forked from lijiext/lammps
524 lines
16 KiB
Fortran
524 lines
16 KiB
Fortran
*> \brief \b DLALSD uses the singular value decomposition of A to solve the least squares problem.
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download DLALSD + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlalsd.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlalsd.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlalsd.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE DLALSD( UPLO, SMLSIZ, N, NRHS, D, E, B, LDB, RCOND,
|
|
* RANK, WORK, IWORK, INFO )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* CHARACTER UPLO
|
|
* INTEGER INFO, LDB, N, NRHS, RANK, SMLSIZ
|
|
* DOUBLE PRECISION RCOND
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* INTEGER IWORK( * )
|
|
* DOUBLE PRECISION B( LDB, * ), D( * ), E( * ), WORK( * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> DLALSD uses the singular value decomposition of A to solve the least
|
|
*> squares problem of finding X to minimize the Euclidean norm of each
|
|
*> column of A*X-B, where A is N-by-N upper bidiagonal, and X and B
|
|
*> are N-by-NRHS. The solution X overwrites B.
|
|
*>
|
|
*> The singular values of A smaller than RCOND times the largest
|
|
*> singular value are treated as zero in solving the least squares
|
|
*> problem; in this case a minimum norm solution is returned.
|
|
*> The actual singular values are returned in D in ascending order.
|
|
*>
|
|
*> This code makes very mild assumptions about floating point
|
|
*> arithmetic. It will work on machines with a guard digit in
|
|
*> add/subtract, or on those binary machines without guard digits
|
|
*> which subtract like the Cray XMP, Cray YMP, Cray C 90, or Cray 2.
|
|
*> It could conceivably fail on hexadecimal or decimal machines
|
|
*> without guard digits, but we know of none.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] UPLO
|
|
*> \verbatim
|
|
*> UPLO is CHARACTER*1
|
|
*> = 'U': D and E define an upper bidiagonal matrix.
|
|
*> = 'L': D and E define a lower bidiagonal matrix.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] SMLSIZ
|
|
*> \verbatim
|
|
*> SMLSIZ is INTEGER
|
|
*> The maximum size of the subproblems at the bottom of the
|
|
*> computation tree.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The dimension of the bidiagonal matrix. N >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] NRHS
|
|
*> \verbatim
|
|
*> NRHS is INTEGER
|
|
*> The number of columns of B. NRHS must be at least 1.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] D
|
|
*> \verbatim
|
|
*> D is DOUBLE PRECISION array, dimension (N)
|
|
*> On entry D contains the main diagonal of the bidiagonal
|
|
*> matrix. On exit, if INFO = 0, D contains its singular values.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] E
|
|
*> \verbatim
|
|
*> E is DOUBLE PRECISION array, dimension (N-1)
|
|
*> Contains the super-diagonal entries of the bidiagonal matrix.
|
|
*> On exit, E has been destroyed.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] B
|
|
*> \verbatim
|
|
*> B is DOUBLE PRECISION array, dimension (LDB,NRHS)
|
|
*> On input, B contains the right hand sides of the least
|
|
*> squares problem. On output, B contains the solution X.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDB
|
|
*> \verbatim
|
|
*> LDB is INTEGER
|
|
*> The leading dimension of B in the calling subprogram.
|
|
*> LDB must be at least max(1,N).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] RCOND
|
|
*> \verbatim
|
|
*> RCOND is DOUBLE PRECISION
|
|
*> The singular values of A less than or equal to RCOND times
|
|
*> the largest singular value are treated as zero in solving
|
|
*> the least squares problem. If RCOND is negative,
|
|
*> machine precision is used instead.
|
|
*> For example, if diag(S)*X=B were the least squares problem,
|
|
*> where diag(S) is a diagonal matrix of singular values, the
|
|
*> solution would be X(i) = B(i) / S(i) if S(i) is greater than
|
|
*> RCOND*max(S), and X(i) = 0 if S(i) is less than or equal to
|
|
*> RCOND*max(S).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] RANK
|
|
*> \verbatim
|
|
*> RANK is INTEGER
|
|
*> The number of singular values of A greater than RCOND times
|
|
*> the largest singular value.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] WORK
|
|
*> \verbatim
|
|
*> WORK is DOUBLE PRECISION array, dimension at least
|
|
*> (9*N + 2*N*SMLSIZ + 8*N*NLVL + N*NRHS + (SMLSIZ+1)**2),
|
|
*> where NLVL = max(0, INT(log_2 (N/(SMLSIZ+1))) + 1).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] IWORK
|
|
*> \verbatim
|
|
*> IWORK is INTEGER array, dimension at least
|
|
*> (3*N*NLVL + 11*N)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INFO
|
|
*> \verbatim
|
|
*> INFO is INTEGER
|
|
*> = 0: successful exit.
|
|
*> < 0: if INFO = -i, the i-th argument had an illegal value.
|
|
*> > 0: The algorithm failed to compute a singular value while
|
|
*> working on the submatrix lying in rows and columns
|
|
*> INFO/(N+1) through MOD(INFO,N+1).
