forked from lijiext/lammps
187 lines
5.2 KiB
Fortran
187 lines
5.2 KiB
Fortran
*> \brief \b DLANST returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real symmetric tridiagonal matrix.
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download DLANST + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlanst.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlanst.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlanst.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* DOUBLE PRECISION FUNCTION DLANST( NORM, N, D, E )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* CHARACTER NORM
|
|
* INTEGER N
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* DOUBLE PRECISION D( * ), E( * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> DLANST returns the value of the one norm, or the Frobenius norm, or
|
|
*> the infinity norm, or the element of largest absolute value of a
|
|
*> real symmetric tridiagonal matrix A.
|
|
*> \endverbatim
|
|
*>
|
|
*> \return DLANST
|
|
*> \verbatim
|
|
*>
|
|
*> DLANST = ( max(abs(A(i,j))), NORM = 'M' or 'm'
|
|
*> (
|
|
*> ( norm1(A), NORM = '1', 'O' or 'o'
|
|
*> (
|
|
*> ( normI(A), NORM = 'I' or 'i'
|
|
*> (
|
|
*> ( normF(A), NORM = 'F', 'f', 'E' or 'e'
|
|
*>
|
|
*> where norm1 denotes the one norm of a matrix (maximum column sum),
|
|
*> normI denotes the infinity norm of a matrix (maximum row sum) and
|
|
*> normF denotes the Frobenius norm of a matrix (square root of sum of
|
|
*> squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] NORM
|
|
*> \verbatim
|
|
*> NORM is CHARACTER*1
|
|
*> Specifies the value to be returned in DLANST as described
|
|
*> above.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The order of the matrix A. N >= 0. When N = 0, DLANST is
|
|
*> set to zero.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] D
|
|
*> \verbatim
|
|
*> D is DOUBLE PRECISION array, dimension (N)
|
|
*> The diagonal elements of A.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] E
|
|
*> \verbatim
|
|
*> E is DOUBLE PRECISION array, dimension (N-1)
|
|
*> The (n-1) sub-diagonal or super-diagonal elements of A.
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \date December 2016
|
|
*
|
|
*> \ingroup OTHERauxiliary
|
|
*
|
|
* =====================================================================
|
|
DOUBLE PRECISION FUNCTION DLANST( NORM, N, D, E )
|
|
*
|
|
* -- LAPACK auxiliary routine (version 3.7.0) --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
* December 2016
|
|
*
|
|
* .. Scalar Arguments ..
|
|
CHARACTER NORM
|
|
INTEGER N
|
|
* ..
|
|
* .. Array Arguments ..
|
|
DOUBLE PRECISION D( * ), E( * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
DOUBLE PRECISION ONE, ZERO
|
|
PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
INTEGER I
|
|
DOUBLE PRECISION ANORM, SCALE, SUM
|
|
* ..
|
|
* .. External Functions ..
|
|
LOGICAL LSAME, DISNAN
|
|
EXTERNAL LSAME, DISNAN
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL DLASSQ
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC ABS, SQRT
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
IF( N.LE.0 ) THEN
|
|
ANORM = ZERO
|
|
ELSE IF( LSAME( NORM, 'M' ) ) THEN
|
|
*
|
|
* Find max(abs(A(i,j))).
|
|
*
|
|
ANORM = ABS( D( N ) )
|
|
DO 10 I = 1, N - 1
|
|
SUM = ABS( D( I ) )
|
|
IF( ANORM .LT. SUM .OR. DISNAN( SUM ) ) ANORM = SUM
|
|
SUM = ABS( E( I ) )
|
|
IF( ANORM .LT. SUM .OR. DISNAN( SUM ) ) ANORM = SUM
|
|
10 CONTINUE
|
|
ELSE IF( LSAME( NORM, 'O' ) .OR. NORM.EQ.'1' .OR.
|
|
$ LSAME( NORM, 'I' ) ) THEN
|
|
*
|
|
* Find norm1(A).
|
|
*
|
|
IF( N.EQ.1 ) THEN
|
|
ANORM = ABS( D( 1 ) )
|
|
ELSE
|
|
ANORM = ABS( D( 1 ) )+ABS( E( 1 ) )
|
|
SUM = ABS( E( N-1 ) )+ABS( D( N ) )
|
|
IF( ANORM .LT. SUM .OR. DISNAN( SUM ) ) ANORM = SUM
|
|
DO 20 I = 2, N - 1
|
|
SUM = ABS( D( I ) )+ABS( E( I ) )+ABS( E( I-1 ) )
|
|
IF( ANORM .LT. SUM .OR. DISNAN( SUM ) ) ANORM = SUM
|
|
20 CONTINUE
|
|
END IF
|
|
ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
|
|
*
|
|
* Find normF(A).
|
|
*
|
|
SCALE = ZERO
|
|
SUM = ONE
|
|
IF( N.GT.1 ) THEN
|
|
CALL DLASSQ( N-1, E, 1, SCALE, SUM )
|
|
SUM = 2*SUM
|
|
END IF
|
|
CALL DLASSQ( N, D, 1, SCALE, SUM )
|
|
ANORM = SCALE*SQRT( SUM )
|
|
END IF
|
|
*
|
|
DLANST = ANORM
|
|
RETURN
|
|
*
|
|
* End of DLANST
|
|
*
|
|
END
|