lammps/lib/gpu/geryon/hip_device.h

520 lines
20 KiB
C++

/* -----------------------------------------------------------------------
Copyright (2009) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the Simplified BSD License.
----------------------------------------------------------------------- */
#ifndef HIP_DEVICE
#define HIP_DEVICE
#include <hip/hip_runtime.h>
#include <unordered_map>
#include <string>
#include <vector>
#include <iostream>
#include "hip_macros.h"
#include "ucl_types.h"
namespace ucl_hip {
// --------------------------------------------------------------------------
// - COMMAND QUEUE STUFF
// --------------------------------------------------------------------------
typedef hipStream_t command_queue;
inline void ucl_sync(hipStream_t &stream) {
CU_SAFE_CALL(hipStreamSynchronize(stream));
}
struct NVDProperties {
int device_id;
std::string name;
int major;
int minor;
CUDA_INT_TYPE totalGlobalMem;
int multiProcessorCount;
int maxThreadsPerBlock;
int maxThreadsDim[3];
int maxGridSize[3];
int sharedMemPerBlock;
int totalConstantMemory;
int SIMDWidth;
int memPitch;
int regsPerBlock;
int clockRate;
int textureAlign;
int kernelExecTimeoutEnabled;
int integrated;
int canMapHostMemory;
int concurrentKernels;
int ECCEnabled;
int computeMode;
};
/// Class for looking at device properties
/** \note Calls to change the device outside of the class results in incorrect
* behavior
* \note There is no error checking for indexing past the number of devices **/
class UCL_Device {
public:
/// Collect properties for every GPU on the node
/** \note You must set the active GPU with set() before using the device **/
inline UCL_Device();
inline ~UCL_Device();
/// Returns 1 (For compatibility with OpenCL)
inline int num_platforms() { return 1; }
/// Return a string with name and info of the current platform
inline std::string platform_name()
{ return "HIP platform"; }
/// Delete any contexts/data and set the platform number to be used
inline int set_platform(const int pid);
/// Return the number of devices that support CUDA
inline int num_devices() { return _properties.size(); }
/// Set the CUDA device to the specified device number
/** A context and default command queue will be created for the device
* Returns UCL_SUCCESS if successful or UCL_ERROR if the device could not
* be allocated for use. clear() is called to delete any contexts and
* associated data from previous calls to set(). **/
inline int set(int num);
/// Delete any context and associated data stored from a call to set()
inline void clear();
/// Get the current device number
inline int device_num() { return _device; }
/// Returns the default stream for the current device
inline command_queue & cq() { return cq(0); }
/// Returns the stream indexed by i
inline command_queue & cq(const int i) { return _cq[i]; }
/// Block until all commands in the default stream have completed
inline void sync() { sync(0); }
/// Block until all commands in the specified stream have completed
inline void sync(const int i) { ucl_sync(cq(i)); }
/// Get the number of command queues currently available on device
inline int num_queues()
{ return _cq.size(); }
/// Add a stream for device computations
inline void push_command_queue() {
_cq.push_back(hipStream_t());
CU_SAFE_CALL(hipStreamCreateWithFlags(&_cq.back(),0));
}
/// Remove a stream for device computations
/** \note You cannot delete the default stream **/
inline void pop_command_queue() {
if (_cq.size()<2) return;
CU_SAFE_CALL_NS(hipStreamDestroy(_cq.back()));
_cq.pop_back();
}
/// Set the default command queue (by default this is the null stream)