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \date December 2016
|
|
*
|
|
*> \ingroup doubleOTHERcomputational
|
|
*
|
|
*> \par Contributors:
|
|
* ==================
|
|
*>
|
|
*> Ming Gu and Ren-Cang Li, Computer Science Division, University of
|
|
*> California at Berkeley, USA \n
|
|
*> Osni Marques, LBNL/NERSC, USA \n
|
|
*
|
|
* =====================================================================
|
|
SUBROUTINE DLALSD( UPLO, SMLSIZ, N, NRHS, D, E, B, LDB, RCOND,
|
|
$ RANK, WORK, IWORK, INFO )
|
|
*
|
|
* -- LAPACK computational routine (version 3.7.0) --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
* December 2016
|
|
*
|
|
* .. Scalar Arguments ..
|
|
CHARACTER UPLO
|
|
INTEGER INFO, LDB, N, NRHS, RANK, SMLSIZ
|
|
DOUBLE PRECISION RCOND
|
|
* ..
|
|
* .. Array Arguments ..
|
|
INTEGER IWORK( * )
|
|
DOUBLE PRECISION B( LDB, * ), D( * ), E( * ), WORK( * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
DOUBLE PRECISION ZERO, ONE, TWO
|
|
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
INTEGER BX, BXST, C, DIFL, DIFR, GIVCOL, GIVNUM,
|
|
$ GIVPTR, I, ICMPQ1, ICMPQ2, IWK, J, K, NLVL,
|
|
$ NM1, NSIZE, NSUB, NWORK, PERM, POLES, S, SIZEI,
|
|
$ SMLSZP, SQRE, ST, ST1, U, VT, Z
|
|
DOUBLE PRECISION CS, EPS, ORGNRM, R, RCND, SN, TOL
|
|
* ..
|
|
* .. External Functions ..
|
|
INTEGER IDAMAX
|
|
DOUBLE PRECISION DLAMCH, DLANST
|
|
EXTERNAL IDAMAX, DLAMCH, DLANST
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL DCOPY, DGEMM, DLACPY, DLALSA, DLARTG, DLASCL,
|
|
$ DLASDA, DLASDQ, DLASET, DLASRT, DROT, XERBLA
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC ABS, DBLE, INT, LOG, SIGN
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Test the input parameters.
|
|
*
|
|
INFO = 0
|
|
*
|
|
IF( N.LT.0 ) THEN
|
|
INFO = -3
|
|
ELSE IF( NRHS.LT.1 ) THEN
|
|
INFO = -4
|
|
ELSE IF( ( LDB.LT.1 ) .OR. ( LDB.LT.N ) ) THEN
|
|
INFO = -8
|
|
END IF
|
|
IF( INFO.NE.0 ) THEN
|
|
CALL XERBLA( 'DLALSD', -INFO )
|
|
RETURN
|
|
END IF
|
|
*
|
|
EPS = DLAMCH( 'Epsilon' )
|
|
*
|
|
* Set up the tolerance.
|
|
*
|
|
IF( ( RCOND.LE.ZERO ) .OR. ( RCOND.GE.ONE ) ) THEN
|
|
RCND = EPS
|
|
ELSE
|
|
RCND = RCOND
|
|
END IF
|
|
*
|
|
RANK = 0
|
|
*
|
|
* Quick return if possible.
|
|
*
|
|
IF( N.EQ.0 ) THEN
|
|
RETURN
|
|
ELSE IF( N.EQ.1 ) THEN
|
|
IF( D( 1 ).EQ.ZERO ) THEN
|
|
CALL DLASET( 'A', 1, NRHS, ZERO, ZERO, B, LDB )
|
|
ELSE
|
|
RANK = 1
|
|
CALL DLASCL( 'G', 0, 0, D( 1 ), ONE, 1, NRHS, B, LDB, INFO )
|
|
D( 1 ) = ABS( D( 1 ) )
|
|
END IF
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Rotate the matrix if it is lower bidiagonal.
