forked from lijiext/lammps
191 lines
5.0 KiB
Fortran
191 lines
5.0 KiB
Fortran
*> \brief \b ZPPTRI
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download ZPPTRI + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zpptri.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zpptri.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zpptri.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE ZPPTRI( UPLO, N, AP, INFO )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* CHARACTER UPLO
|
|
* INTEGER INFO, N
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* COMPLEX*16 AP( * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> ZPPTRI computes the inverse of a complex Hermitian positive definite
|
|
*> matrix A using the Cholesky factorization A = U**H*U or A = L*L**H
|
|
*> computed by ZPPTRF.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] UPLO
|
|
*> \verbatim
|
|
*> UPLO is CHARACTER*1
|
|
*> = 'U': Upper triangular factor is stored in AP;
|
|
*> = 'L': Lower triangular factor is stored in AP.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The order of the matrix A. N >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] AP
|
|
*> \verbatim
|
|
*> AP is COMPLEX*16 array, dimension (N*(N+1)/2)
|
|
*> On entry, the triangular factor U or L from the Cholesky
|
|
*> factorization A = U**H*U or A = L*L**H, packed columnwise as
|
|
*> a linear array. The j-th column of U or L is stored in the
|
|
*> array AP as follows:
|
|
*> if UPLO = 'U', AP(i + (j-1)*j/2) = U(i,j) for 1<=i<=j;
|
|
*> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = L(i,j) for j<=i<=n.
|
|
*>
|
|
*> On exit, the upper or lower triangle of the (Hermitian)
|
|
*> inverse of A, overwriting the input factor U or L.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INFO
|
|
*> \verbatim
|
|
*> INFO is INTEGER
|
|
*> = 0: successful exit
|
|
*> < 0: if INFO = -i, the i-th argument had an illegal value
|
|
*> > 0: if INFO = i, the (i,i) element of the factor U or L is
|
|
*> zero, and the inverse could not be computed.
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \date December 2016
|
|
*
|
|
*> \ingroup complex16OTHERcomputational
|
|
*
|
|
* =====================================================================
|
|
SUBROUTINE ZPPTRI( UPLO, N, AP, INFO )
|
|
*
|
|
* -- LAPACK computational routine (version 3.7.0) --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
* December 2016
|
|
*
|
|
* .. Scalar Arguments ..
|
|
CHARACTER UPLO
|
|
INTEGER INFO, N
|
|
* ..
|
|
* .. Array Arguments ..
|
|
COMPLEX*16 AP( * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
DOUBLE PRECISION ONE
|
|
PARAMETER ( ONE = 1.0D+0 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
LOGICAL UPPER
|
|
INTEGER J, JC, JJ, JJN
|
|
DOUBLE PRECISION AJJ
|
|
* ..
|
|
* .. External Functions ..
|
|
LOGICAL LSAME
|
|
COMPLEX*16 ZDOTC
|
|
EXTERNAL LSAME, ZDOTC
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL XERBLA, ZDSCAL, ZHPR, ZTPMV, ZTPTRI
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC DBLE
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Test the input parameters.
|
|
*
|
|
INFO = 0
|
|
UPPER = LSAME( UPLO, 'U' )
|
|
IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
|
|
INFO = -1
|
|
ELSE IF( N.LT.0 ) THEN
|
|
INFO = -2
|
|
END IF
|
|
IF( INFO.NE.0 ) THEN
|
|
CALL XERBLA( 'ZPPTRI', -INFO )
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Quick return if possible
|
|
*
|
|
IF( N.EQ.0 )
|
|
$ RETURN
|
|
*
|
|
* Invert the triangular Cholesky factor U or L.
|
|
*
|
|
CALL ZTPTRI( UPLO, 'Non-unit', N, AP, INFO )
|
|
IF( INFO.GT.0 )
|
|
$ RETURN
|
|
IF( UPPER ) THEN
|
|
*
|
|
* Compute the product inv(U) * inv(U)**H.
|
|
*
|
|
JJ = 0
|
|
DO 10 J = 1, N
|
|
JC = JJ + 1
|
|
JJ = JJ + J
|
|
IF( J.GT.1 )
|
|
$ CALL ZHPR( 'Upper', J-1, ONE, AP( JC ), 1, AP )
|
|
AJJ = AP( JJ )
|
|
CALL ZDSCAL( J, AJJ, AP( JC ), 1 )
|
|
10 CONTINUE
|
|
*
|
|
ELSE
|
|
*
|
|
* Compute the product inv(L)**H * inv(L).
|
|
*
|
|
JJ = 1
|
|
DO 20 J = 1, N
|
|
JJN = JJ + N - J + 1
|
|
AP( JJ ) = DBLE( ZDOTC( N-J+1, AP( JJ ), 1, AP( JJ ), 1 ) )
|
|
IF( J.LT.N )
|
|
$ CALL ZTPMV( 'Lower', 'Conjugate transpose', 'Non-unit',
|
|
$ N-J, AP( JJN ), AP( JJ+1 ), 1 )
|
|
JJ = JJN
|
|
20 CONTINUE
|
|
END IF
|
|
*
|
|
RETURN
|
|
*
|
|
* End of ZPPTRI
|
|
*
|
|
END
|