/** \param i index of the command queue (as added by push_command_queue())
If i is 0, the default command queue is set to the null stream **/
inline void set_command_queue(const int i) {
if (i==0) _cq[0]=0;
else _cq[0]=_cq[i];
}
/// Get the current CUDA device name
inline std::string name() { return name(_device); }
/// Get the CUDA device name
inline std::string name(const int i)
{ return std::string(_properties[i].name); }
/// Get a string telling the type of the current device
inline std::string device_type_name() { return device_type_name(_device); }
/// Get a string telling the type of the device
inline std::string device_type_name(const int i) { return "GPU"; }
/// Get current device type (UCL_CPU, UCL_GPU, UCL_ACCELERATOR, UCL_DEFAULT)
inline int device_type() { return device_type(_device); }
/// Get device type (UCL_CPU, UCL_GPU, UCL_ACCELERATOR, UCL_DEFAULT)
inline int device_type(const int i) { return UCL_GPU; }
/// Returns true if host memory is efficiently addressable from device
inline bool shared_memory() { return shared_memory(_device); }
/// Returns true if host memory is efficiently addressable from device
inline bool shared_memory(const int i) { return device_type(i)==UCL_CPU; }
/// Returns true if double precision is support for the current device
inline bool double_precision() { return double_precision(_device); }
/// Returns true if double precision is support for the device
inline bool double_precision(const int i) {return arch(i)>=1.3;}
/// Get the number of compute units on the current device
inline unsigned cus() { return cus(_device); }
/// Get the number of compute units
inline unsigned cus(const int i)
{ return _properties[i].multiProcessorCount; }
/// Get the number of cores in the current device
inline unsigned cores() { return cores(_device); }
/// Get the number of cores
inline unsigned cores(const int i)
{ if (arch(i)<2.0) return _properties[i].multiProcessorCount*8;
else if (arch(i)<2.1) return _properties[i].multiProcessorCount*32;
else if (arch(i)<3.0) return _properties[i].multiProcessorCount*48;
else return _properties[i].multiProcessorCount*192; }
/// Get the gigabytes of global memory in the current device
inline double gigabytes() { return gigabytes(_device); }
/// Get the gigabytes of global memory
inline double gigabytes(const int i)
{ return static_cast<double>(_properties[i].totalGlobalMem)/1073741824; }
/// Get the bytes of global memory in the current device
inline size_t bytes() { return bytes(_device); }
/// Get the bytes of global memory
inline size_t bytes(const int i) { return _properties[i].totalGlobalMem; }
// Get the gigabytes of free memory in the current device
inline double free_gigabytes() { return free_gigabytes(_device); }
// Get the gigabytes of free memory
inline double free_gigabytes(const int i)
{ return static_cast<double>(free_bytes(i))/1073741824; }
// Get the bytes of free memory in the current device
inline size_t free_bytes() { return free_bytes(_device); }
// Get the bytes of free memory
inline size_t free_bytes(const int i) {
CUDA_INT_TYPE dfree, dtotal;
CU_SAFE_CALL_NS(hipMemGetInfo(&dfree, &dtotal));
return static_cast<size_t>(dfree);
}
/// Return the GPGPU compute capability for current device
inline double arch() { return arch(_device); }
/// Return the GPGPU compute capability
inline double arch(const int i)
{ return static_cast<double>(_properties[i].minor)/10+_properties[i].major;}
/// Clock rate in GHz for current device
inline double clock_rate() { return clock_rate(_device); }
/// Clock rate in GHz
inline double clock_rate(const int i)
{ return _properties[i].clockRate*1e-6;}
