forked from lijiext/lammps
188 lines
4.7 KiB
Plaintext
188 lines
4.7 KiB
Plaintext
/* ----------------------------------------------------------------------
|
|
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
|
|
|
|
Original Version:
|
|
http://lammps.sandia.gov, Sandia National Laboratories
|
|
Steve Plimpton, sjplimp@sandia.gov
|
|
|
|
See the README file in the top-level LAMMPS directory.
|
|
|
|
-----------------------------------------------------------------------
|
|
|
|
USER-CUDA Package and associated modifications:
|
|
https://sourceforge.net/projects/lammpscuda/
|
|
|
|
Christian Trott, christian.trott@tu-ilmenau.de
|
|
Lars Winterfeld, lars.winterfeld@tu-ilmenau.de
|
|
Theoretical Physics II, University of Technology Ilmenau, Germany
|
|
|
|
See the README file in the USER-CUDA directory.
|
|
|
|
This software is distributed under the GNU General Public License.
|
|
------------------------------------------------------------------------- */
|
|
|
|
static inline __device__ void check_distance(X_FLOAT &xtmp,X_FLOAT &ytmp,X_FLOAT &ztmp,int &i,int groupbit)
|
|
{
|
|
if(_dist_check)
|
|
{
|
|
|
|
X_FLOAT d=X_F(0.0);
|
|
if(i<_nlocal)
|
|
{
|
|
X_FLOAT tmp=xtmp-_xhold[i];
|
|
d=tmp*tmp;
|
|
tmp=ytmp-_xhold[i+_maxhold];
|
|
d+=tmp*tmp;
|
|
tmp=ztmp-_xhold[i+2*_maxhold];
|
|
d+=tmp*tmp;
|
|
|
|
d=((_mask[i] & groupbit))?d:X_F(0.0);
|
|
}
|
|
if(not __all(d<=_triggerneighsq))
|
|
_reneigh_flag[0]=1;
|
|
}
|
|
}
|
|
|
|
__global__ void FixNHCuda_nh_v_press_Kernel(int groupbit, F_FLOAT3 factor,int p_triclinic,F_FLOAT3 factor2)
|
|
{
|
|
int i=(blockIdx.x*gridDim.y+blockIdx.y)*blockDim.x+threadIdx.x;
|
|
if(i < _nlocal && _mask[i] & groupbit)
|
|
{
|
|
V_FLOAT* my_v = _v + i;
|
|
V_FLOAT vx=my_v[0];
|
|
V_FLOAT vy=my_v[_nmax];
|
|
V_FLOAT vz=my_v[2*_nmax];
|
|
vx*=factor.x;
|
|
vy*=factor.y;
|
|
vz*=factor.z;
|
|
if(p_triclinic) {
|
|
vx += vy*factor2.z + vz*factor2.y;
|
|
vy += vz*factor2.x;
|
|
}
|
|
vx*=factor.x;
|
|
vy*=factor.y;
|
|
vz*=factor.z;
|
|
my_v[0] = vx;
|
|
my_v[_nmax] = vy;
|
|
my_v[2*_nmax] = vz;
|
|
}
|
|
|
|
}
|
|
|
|
__global__ void FixNHCuda_nh_v_temp_Kernel(int groupbit, F_FLOAT factor_eta)
|
|
{
|
|
int i=(blockIdx.x*gridDim.y+blockIdx.y)*blockDim.x+threadIdx.x;
|
|
if(i < _nlocal && _mask[i] & groupbit)
|
|
{
|
|
V_FLOAT* my_v = _v + i;
|
|
my_v[0]*=factor_eta;
|
|
my_v[_nmax]*=factor_eta;
|
|
my_v[2*_nmax]*=factor_eta;
|
|
}
|
|
|
|
}
|
|
|
|
__global__ void FixNHCuda_nh_v_press_and_nve_v_NoBias_Kernel(int groupbit, F_FLOAT3 factor,int p_triclinic,F_FLOAT3 factor2)
|
|
{
|
|
int i=(blockIdx.x*gridDim.y+blockIdx.y)*blockDim.x+threadIdx.x;
