forked from lijiext/lammps
94 lines
2.9 KiB
C++
94 lines
2.9 KiB
C++
#include "ParDiagonalMatrix.h"
|
|
|
|
using MPI_Wrappers::allgatherv;
|
|
|
|
namespace ATC_matrix {
|
|
|
|
// template<>
|
|
// void ParDiagonalMatrix<double>::MultAB(const Matrix<double> &B, DenseMatrix<double> &C) const
|
|
// {
|
|
// //SparseMatrix<T>::compress(*this);
|
|
// GCK(*this, B, this->nCols()!=B.nRows(), "ParDiagonalMatrix * Matrix");
|
|
|
|
// const INDEX nRows = this->nRows();
|
|
// const INDEX nCols = this->nCols();
|
|
|
|
// // Determine which rows will be handled on this processor
|
|
// int nProcs = MPI_Wrappers::size(_comm);
|
|
// int myRank = MPI_Wrappers::rank(_comm);
|
|
|
|
// INDEX startIndex = (myRank * nRows) / nProcs;
|
|
// INDEX endIndex = ((myRank + 1) * nRows) / nProcs;
|
|
|
|
// // Calculate the scaled rows associated with this processor
|
|
// for (INDEX i = startIndex; i < endIndex; i++) {
|
|
// double value = (*this)[i];
|
|
// for (INDEX j = 0; j < nCols; j++)
|
|
// C(i, j) = value * B(i, j);
|
|
// }
|
|
|
|
// // Collect results on all processors
|
|
|
|
// // consider sending only owned rows from each processor
|
|
// allsum(_comm, MPI_IN_PLACE, C.ptr(), C.size());
|
|
// }
|
|
|
|
template<>
|
|
void ParDiagonalMatrix<double>::MultAB(const Matrix<double> &B, DenseMatrix<double> &C) const
|
|
{
|
|
//SparseMatrix<T>::compress(*this);
|
|
GCK(*this, B, this->nCols()!=B.nRows(), "ParDiagonalMatrix * Matrix");
|
|
|
|
const INDEX nRows = this->nRows();
|
|
const INDEX nCols = this->nCols();
|
|
|
|
int nProcs = MPI_Wrappers::size(_comm);
|
|
int myRank = MPI_Wrappers::rank(_comm);
|
|
|
|
#ifdef COL_STORAGE // Column-major storage
|
|
int nMajor = nCols;
|
|
int nMinor = nRows;
|
|
#else // Row-major storage
|
|
int nMajor = nRows;
|
|
int nMinor = nCols;
|
|
#endif
|
|
|
|
int *majorCounts = new int[nProcs];
|
|
int *majorOffsets = new int[nProcs];
|
|
|
|
// Determine which rows/columns will be handled on this processor
|
|
for (int i = 0; i < nProcs; i++) {
|
|
majorOffsets[i] = (i * nMajor) / nProcs;
|
|
majorCounts[i] = (((i + 1) * nMajor) / nProcs) - majorOffsets[i];
|
|
}
|
|
|
|
INDEX myNMajor = majorCounts[myRank];
|
|
INDEX myMajorOffset = majorOffsets[myRank];
|
|
|
|
// Calculate the scaled values associated with this processor, in row chunks
|
|
|
|
#ifdef COL_STORAGE // Column-major storage
|
|
for (INDEX i = 0; i < nRows; i++) {
|
|
double value = (*this)[i];
|
|
for (INDEX j = myMajorOffset; j < myMajorOffset + myNMajor; j++)
|
|
C(i, j) = value * B(i, j);
|
|
}
|
|
#else // Row-major storage
|
|
for (INDEX i = myMajorOffset; i < myMajorOffset + myNMajor; i++) {
|
|
double value = (*this)[i];
|
|
for (INDEX j = 0; j < nCols; j++)
|
|
C(i, j) = value * B(i, j);
|
|
}
|
|
#endif
|
|
|
|
for (int i = 0; i < nProcs; i++) {
|
|
majorCounts[i] *= nMinor;
|
|
majorOffsets[i] *= nMinor;
|
|
}
|
|
// Collect results on all processors
|
|
allgatherv(_comm, C.ptr() + myMajorOffset * nMinor, myNMajor * nMinor,
|
|
C.ptr(), majorCounts, majorOffsets);
|
|
}
|
|
|
|
} // end namespace
|