|
|
*
|
|
IF( UPLO.EQ.'L' ) THEN
|
|
DO 10 I = 1, N - 1
|
|
CALL DLARTG( D( I ), E( I ), CS, SN, R )
|
|
D( I ) = R
|
|
E( I ) = SN*D( I+1 )
|
|
D( I+1 ) = CS*D( I+1 )
|
|
IF( NRHS.EQ.1 ) THEN
|
|
CALL DROT( 1, B( I, 1 ), 1, B( I+1, 1 ), 1, CS, SN )
|
|
ELSE
|
|
WORK( I*2-1 ) = CS
|
|
WORK( I*2 ) = SN
|
|
END IF
|
|
10 CONTINUE
|
|
IF( NRHS.GT.1 ) THEN
|
|
DO 30 I = 1, NRHS
|
|
DO 20 J = 1, N - 1
|
|
CS = WORK( J*2-1 )
|
|
SN = WORK( J*2 )
|
|
CALL DROT( 1, B( J, I ), 1, B( J+1, I ), 1, CS, SN )
|
|
20 CONTINUE
|
|
30 CONTINUE
|
|
END IF
|
|
END IF
|
|
*
|
|
* Scale.
|
|
*
|
|
NM1 = N - 1
|
|
ORGNRM = DLANST( 'M', N, D, E )
|
|
IF( ORGNRM.EQ.ZERO ) THEN
|
|
CALL DLASET( 'A', N, NRHS, ZERO, ZERO, B, LDB )
|
|
RETURN
|
|
END IF
|
|
*
|
|
CALL DLASCL( 'G', 0, 0, ORGNRM, ONE, N, 1, D, N, INFO )
|
|
CALL DLASCL( 'G', 0, 0, ORGNRM, ONE, NM1, 1, E, NM1, INFO )
|
|
*
|
|
* If N is smaller than the minimum divide size SMLSIZ, then solve
|
|
* the problem with another solver.
|
|
*
|
|
IF( N.LE.SMLSIZ ) THEN
|
|
NWORK = 1 + N*N
|
|
CALL DLASET( 'A', N, N, ZERO, ONE, WORK, N )
|
|
CALL DLASDQ( 'U', 0, N, N, 0, NRHS, D, E, WORK, N, WORK, N, B,
|
|
$ LDB, WORK( NWORK ), INFO )
|
|
IF( INFO.NE.0 ) THEN
|
|
RETURN
|
|
END IF
|
|
TOL = RCND*ABS( D( IDAMAX( N, D, 1 ) ) )
|
|
DO 40 I = 1, N
|
|
IF( D( I ).LE.TOL ) THEN
|
|
CALL DLASET( 'A', 1, NRHS, ZERO, ZERO, B( I, 1 ), LDB )
|
|
ELSE
|
|
CALL DLASCL( 'G', 0, 0, D( I ), ONE, 1, NRHS, B( I, 1 ),
|
|
$ LDB, INFO )
|
|
RANK = RANK + 1
|
|
END IF
|
|
40 CONTINUE
|
|
CALL DGEMM( 'T', 'N', N, NRHS, N, ONE, WORK, N, B, LDB, ZERO,
|
|
$ WORK( NWORK ), N )
|
|
CALL DLACPY( 'A', N, NRHS, WORK( NWORK ), N, B, LDB )
|
|
*
|
|
* Unscale.
|
|
*
|
|
CALL DLASCL( 'G', 0, 0, ONE, ORGNRM, N, 1, D, N, INFO )
|
|
CALL DLASRT( 'D', N, D, INFO )
|
|
CALL DLASCL( 'G', 0, 0, ORGNRM, ONE, N, NRHS, B, LDB, INFO )
|
|
*
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Book-keeping and setting up some constants.