|
|
if(i < _nlocal && _mask[i] & groupbit)
|
|
{
|
|
F_FLOAT* my_f = _f + i;
|
|
V_FLOAT* my_v = _v + i;
|
|
|
|
V_FLOAT dtfm = _dtf;
|
|
if(_rmass_flag) dtfm*= V_F(1.0) / _rmass[i];
|
|
else dtfm*= V_F(1.0) / _mass[_type[i]];
|
|
|
|
V_FLOAT vx=my_v[0];
|
|
V_FLOAT vy=my_v[_nmax];
|
|
V_FLOAT vz=my_v[2*_nmax];
|
|
vx*=factor.x;
|
|
vy*=factor.y;
|
|
vz*=factor.z;
|
|
if(p_triclinic) {
|
|
vx += vy*factor2.z + vz*factor2.y;
|
|
vy += vz*factor2.x;
|
|
}
|
|
vx*=factor.x;
|
|
vy*=factor.y;
|
|
vz*=factor.z;
|
|
my_v[0] = vx + dtfm * my_f[0];
|
|
my_v[_nmax] = vy + dtfm * my_f[_nmax];
|
|
my_v[2*_nmax] = vz + dtfm * my_f[_nmax*2];
|
|
}
|
|
|
|
}
|
|
|
|
__global__ void FixNHCuda_nve_v_Kernel(int groupbit)
|
|
{
|
|
|
|
int i=(blockIdx.x*gridDim.y+blockIdx.y)*blockDim.x+threadIdx.x;
|
|
if(i < _nlocal && _mask[i] & groupbit)
|
|
{
|
|
F_FLOAT* my_f = _f + i;
|
|
V_FLOAT* my_v = _v + i;
|
|
|
|
V_FLOAT dtfm = _dtf;
|
|
if(_rmass_flag) dtfm*=V_F(1.0) / _rmass[i];
|
|
else dtfm*=V_F(1.0) / _mass[_type[i]];
|
|
|
|
*my_v = (*my_v + dtfm*(*my_f)); my_f += _nmax; my_v += _nmax;
|
|
*my_v = (*my_v + dtfm*(*my_f)); my_f += _nmax; my_v += _nmax;
|
|
*my_v = (*my_v + dtfm*(*my_f));
|
|
}
|
|
}
|
|
|
|
__global__ void FixNHCuda_nve_x_Kernel(int groupbit)
|
|
{
|
|
X_FLOAT xtmp,ytmp,ztmp;
|
|
|
|
int i=(blockIdx.x*gridDim.y+blockIdx.y)*blockDim.x+threadIdx.x;
|
|
if(i < _nlocal && _mask[i] & groupbit)
|
|
{
|
|
V_FLOAT* my_v = _v + i;
|
|
X_FLOAT* my_x = _x + i;
|
|
|
|
xtmp = *my_x += _dtv * *my_v; my_v += _nmax; my_x += _nmax;
|
|
ytmp = *my_x += _dtv * *my_v; my_v += _nmax; my_x += _nmax;
|
|
ztmp = *my_x += _dtv * *my_v;
|
|
}
|
|
check_distance(xtmp,ytmp,ztmp,i,groupbit);
|
|
}
|
|
|
|
|
|
__global__ void FixNHCuda_nve_v_and_nh_v_press_NoBias_Kernel(int groupbit, F_FLOAT3 factor,int p_triclinic,F_FLOAT3 factor2)
|
|
{
|
|
|
|
int i=(blockIdx.x*gridDim.y+blockIdx.y)*blockDim.x+threadIdx.x;
|
|
if(i < _nlocal && _mask[i] & groupbit)
|
|
{
|
|
F_FLOAT* my_f = _f + i;
|
|
V_FLOAT* my_v = _v + i;
|
|
|
|
V_FLOAT dtfm = _dtf;
|
|
if(_rmass_flag) dtfm*=V_F(1.0) / _rmass[i];
|
|
else dtfm*=V_F(1.0) / _mass[_type[i]];
|
|
|
|
V_FLOAT vx = my_v[0] + dtfm*my_f[0];
|
|
V_FLOAT vy = my_v[_nmax] + dtfm*my_f[_nmax];
|
|
V_FLOAT vz = my_v[2*_nmax] + dtfm*my_f[2*_nmax];
|
|
|
|
vx*=factor.x;
|
|
vy*=factor.y;
|
|
vz*=factor.z;
|
|
if(p_triclinic) {
|
|
vx += vy*factor2.z + vz*factor2.y;
|
|
vy += vz*factor2.x;
|
|
}
|
|
vx*=factor.x;
|
|
vy*=factor.y;
|
|
vz*=factor.z;
|
|
my_v[0] = vx;
|
|
my_v[_nmax] = vy;
|
|
my_v[2*_nmax] = vz;
|
|
|
|
}
|
|
}
|
|
|