( 1 ) = 1
|
|
RETURN
|
|
END IF
|
|
*
|
|
WS = MAX( M, N )
|
|
LDWRKX = M
|
|
LDWRKY = N
|
|
*
|
|
IF( NB.GT.1 .AND. NB.LT.MINMN ) THEN
|
|
*
|
|
* Set the crossover point NX.
|
|
*
|
|
NX = MAX( NB, ILAENV( 3, 'DGEBRD', ' ', M, N, -1, -1 ) )
|
|
*
|
|
* Determine when to switch from blocked to unblocked code.
|
|
*
|
|
IF( NX.LT.MINMN ) THEN
|
|
WS = ( M+N )*NB
|
|
IF( LWORK.LT.WS ) THEN
|
|
*
|
|
* Not enough work space for the optimal NB, consider using
|
|
* a smaller block size.
|
|
*
|
|
NBMIN = ILAENV( 2, 'DGEBRD', ' ', M, N, -1, -1 )
|
|
IF( LWORK.GE.( M+N )*NBMIN ) THEN
|
|
NB = LWORK / ( M+N )
|
|
ELSE
|
|
NB = 1
|
|
NX = MINMN
|
|
END IF
|
|
END IF
|
|
END IF
|
|
ELSE
|
|
NX = MINMN
|
|
END IF
|
|
*
|
|
DO 30 I = 1, MINMN - NX, NB
|
|
*
|
|
* Reduce rows and columns i:i+nb-1 to bidiagonal form and return
|
|
* the matrices X and Y which are needed to update the unreduced
|
|
* part of the matrix
|
|
*
|
|
CALL DLABRD( M-I+1, N-I+1, NB, A( I, I ), LDA, D( I ), E( I ),
|
|
$ TAUQ( I ), TAUP( I ), WORK, LDWRKX,
|
|
$ WORK( LDWRKX*NB+1 ), LDWRKY )
|
|
*
|
|
* Update the trailing submatrix A(i+nb:m,i+nb:n), using an update
|
|
* of the form A := A - V*Y**T - X*U**T
|
|
*
|
|
CALL DGEMM( 'No transpose', 'Transpose', M-I-NB+1, N-I-NB+1,
|
|
$ NB, -ONE, A( I+NB, I ), LDA,
|
|
$ WORK( LDWRKX*NB+NB+1 ), LDWRKY, ONE,
|
|
$ A( I+NB, I+NB ), LDA )
|
|
CALL DGEMM( 'No transpose', 'No transpose', M-I-NB+1, N-I-NB+1,
|
|
$ NB, -ONE, WORK( NB+1 ), LDWRKX, A( I, I+NB ), LDA,
|
|
$ ONE, A( I+NB, I+NB ), LDA )
|
|
*
|
|
* Copy diagonal and off-diagonal elements of B back into A
|
|
*
|
|
IF( M.GE.N ) THEN
|
|
DO 10 J = I, I + NB - 1
|
|
A( J, J ) = D( J )
|
|
A( J, J+1 ) = E( J )
|
|
10 CONTINUE
|
|
ELSE
|
|
DO 20 J = I, I + NB - 1
|
|
A( J, J ) = D( J )
|
|
A( J+1, J ) = E( J )
|
|
20 CONTINUE
|
|
END IF
|
|
30 CONTINUE
|
|
*
|
|
* Use unblocked code to reduce the remainder of the matrix
|
|
*
|
|
CALL DGEBD2( M-I+1, N-I+1, A( I, I ), LDA, D( I ), E( I ),
|
|
$ TAUQ( I ), TAUP( I ), WORK, IINFO )
|
|
WORK( 1 ) = WS
|
|
RETURN
|
|
*
|
|
* End of DGEBRD
|
|
*
|
|
END
|