lammps/doc/atom_style.txt

147 lines
6.0 KiB
Plaintext

"LAMMPS WWW Site"_lws - "LAMMPS Documentation"_ld - "LAMMPS Commands"_lc :c
:link(lws,http://lammps.sandia.gov)
:link(ld,Manual.html)
:link(lc,Section_commands.html#comm)
:line
atom_style command :h3
[Syntax:]
atom_style style args :pre
style = {angle} or {atomic} or {bond} or {charge} or {dipole} or \
{electron} or {ellipsoid} or {full} or {meso} or {molecular} or \
{peri} or {sphere} or {hybrid} :ul
args = none for any style except {hybrid}
{hybrid} args = list of one or more sub-styles :pre
[Examples:]
atom_style atomic
atom_style bond
atom_style full
atom_style hybrid charge bond :pre
[Description:]
Define what style of atoms to use in a simulation. This determines
what attributes are associated with the atoms. This command must be
used before a simulation is setup via a "read_data"_read_data.html,
"read_restart"_read_restart.html, or "create_box"_create_box.html
command.
Once a style is assigned, it cannot be changed, so use a style general
enough to encompass all attributes. E.g. with style {bond}, angular
terms cannot be used or added later to the model. It is OK to use a
style more general than needed, though it may be slightly inefficient.
The choice of style affects what quantities are stored by each atom,
what quantities are communicated between processors to enable forces
to be computed, and what quantities are listed in the data file read
by the "read_data"_read_data.html command.
These are the additional attributes of each style and the typical
kinds of physical systems they are used to model. All styles store
coordinates, velocities, atom IDs and types. See the
"read_data"_read_data.html, "create_atoms"_create_atoms.html, and
"set"_set.html commands for info on how to set these various
quantities.
{angle} | bonds and angles | bead-spring polymers with stiffness |
{atomic} | only the default values | coarse-grain liquids, solids, metals |
{bond} | bonds | bead-spring polymers |
{charge} | charge | atomic system with charges |
{dipole} | charge and dipole moment | system with dipolar particles |
{electron} | charge and spin and eradius | electronic force field |
{ellipsoid} | shape, quaternion for particle orientation, angular momentum | extended aspherical particles |
{full} | molecular + charge | bio-molecules |
{meso} | rho, e, cv | SPH particles |
{molecular} | bonds, angles, dihedrals, impropers | uncharged molecules |
{peri} | mass, volume | mesocopic Peridynamic models |
{sphere} | diameter, mass, angular velocity | granular models |
{wavepacket} | charge, spin, eradius, etag, cs_re, cs_im | AWPMD :tb(c=3,s=|)
All of the styles assign mass to particles on a per-type basis, using
the "mass"_mass.html command, except for the finite-size particle
styles discussed below. They assign mass on a per-atom basis.
All of the styles define point particles, except the {sphere},
{ellipsoid}, {electron}, {peri}, and {wavepacket} styles, which define
finite-size particles.
For the {sphere} style, the particles are spheres and each stores a
per-particle diameter and mass. If the diameter > 0.0, the particle
is a finite-size sphere. If the diameter = 0.0, it is a point
particle.
For the {ellipsoid} style, the particles are ellipsoids and each
stores a flag which indicates whether it is a finite-size ellipsoid or
a point particle. If it is an ellipsoid, it also stores a shape
vector with the 3 diamters of the ellipsoid and a quaternion 4-vector
with its orientation.
For the {electron} style, the particles representing electrons are 3d
Gaussians with a specified position and bandwidth or uncertainty in
position, which is represented by the eradius = electron size.
For the {peri} style, the particles are spherical and each stores a
per-particle mass and volume.
The {meso} style is for smoothed particle hydrodynamics (SPH)
particles which store a density (rho), energy (e), and heat capacity
(cv).
The {wavepacket} style is similar to {electron}, but the electrons may
consist of several Gaussian wave packets, summed up with coefficients
cs= (cs_re,cs_im). Each of the wave packets is treated as a separate
particle in LAMMPS, wave packets belonging to the same electron must
have identical {etag} values.
:line
Typically, simulations require only a single (non-hybrid) atom style.
If some atoms in the simulation do not have all the properties defined
by a particular style, use the simplest style that defines all the
needed properties by any atom. For example, if some atoms in a
simulation are charged, but others are not, use the {charge} style.
If some atoms have bonds, but others do not, use the {bond} style.
The only scenario where the {hybrid} style is needed is if there is no
single style which defines all needed properties of all atoms. For
example, if you want dipolar particles which will be torqued and
rotate, you would need to use "atom_style hybrid sphere dipole". When
a hybrid style is used, atoms store and communicate the union of all
quantities implied by the individual styles.
LAMMPS can be extended with new atom styles; see "this
section"_Section_modify.html.
[Restrictions:]
This command cannot be used after the simulation box is defined by a
"read_data"_read_data.html or "create_box"_create_box.html command.
The {angle}, {bond}, {full}, and {molecular} styles are part of the
MOLECULAR package. The {dipole} style is part of the "dipole"
package. The {ellipsoid} style is part of the "asphere" package. The
{peri} style is part of the PERI package for Peridynamics. The
{electron} style is part of the USER-EFF package for "electronic force
fields"_pair_eff.html. The {meso} style is part of the USER-SPH
package for smoothed particle hydrodyanmics (SPH). See "this PDF
guide"_USER/sph/SPH_LAMMPS_userguide.pdf to using SPH in LAMMPS. The
{wavepacket} style is part of the USER-AWPMD package for the
"antisymmetrized wave packet MD method"_pair_awpmd.html. They are
only enabled if LAMMPS was built with that package. See the "Making
LAMMPS"_Section_start.html#start_3 section for more info.
[Related commands:]
"read_data"_read_data.html, "pair_style"_pair_style.html
[Default:]
atom_style atomic