|
|
*
|
|
NLVL = INT( LOG( DBLE( N ) / DBLE( SMLSIZ+1 ) ) / LOG( TWO ) ) + 1
|
|
*
|
|
SMLSZP = SMLSIZ + 1
|
|
*
|
|
U = 1
|
|
VT = 1 + SMLSIZ*N
|
|
DIFL = VT + SMLSZP*N
|
|
DIFR = DIFL + NLVL*N
|
|
Z = DIFR + NLVL*N*2
|
|
C = Z + NLVL*N
|
|
S = C + N
|
|
POLES = S + N
|
|
GIVNUM = POLES + 2*NLVL*N
|
|
BX = GIVNUM + 2*NLVL*N
|
|
NWORK = BX + N*NRHS
|
|
*
|
|
SIZEI = 1 + N
|
|
K = SIZEI + N
|
|
GIVPTR = K + N
|
|
PERM = GIVPTR + N
|
|
GIVCOL = PERM + NLVL*N
|
|
IWK = GIVCOL + NLVL*N*2
|
|
*
|
|
ST = 1
|
|
SQRE = 0
|
|
ICMPQ1 = 1
|
|
ICMPQ2 = 0
|
|
NSUB = 0
|
|
*
|
|
DO 50 I = 1, N
|
|
IF( ABS( D( I ) ).LT.EPS ) THEN
|
|
D( I ) = SIGN( EPS, D( I ) )
|
|
END IF
|
|
50 CONTINUE
|
|
*
|
|
DO 60 I = 1, NM1
|
|
IF( ( ABS( E( I ) ).LT.EPS ) .OR. ( I.EQ.NM1 ) ) THEN
|
|
NSUB = NSUB + 1
|
|
IWORK( NSUB ) = ST
|
|
*
|
|
* Subproblem found. First determine its size and then
|
|
* apply divide and conquer on it.
|
|
*
|
|
IF( I.LT.NM1 ) THEN
|
|
*
|
|
* A subproblem with E(I) small for I < NM1.
|
|
*
|
|
NSIZE = I - ST + 1
|
|
IWORK( SIZEI+NSUB-1 ) = NSIZE
|
|
ELSE IF( ABS( E( I ) ).GE.EPS ) THEN
|
|
*
|
|
* A subproblem with E(NM1) not too small but I = NM1.
|
|
*
|
|
NSIZE = N - ST + 1
|
|
IWORK( SIZEI+NSUB-1 ) = NSIZE
|
|
ELSE
|
|
*
|
|
* A subproblem with E(NM1) small. This implies an
|
|
* 1-by-1 subproblem at D(N), which is not solved
|
|
* explicitly.
|
|
*
|
|
NSIZE = I - ST + 1
|
|
IWORK( SIZEI+NSUB-1 ) = NSIZE
|
|
NSUB = NSUB + 1
|
|
IWORK( NSUB ) = N
|
|
IWORK( SIZEI+NSUB-1 ) = 1
|
|
CALL DCOPY( NRHS, B( N, 1 ), LDB, WORK( BX+NM1 ), N )
|
|
END IF
|
|
ST1 = ST - 1
|
|
IF( NSIZE.EQ.1 ) THEN
|
|
*
|
|
* This is a 1-by-1 subproblem and is not solved
|
|
* explicitly.
|
|
*
|
|
CALL DCOPY( NRHS, B( ST, 1 ), LDB, WORK( BX+ST1 ), N )
|
|
ELSE IF( NSIZE.LE.SMLSIZ ) THEN
|
|
*
|
|
* This is a small subproblem and is solved by DLASDQ.
|
|
*
|
|
CALL DLASET( 'A', NSIZE, NSIZE, ZERO, ONE,
|
|
$ WORK( VT+ST1 ), N )
|
|
CALL DLASDQ( 'U', 0, NSIZE, NSIZE, 0, NRHS, D( ST ),
|
|
$ E( ST ), WORK( VT+ST1 ), N, WORK( NWORK ),
|
|
$ N, B( ST, 1 ), LDB, WORK( NWORK ), INFO )
|
|
IF( INFO.NE.0 ) THEN
|
|
RETURN
|
|
END IF
|
|
CALL DLACPY( 'A', NSIZE, NRHS, B( ST, 1 ), LDB,
|
|
$ WORK( BX+ST1 ), N )
|
|
ELSE
|
|
*
|
|
* A large problem. Solve it using divide and conquer.
