forked from lijiext/lammps
335 lines
9.9 KiB
Fortran
335 lines
9.9 KiB
Fortran
*> \brief \b ZHETD2 reduces a Hermitian matrix to real symmetric tridiagonal form by an unitary similarity transformation (unblocked algorithm).
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download ZHETD2 + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhetd2.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhetd2.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhetd2.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE ZHETD2( UPLO, N, A, LDA, D, E, TAU, INFO )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* CHARACTER UPLO
|
|
* INTEGER INFO, LDA, N
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* DOUBLE PRECISION D( * ), E( * )
|
|
* COMPLEX*16 A( LDA, * ), TAU( * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> ZHETD2 reduces a complex Hermitian matrix A to real symmetric
|
|
*> tridiagonal form T by a unitary similarity transformation:
|
|
*> Q**H * A * Q = T.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] UPLO
|
|
*> \verbatim
|
|
*> UPLO is CHARACTER*1
|
|
*> Specifies whether the upper or lower triangular part of the
|
|
*> Hermitian matrix A is stored:
|
|
*> = 'U': Upper triangular
|
|
*> = 'L': Lower triangular
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The order of the matrix A. N >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] A
|
|
*> \verbatim
|
|
*> A is COMPLEX*16 array, dimension (LDA,N)
|
|
*> On entry, the Hermitian matrix A. If UPLO = 'U', the leading
|
|
*> n-by-n upper triangular part of A contains the upper
|
|
*> triangular part of the matrix A, and the strictly lower
|
|
*> triangular part of A is not referenced. If UPLO = 'L', the
|
|
*> leading n-by-n lower triangular part of A contains the lower
|
|
*> triangular part of the matrix A, and the strictly upper
|
|
*> triangular part of A is not referenced.
|
|
*> On exit, if UPLO = 'U', the diagonal and first superdiagonal
|
|
*> of A are overwritten by the corresponding elements of the
|
|
*> tridiagonal matrix T, and the elements above the first
|
|
*> superdiagonal, with the array TAU, represent the unitary
|
|
*> matrix Q as a product of elementary reflectors; if UPLO
|
|
*> = 'L', the diagonal and first subdiagonal of A are over-
|
|
*> written by the corresponding elements of the tridiagonal
|
|
*> matrix T, and the elements below the first subdiagonal, with
|
|
*> the array TAU, represent the unitary matrix Q as a product
|
|
*> of elementary reflectors. See Further Details.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDA
|
|
*> \verbatim
|
|
*> LDA is INTEGER
|
|
*> The leading dimension of the array A. LDA >= max(1,N).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] D
|
|
*> \verbatim
|
|
*> D is DOUBLE PRECISION array, dimension (N)
|
|
*> The diagonal elements of the tridiagonal matrix T:
|
|
*> D(i) = A(i,i).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] E
|
|
*> \verbatim
|
|
*> E is DOUBLE PRECISION array, dimension (N-1)
|
|
*> The off-diagonal elements of the tridiagonal matrix T:
|
|
*> E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] TAU
|
|
*> \verbatim
|
|
*> TAU is COMPLEX*16 array, dimension (N-1)
|
|
*> The scalar factors of the elementary reflectors (see Further
|
|
*> Details).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INFO
|
|
*> \verbatim
|
|
*> INFO is INTEGER
|
|
*> = 0: successful exit
|
|
*> < 0: if INFO = -i, the i-th argument had an illegal value.
