forked from lijiext/lammps
243 lines
6.8 KiB
Fortran
243 lines
6.8 KiB
Fortran
*> \brief \b DTRTRI
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download DTRTRI + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dtrtri.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dtrtri.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dtrtri.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE DTRTRI( UPLO, DIAG, N, A, LDA, INFO )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* CHARACTER DIAG, UPLO
|
|
* INTEGER INFO, LDA, N
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* DOUBLE PRECISION A( LDA, * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> DTRTRI computes the inverse of a real upper or lower triangular
|
|
*> matrix A.
|
|
*>
|
|
*> This is the Level 3 BLAS version of the algorithm.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] UPLO
|
|
*> \verbatim
|
|
*> UPLO is CHARACTER*1
|
|
*> = 'U': A is upper triangular;
|
|
*> = 'L': A is lower triangular.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] DIAG
|
|
*> \verbatim
|
|
*> DIAG is CHARACTER*1
|
|
*> = 'N': A is non-unit triangular;
|
|
*> = 'U': A is unit triangular.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The order of the matrix A. N >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] A
|
|
*> \verbatim
|
|
*> A is DOUBLE PRECISION array, dimension (LDA,N)
|
|
*> On entry, the triangular matrix A. If UPLO = 'U', the
|
|
*> leading N-by-N upper triangular part of the array A contains
|
|
*> the upper triangular matrix, and the strictly lower
|
|
*> triangular part of A is not referenced. If UPLO = 'L', the
|
|
*> leading N-by-N lower triangular part of the array A contains
|
|
*> the lower triangular matrix, and the strictly upper
|
|
*> triangular part of A is not referenced. If DIAG = 'U', the
|
|
*> diagonal elements of A are also not referenced and are
|
|
*> assumed to be 1.
|
|
*> On exit, the (triangular) inverse of the original matrix, in
|
|
*> the same storage format.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDA
|
|
*> \verbatim
|
|
*> LDA is INTEGER
|
|
*> The leading dimension of the array A. LDA >= max(1,N).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INFO
|
|
*> \verbatim
|
|
*> INFO is INTEGER
|
|
*> = 0: successful exit
|
|
*> < 0: if INFO = -i, the i-th argument had an illegal value
|
|
*> > 0: if INFO = i, A(i,i) is exactly zero. The triangular
|
|
*> matrix is singular and its inverse can not be computed.
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \date November 2011
|
|
*
|
|
*> \ingroup doubleOTHERcomputational
|
|
*
|
|
* =====================================================================
|
|
SUBROUTINE DTRTRI( UPLO, DIAG, N, A, LDA, INFO )
|
|
*
|
|
* -- LAPACK computational routine (version 3.4.0) --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
* November 2011
|
|
*
|
|
* .. Scalar Arguments ..
|
|
CHARACTER DIAG, UPLO
|
|
INTEGER INFO, LDA, N
|
|
* ..
|
|
* .. Array Arguments ..
|
|
DOUBLE PRECISION A( LDA, * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
DOUBLE PRECISION ONE, ZERO
|
|
PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
LOGICAL NOUNIT, UPPER
|
|
INTEGER J, JB, NB, NN
|
|
* ..
|
|
* .. External Functions ..
|
|
LOGICAL LSAME
|
|
INTEGER ILAENV
|
|
EXTERNAL LSAME, ILAENV
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL DTRMM, DTRSM, DTRTI2, XERBLA
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC MAX, MIN
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Test the input parameters.
|
|
*
|
|
INFO = 0
|
|
UPPER = LSAME( UPLO, 'U' )
|
|
NOUNIT = LSAME( DIAG, 'N' )
|
|
IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
|
|
INFO = -1
|
|
ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
|
|
INFO = -2
|
|
ELSE IF( N.LT.0 ) THEN
|
|
INFO = -3
|
|
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
|
|
INFO = -5
|
|
END IF
|
|
IF( INFO.NE.0 ) THEN
|
|
CALL XERBLA( 'DTRTRI', -INFO )
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Quick return if possible
|
|
*
|
|
IF( N.EQ.0 )
|
|
$ RETURN
|
|
*
|
|
* Check for singularity if non-unit.
|
|
*
|
|
IF( NOUNIT ) THEN
|
|
DO 10 INFO = 1, N
|
|
IF( A( INFO, INFO ).EQ.ZERO )
|
|
$ RETURN
|
|
10 CONTINUE
|
|
INFO = 0
|
|
END IF
|
|
*
|
|
* Determine the block size for this environment.
|
|
*
|
|
NB = ILAENV( 1, 'DTRTRI', UPLO // DIAG, N, -1, -1, -1 )
|
|
IF( NB.LE.1 .OR. NB.GE.N ) THEN
|
|
*
|
|
* Use unblocked code
|
|
*
|
|
CALL DTRTI2( UPLO, DIAG, N, A, LDA, INFO )
|
|
ELSE
|
|
*
|
|
* Use blocked code
|
|
*
|
|
IF( UPPER ) THEN
|
|
*
|
|
* Compute inverse of upper triangular matrix
|
|
*
|
|
DO 20 J = 1, N, NB
|
|
JB = MIN( NB, N-J+1 )
|
|
*
|
|
* Compute rows 1:j-1 of current block column
|
|
*
|
|
CALL DTRMM( 'Left', 'Upper', 'No transpose', DIAG, J-1,
|
|
$ JB, ONE, A, LDA, A( 1, J ), LDA )
|
|
CALL DTRSM( 'Right', 'Upper', 'No transpose', DIAG, J-1,
|
|
$ JB, -ONE, A( J, J ), LDA, A( 1, J ), LDA )
|
|
*
|
|
* Compute inverse of current diagonal block
|
|
*
|
|
CALL DTRTI2( 'Upper', DIAG, JB, A( J, J ), LDA, INFO )
|
|
20 CONTINUE
|
|
ELSE
|
|
*
|
|
* Compute inverse of lower triangular matrix
|
|
*
|
|
NN = ( ( N-1 ) / NB )*NB + 1
|
|
DO 30 J = NN, 1, -NB
|
|
JB = MIN( NB, N-J+1 )
|
|
IF( J+JB.LE.N ) THEN
|
|
*
|
|
* Compute rows j+jb:n of current block column
|
|
*
|
|
CALL DTRMM( 'Left', 'Lower', 'No transpose', DIAG,
|
|
$ N-J-JB+1, JB, ONE, A( J+JB, J+JB ), LDA,
|
|
$ A( J+JB, J ), LDA )
|
|
CALL DTRSM( 'Right', 'Lower', 'No transpose', DIAG,
|
|
$ N-J-JB+1, JB, -ONE, A( J, J ), LDA,
|
|
$ A( J+JB, J ), LDA )
|
|
END IF
|
|
*
|
|
* Compute inverse of current diagonal block
|
|
*
|
|
CALL DTRTI2( 'Lower', DIAG, JB, A( J, J ), LDA, INFO )
|
|
30 CONTINUE
|
|
END IF
|
|
END IF
|
|
*
|
|
RETURN
|
|
*
|
|
* End of DTRTRI
|
|
*
|
|
END
|