/// Get the maximum number of threads per block
inline size_t group_size() { return group_size(_device); }
/// Get the maximum number of threads per block
inline size_t group_size(const int i)
{ return _properties[i].maxThreadsPerBlock; }
/// Return the maximum memory pitch in bytes for current device
inline size_t max_pitch() { return max_pitch(_device); }
/// Return the maximum memory pitch in bytes
inline size_t max_pitch(const int i) { return _properties[i].memPitch; }
/// Returns false if accelerator cannot be shared by multiple processes
/** If it cannot be determined, true is returned **/
inline bool sharing_supported() { return sharing_supported(_device); }
/// Returns false if accelerator cannot be shared by multiple processes
/** If it cannot be determined, true is returned **/
inline bool sharing_supported(const int i)
{ return (_properties[i].computeMode == hipComputeModeDefault); }
/// True if splitting device into equal subdevices supported
inline bool fission_equal()
{ return fission_equal(_device); }
/// True if splitting device into equal subdevices supported
inline bool fission_equal(const int i)
{ return false; }
/// True if splitting device into subdevices by specified counts supported
inline bool fission_by_counts()
{ return fission_by_counts(_device); }
/// True if splitting device into subdevices by specified counts supported
inline bool fission_by_counts(const int i)
{ return false; }
/// True if splitting device into subdevices by affinity domains supported
inline bool fission_by_affinity()
{ return fission_by_affinity(_device); }
/// True if splitting device into subdevices by affinity domains supported
inline bool fission_by_affinity(const int i)
{ return false; }
/// Maximum number of subdevices allowed from device fission
inline int max_sub_devices()
{ return max_sub_devices(_device); }
/// Maximum number of subdevices allowed from device fission
inline int max_sub_devices(const int i)
{ return 0; }
/// List all devices along with all properties
inline void print_all(std::ostream &out);
/// Select the platform that has accelerators (for compatibility with OpenCL)
inline int set_platform_accelerator(int pid=-1) { return UCL_SUCCESS; }
inline int load_module(const void* program, hipModule_t& module, std::string *log=NULL){
auto it = _loaded_modules.emplace(program, hipModule_t());
if(!it.second){
module = it.first->second;
return UCL_SUCCESS;
}
const unsigned int num_opts=2;
hipJitOption options[num_opts];
void *values[num_opts];
// set up size of compilation log buffer
options[0] = hipJitOptionInfoLogBufferSizeBytes;
values[0] = (void *)(int)10240;
// set up pointer to the compilation log buffer
options[1] = hipJitOptionInfoLogBuffer;
char clog[10240] = { 0 };
values[1] = clog;
hipError_t err=hipModuleLoadDataEx(&module,program,num_opts, options,(void **)values);
if (log!=NULL)
*log=std::string(clog);
if (err != hipSuccess) {
#ifndef UCL_NO_EXIT
std::cerr << std::endl
<< "----------------------------------------------------------\n"
<< " UCL Error: Error compiling PTX Program...\n"
<< "----------------------------------------------------------\n";
std::cerr << log << std::endl;
#endif
_loaded_modules.erase(it.first);
return UCL_COMPILE_ERROR;
}
it.first->second = module;
return UCL_SUCCESS;
}
private:
std::unordered_map<const void*, hipModule_t> _loaded_modules;
int _device, _num_devices;
std::vector<NVDProperties> _properties;
std::vector<hipStream_t> _cq;
hipDevice_t _cu_device;
};
// Grabs the properties for all devices
UCL_Device::UCL_Device() {
CU_SAFE_CALL_NS(hipInit(0));
CU_SAFE_CALL_NS(hipGetDeviceCount(&_num_devices));