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \date December 2016
|
|
*
|
|
*> \ingroup complex16HEcomputational
|
|
*
|
|
*> \par Further Details:
|
|
* =====================
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> If UPLO = 'U', the matrix Q is represented as a product of elementary
|
|
*> reflectors
|
|
*>
|
|
*> Q = H(n-1) . . . H(2) H(1).
|
|
*>
|
|
*> Each H(i) has the form
|
|
*>
|
|
*> H(i) = I - tau * v * v**H
|
|
*>
|
|
*> where tau is a complex scalar, and v is a complex vector with
|
|
*> v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in
|
|
*> A(1:i-1,i+1), and tau in TAU(i).
|
|
*>
|
|
*> If UPLO = 'L', the matrix Q is represented as a product of elementary
|
|
*> reflectors
|
|
*>
|
|
*> Q = H(1) H(2) . . . H(n-1).
|
|
*>
|
|
*> Each H(i) has the form
|
|
*>
|
|
*> H(i) = I - tau * v * v**H
|
|
*>
|
|
*> where tau is a complex scalar, and v is a complex vector with
|
|
*> v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i),
|
|
*> and tau in TAU(i).
|
|
*>
|
|
*> The contents of A on exit are illustrated by the following examples
|
|
*> with n = 5:
|
|
*>
|
|
*> if UPLO = 'U': if UPLO = 'L':
|
|
*>
|
|
*> ( d e v2 v3 v4 ) ( d )
|
|
*> ( d e v3 v4 ) ( e d )
|
|
*> ( d e v4 ) ( v1 e d )
|
|
*> ( d e ) ( v1 v2 e d )
|
|
*> ( d ) ( v1 v2 v3 e d )
|
|
*>
|
|
*> where d and e denote diagonal and off-diagonal elements of T, and vi
|
|
*> denotes an element of the vector defining H(i).
|
|
*> \endverbatim
|
|
*>
|
|
* =====================================================================
|
|
SUBROUTINE ZHETD2( UPLO, N, A, LDA, D, E, TAU, INFO )
|
|
*
|
|
* -- LAPACK computational routine (version 3.7.0) --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
* December 2016
|
|
*
|
|
* .. Scalar Arguments ..
|
|
CHARACTER UPLO
|
|
INTEGER INFO, LDA, N
|
|
* ..
|
|
* .. Array Arguments ..
|
|
DOUBLE PRECISION D( * ), E( * )
|
|
COMPLEX*16 A( LDA, * ), TAU( * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
COMPLEX*16 ONE, ZERO, HALF
|
|
PARAMETER ( ONE = ( 1.0D+0, 0.0D+0 ),
|
|
$ ZERO = ( 0.0D+0, 0.0D+0 ),
|
|
$ HALF = ( 0.5D+0, 0.0D+0 ) )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
LOGICAL UPPER
|
|
INTEGER I
|
|
COMPLEX*16 ALPHA, TAUI
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL XERBLA, ZAXPY, ZHEMV, ZHER2, ZLARFG
|
|
* ..
|
|
* .. External Functions ..
|
|
LOGICAL LSAME
|
|
COMPLEX*16 ZDOTC
|
|
EXTERNAL LSAME, ZDOTC
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC DBLE, MAX, MIN
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Test the input parameters
|
|
*
|
|
INFO = 0
|
|
UPPER = LSAME( UPLO, 'U')
|
|
IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