|
|
*
|
|
CALL DLASDA( ICMPQ1, SMLSIZ, NSIZE, SQRE, D( ST ),
|
|
$ E( ST ), WORK( U+ST1 ), N, WORK( VT+ST1 ),
|
|
$ IWORK( K+ST1 ), WORK( DIFL+ST1 ),
|
|
$ WORK( DIFR+ST1 ), WORK( Z+ST1 ),
|
|
$ WORK( POLES+ST1 ), IWORK( GIVPTR+ST1 ),
|
|
$ IWORK( GIVCOL+ST1 ), N, IWORK( PERM+ST1 ),
|
|
$ WORK( GIVNUM+ST1 ), WORK( C+ST1 ),
|
|
$ WORK( S+ST1 ), WORK( NWORK ), IWORK( IWK ),
|
|
$ INFO )
|
|
IF( INFO.NE.0 ) THEN
|
|
RETURN
|
|
END IF
|
|
BXST = BX + ST1
|
|
CALL DLALSA( ICMPQ2, SMLSIZ, NSIZE, NRHS, B( ST, 1 ),
|
|
$ LDB, WORK( BXST ), N, WORK( U+ST1 ), N,
|
|
$ WORK( VT+ST1 ), IWORK( K+ST1 ),
|
|
$ WORK( DIFL+ST1 ), WORK( DIFR+ST1 ),
|
|
$ WORK( Z+ST1 ), WORK( POLES+ST1 ),
|
|
$ IWORK( GIVPTR+ST1 ), IWORK( GIVCOL+ST1 ), N,
|
|
$ IWORK( PERM+ST1 ), WORK( GIVNUM+ST1 ),
|
|
$ WORK( C+ST1 ), WORK( S+ST1 ), WORK( NWORK ),
|
|
$ IWORK( IWK ), INFO )
|
|
IF( INFO.NE.0 ) THEN
|
|
RETURN
|
|
END IF
|
|
END IF
|
|
ST = I + 1
|
|
END IF
|
|
60 CONTINUE
|
|
*
|
|
* Apply the singular values and treat the tiny ones as zero.
|
|
*
|
|
TOL = RCND*ABS( D( IDAMAX( N, D, 1 ) ) )
|
|
*
|
|
DO 70 I = 1, N
|
|
*
|
|
* Some of the elements in D can be negative because 1-by-1
|
|
* subproblems were not solved explicitly.
|
|
*
|
|
IF( ABS( D( I ) ).LE.TOL ) THEN
|
|
CALL DLASET( 'A', 1, NRHS, ZERO, ZERO, WORK( BX+I-1 ), N )
|
|
ELSE
|
|
RANK = RANK + 1
|
|
CALL DLASCL( 'G', 0, 0, D( I ), ONE, 1, NRHS,
|
|
$ WORK( BX+I-1 ), N, INFO )
|
|
END IF
|
|
D( I ) = ABS( D( I ) )
|
|
70 CONTINUE
|
|
*
|
|
* Now apply back the right singular vectors.
|
|
*
|
|
ICMPQ2 = 1
|
|
DO 80 I = 1, NSUB
|
|
ST = IWORK( I )
|
|
ST1 = ST - 1
|
|
NSIZE = IWORK( SIZEI+I-1 )
|
|
BXST = BX + ST1
|
|
IF( NSIZE.EQ.1 ) THEN
|
|
CALL DCOPY( NRHS, WORK( BXST ), N, B( ST, 1 ), LDB )
|
|
ELSE IF( NSIZE.LE.SMLSIZ ) THEN
|
|
CALL DGEMM( 'T', 'N', NSIZE, NRHS, NSIZE, ONE,
|
|
$ WORK( VT+ST1 ), N, WORK( BXST ), N, ZERO,
|
|
$ B( ST, 1 ), LDB )
|
|
ELSE
|
|
CALL DLALSA( ICMPQ2, SMLSIZ, NSIZE, NRHS, WORK( BXST ), N,
|
|
$ B( ST, 1 ), LDB, WORK( U+ST1 ), N,
|
|
$ WORK( VT+ST1 ), IWORK( K+ST1 ),
|
|
$ WORK( DIFL+ST1 ), WORK( DIFR+ST1 ),
|
|
$ WORK( Z+ST1 ), WORK( POLES+ST1 ),
|
|
$ IWORK( GIVPTR+ST1 ), IWORK( GIVCOL+ST1 ), N,
|
|
$ IWORK( PERM+ST1 ), WORK( GIVNUM+ST1 ),
|
|
$ WORK( C+ST1 ), WORK( S+ST1 ), WORK( NWORK ),
|
|
$ IWORK( IWK ), INFO )
|
|
IF( INFO.NE.0 ) THEN
|
|
RETURN
|
|
END IF
|
|
END IF
|
|
80 CONTINUE
|
|
*
|
|
* Unscale and sort the singular values.
|
|
*
|
|
CALL DLASCL( 'G', 0, 0, ONE, ORGNRM, N, 1, D, N, INFO )
|
|
CALL DLASRT( 'D', N, D, INFO )
|
|
CALL DLASCL( 'G', 0, 0, ORGNRM, ONE, N, NRHS, B, LDB, INFO )
|
|
*
|
|
RETURN
|
|
*
|
|
* End of DLALSD
|
|
*
|
|
END
|