for (int i=0; i<_num_devices; ++i) {
hipDevice_t dev;
CU_SAFE_CALL_NS(hipDeviceGet(&dev,i));
int major, minor;
CU_SAFE_CALL_NS(hipDeviceGetAttribute(&major, hipDeviceAttributeComputeCapabilityMajor, dev));
CU_SAFE_CALL_NS(hipDeviceGetAttribute(&minor, hipDeviceAttributeComputeCapabilityMinor, dev));
if (major==9999)
continue;
NVDProperties prop;
prop.device_id = i;
prop.major=major;
prop.minor=minor;
char namecstr[1024];
CU_SAFE_CALL_NS(hipDeviceGetName(namecstr,1024,dev));
prop.name=namecstr;
CU_SAFE_CALL_NS(hipDeviceTotalMem(&prop.totalGlobalMem,dev));
CU_SAFE_CALL_NS(hipDeviceGetAttribute(&prop.multiProcessorCount, hipDeviceAttributeMultiprocessorCount, dev));
CU_SAFE_CALL_NS(hipDeviceGetAttribute(&prop.maxThreadsPerBlock, hipDeviceAttributeMaxThreadsPerBlock, dev));
CU_SAFE_CALL_NS(hipDeviceGetAttribute(&prop.maxThreadsDim[0], hipDeviceAttributeMaxBlockDimX, dev));
CU_SAFE_CALL_NS(hipDeviceGetAttribute(&prop.maxThreadsDim[1], hipDeviceAttributeMaxBlockDimY, dev));
CU_SAFE_CALL_NS(hipDeviceGetAttribute(&prop.maxThreadsDim[2], hipDeviceAttributeMaxBlockDimZ, dev));
CU_SAFE_CALL_NS(hipDeviceGetAttribute(&prop.maxGridSize[0], hipDeviceAttributeMaxGridDimX, dev));
CU_SAFE_CALL_NS(hipDeviceGetAttribute(&prop.maxGridSize[1], hipDeviceAttributeMaxGridDimY, dev));
CU_SAFE_CALL_NS(hipDeviceGetAttribute(&prop.maxGridSize[2], hipDeviceAttributeMaxGridDimZ, dev));
CU_SAFE_CALL_NS(hipDeviceGetAttribute(&prop.sharedMemPerBlock, hipDeviceAttributeMaxSharedMemoryPerBlock, dev));
CU_SAFE_CALL_NS(hipDeviceGetAttribute(&prop.totalConstantMemory, hipDeviceAttributeTotalConstantMemory, dev));
CU_SAFE_CALL_NS(hipDeviceGetAttribute(&prop.SIMDWidth, hipDeviceAttributeWarpSize, dev));
//CU_SAFE_CALL_NS(hipDeviceGetAttribute(&prop.memPitch, CU_DEVICE_ATTRIBUTE_MAX_PITCH, dev));
CU_SAFE_CALL_NS(hipDeviceGetAttribute(&prop.regsPerBlock, hipDeviceAttributeMaxRegistersPerBlock, dev));
CU_SAFE_CALL_NS(hipDeviceGetAttribute(&prop.clockRate, hipDeviceAttributeClockRate, dev));
//CU_SAFE_CALL_NS(hipDeviceGetAttribute(&prop.textureAlign, CU_DEVICE_ATTRIBUTE_TEXTURE_ALIGNMENT, dev));
//#if CUDA_VERSION >= 2020
//CU_SAFE_CALL_NS(hipDeviceGetAttribute(&prop.kernelExecTimeoutEnabled, CU_DEVICE_ATTRIBUTE_KERNEL_EXEC_TIMEOUT,dev));
CU_SAFE_CALL_NS(hipDeviceGetAttribute(&prop.integrated, hipDeviceAttributeIntegrated, dev));
//CU_SAFE_CALL_NS(hipDeviceGetAttribute(&prop.canMapHostMemory, CU_DEVICE_ATTRIBUTE_CAN_MAP_HOST_MEMORY, dev));
CU_SAFE_CALL_NS(hipDeviceGetAttribute(&prop.computeMode, hipDeviceAttributeComputeMode,dev));
//#endif
//#if CUDA_VERSION >= 3010
CU_SAFE_CALL_NS(hipDeviceGetAttribute(&prop.concurrentKernels, hipDeviceAttributeConcurrentKernels, dev));
//CU_SAFE_CALL_NS(hipDeviceGetAttribute(&prop.ECCEnabled, CU_DEVICE_ATTRIBUTE_ECC_ENABLED, dev));
//#endif
_properties.push_back(prop);
}
_device=-1;
_cq.push_back(hipStream_t());
_cq.back()=0;
}
UCL_Device::~UCL_Device() {
clear();
}
int UCL_Device::set_platform(const int pid) {
clear();
#ifdef UCL_DEBUG
assert(pid<num_platforms());
#endif
return UCL_SUCCESS;
}
// Set the CUDA device to the specified device number
int UCL_Device::set(int num) {
clear();
_device=_properties[num].device_id;
hipError_t err=hipDeviceGet(&_cu_device,_device);
if (err!=hipSuccess) {
#ifndef UCL_NO_EXIT
std::cerr << "UCL Error: Could not access accelerator number " << num
<< " for use.\n";
UCL_GERYON_EXIT;
#endif
return UCL_ERROR;
}
//hipError_t err=hipCtxCreate(&_context,0,_cu_device); deprecated and unnecessary
err=hipSetDevice(_device);
if (err!=hipSuccess) {
#ifndef UCL_NO_EXIT
std::cerr << "UCL Error: Could not set accelerator number " << num