|
|
INFO = -1
|
|
ELSE IF( N.LT.0 ) THEN
|
|
INFO = -2
|
|
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
|
|
INFO = -4
|
|
END IF
|
|
IF( INFO.NE.0 ) THEN
|
|
CALL XERBLA( 'ZHETD2', -INFO )
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Quick return if possible
|
|
*
|
|
IF( N.LE.0 )
|
|
$ RETURN
|
|
*
|
|
IF( UPPER ) THEN
|
|
*
|
|
* Reduce the upper triangle of A
|
|
*
|
|
A( N, N ) = DBLE( A( N, N ) )
|
|
DO 10 I = N - 1, 1, -1
|
|
*
|
|
* Generate elementary reflector H(i) = I - tau * v * v**H
|
|
* to annihilate A(1:i-1,i+1)
|
|
*
|
|
ALPHA = A( I, I+1 )
|
|
CALL ZLARFG( I, ALPHA, A( 1, I+1 ), 1, TAUI )
|
|
E( I ) = ALPHA
|
|
*
|
|
IF( TAUI.NE.ZERO ) THEN
|
|
*
|
|
* Apply H(i) from both sides to A(1:i,1:i)
|
|
*
|
|
A( I, I+1 ) = ONE
|
|
*
|
|
* Compute x := tau * A * v storing x in TAU(1:i)
|
|
*
|
|
CALL ZHEMV( UPLO, I, TAUI, A, LDA, A( 1, I+1 ), 1, ZERO,
|
|
$ TAU, 1 )
|
|
*
|
|
* Compute w := x - 1/2 * tau * (x**H * v) * v
|
|
*
|
|
ALPHA = -HALF*TAUI*ZDOTC( I, TAU, 1, A( 1, I+1 ), 1 )
|
|
CALL ZAXPY( I, ALPHA, A( 1, I+1 ), 1, TAU, 1 )
|
|
*
|
|
* Apply the transformation as a rank-2 update:
|
|
* A := A - v * w**H - w * v**H
|
|
*
|
|
CALL ZHER2( UPLO, I, -ONE, A( 1, I+1 ), 1, TAU, 1, A,
|
|
$ LDA )
|
|
*
|
|
ELSE
|
|
A( I, I ) = DBLE( A( I, I ) )
|
|
END IF
|
|
A( I, I+1 ) = E( I )
|
|
D( I+1 ) = A( I+1, I+1 )
|
|
TAU( I ) = TAUI
|
|
10 CONTINUE
|
|
D( 1 ) = A( 1, 1 )
|
|
ELSE
|
|
*
|
|
* Reduce the lower triangle of A
|
|
*
|
|
A( 1, 1 ) = DBLE( A( 1, 1 ) )
|
|
DO 20 I = 1, N - 1
|
|
*
|
|
* Generate elementary reflector H(i) = I - tau * v * v**H
|
|
* to annihilate A(i+2:n,i)
|
|
*
|
|
ALPHA = A( I+1, I )
|
|
CALL ZLARFG( N-I, ALPHA, A( MIN( I+2, N ), I ), 1, TAUI )
|
|
E( I ) = ALPHA
|
|
*
|
|
IF( TAUI.NE.ZERO ) THEN
|
|
*
|
|
* Apply H(i) from both sides to A(i+1:n,i+1:n)
|
|
*
|
|
A( I+1, I ) = ONE
|
|
*
|
|
* Compute x := tau * A * v storing y in TAU(i:n-1)
|
|
*
|
|
CALL ZHEMV( UPLO, N-I, TAUI, A( I+1, I+1 ), LDA,
|
|
$ A( I+1, I ), 1, ZERO, TAU( I ), 1 )
|
|
*
|
|
* Compute w := x - 1/2 * tau * (x**H * v) * v
|
|
*
|
|
ALPHA = -HALF*TAUI*ZDOTC( N-I, TAU( I ), 1, A( I+1, I ),
|
|
$ 1 )
|
|
CALL ZAXPY( N-I, ALPHA, A( I+1, I ), 1, TAU( I ), 1 )
|
|
*
|
|
* Apply the transformation as a rank-2 update:
|
|
* A := A - v * w**H - w * v**H
|
|
*
|
|
CALL ZHER2( UPLO, N-I, -ONE, A( I+1, I ), 1, TAU( I ), 1,
|
|
$ A( I+1, I+1 ), LDA )
|
|
*
|
|
ELSE
|
|
A( I+1, I+1 ) = DBLE( A( I+1, I+1 ) )
|
|
END IF
|
|
A( I+1, I ) = E( I )
|
|
D( I ) = A( I, I )
|
|
TAU( I ) = TAUI
|
|
20 CONTINUE
|
|
D( N ) = A( N, N )
|
|
END IF
|
|
*
|
|
RETURN
|
|
*
|
|
* End of ZHETD2
|
|
*
|
|
END
|