<< " for use.\n";
UCL_GERYON_EXIT;
#endif
return UCL_ERROR;
}
return UCL_SUCCESS;
}
void UCL_Device::clear() {
if (_device>-1) {
for (int i=1; i<num_queues(); i++) pop_command_queue();
CU_SAFE_CALL_NS(hipDeviceReset());
}
_device=-1;
}
// List all devices along with all properties
void UCL_Device::print_all(std::ostream &out) {
//#if CUDA_VERSION >= 2020
int driver_version;
hipDriverGetVersion(&driver_version);
out << "Driver Version: "
<< driver_version/1000 << "." << driver_version%100
<< std::endl;
//#endif
if (num_devices() == 0)
out << "There is no device supporting HIP\n";
for (int i=0; i<num_devices(); ++i) {
out << "\nDevice " << i << ": \"" << name(i) << "\"\n";
out << " Type of device: "
<< device_type_name(i).c_str() << std::endl;
out << " Compute capability: "
<< arch(i) << std::endl;
out << " Double precision support: ";
if (double_precision(i))
out << "Yes\n";
else
out << "No\n";
out << " Total amount of global memory: "
<< gigabytes(i) << " GB\n";
//#if CUDA_VERSION >= 2000
out << " Number of compute units/multiprocessors: "
<< _properties[i].multiProcessorCount << std::endl;
out << " Number of cores: "
<< cores(i) << std::endl;
//#endif
out << " Total amount of constant memory: "
<< _properties[i].totalConstantMemory << " bytes\n";
out << " Total amount of local/shared memory per block: "
<< _properties[i].sharedMemPerBlock << " bytes\n";
out << " Total number of registers available per block: "
<< _properties[i].regsPerBlock << std::endl;
out << " Warp size: "
<< _properties[i].SIMDWidth << std::endl;
out << " Maximum number of threads per block: "
<< _properties[i].maxThreadsPerBlock << std::endl;
out << " Maximum group size (# of threads per block) "
<< _properties[i].maxThreadsDim[0] << " x "
<< _properties[i].maxThreadsDim[1] << " x "
<< _properties[i].maxThreadsDim[2] << std::endl;
out << " Maximum item sizes (# threads for each dim) "
<< _properties[i].maxGridSize[0] << " x "
<< _properties[i].maxGridSize[1] << " x "
<< _properties[i].maxGridSize[2] << std::endl;
//out << " Maximum memory pitch: "
// << max_pitch(i) << " bytes\n";
//out << " Texture alignment: "
// << _properties[i].textureAlign << " bytes\n";
out << " Clock rate: "
<< clock_rate(i) << " GHz\n";
//#if CUDA_VERSION >= 2020
//out << " Run time limit on kernels: ";
//if (_properties[i].kernelExecTimeoutEnabled)
// out << "Yes\n";
//else
// out << "No\n";
out << " Integrated: ";
if (_properties[i].integrated)
out << "Yes\n";
else
out << "No\n";
//out << " Support host page-locked memory mapping: ";
//if (_properties[i].canMapHostMemory)
// out << "Yes\n";
//else
// out << "No\n";
out << " Compute mode: ";
if (_properties[i].computeMode == hipComputeModeDefault)
out << "Default\n"; // multiple threads can use device
//#if CUDA_VERSION >= 8000
// else if (_properties[i].computeMode == hipComputeModeExclusiveProcess)
//#else
else if (_properties[i].computeMode == hipComputeModeExclusive)
//#endif
out << "Exclusive\n"; // only thread can use device
else if (_properties[i].computeMode == hipComputeModeProhibited)
out << "Prohibited\n"; // no thread can use device
//#if CUDART_VERSION >= 4000
else if (_properties[i].computeMode == hipComputeModeExclusiveProcess)
out << "Exclusive Process\n"; // multiple threads 1 process
//#endif
else
out << "Unknown\n";
//#endif
//#if CUDA_VERSION >= 3010
out << " Concurrent kernel execution: ";
if (_properties[i].concurrentKernels)
out << "Yes\n";
else
out << "No\n";
//out << " Device has ECC support enabled: ";
//if (_properties[i].ECCEnabled)
// out << "Yes\n";
//else
// out << "No\n";
//#endif
}
}
}
#endif