forked from lijiext/lammps
184 lines
5.0 KiB
Fortran
184 lines
5.0 KiB
Fortran
*> \brief \b DLAS2 computes singular values of a 2-by-2 triangular matrix.
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download DLAS2 + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlas2.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlas2.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlas2.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE DLAS2( F, G, H, SSMIN, SSMAX )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* DOUBLE PRECISION F, G, H, SSMAX, SSMIN
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> DLAS2 computes the singular values of the 2-by-2 matrix
|
|
*> [ F G ]
|
|
*> [ 0 H ].
|
|
*> On return, SSMIN is the smaller singular value and SSMAX is the
|
|
*> larger singular value.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] F
|
|
*> \verbatim
|
|
*> F is DOUBLE PRECISION
|
|
*> The (1,1) element of the 2-by-2 matrix.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] G
|
|
*> \verbatim
|
|
*> G is DOUBLE PRECISION
|
|
*> The (1,2) element of the 2-by-2 matrix.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] H
|
|
*> \verbatim
|
|
*> H is DOUBLE PRECISION
|
|
*> The (2,2) element of the 2-by-2 matrix.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] SSMIN
|
|
*> \verbatim
|
|
*> SSMIN is DOUBLE PRECISION
|
|
*> The smaller singular value.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] SSMAX
|
|
*> \verbatim
|
|
*> SSMAX is DOUBLE PRECISION
|
|
*> The larger singular value.
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \date September 2012
|
|
*
|
|
*> \ingroup auxOTHERauxiliary
|
|
*
|
|
*> \par Further Details:
|
|
* =====================
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> Barring over/underflow, all output quantities are correct to within
|
|
*> a few units in the last place (ulps), even in the absence of a guard
|
|
*> digit in addition/subtraction.
|
|
*>
|
|
*> In IEEE arithmetic, the code works correctly if one matrix element is
|
|
*> infinite.
|
|
*>
|
|
*> Overflow will not occur unless the largest singular value itself
|
|
*> overflows, or is within a few ulps of overflow. (On machines with
|
|
*> partial overflow, like the Cray, overflow may occur if the largest
|
|
*> singular value is within a factor of 2 of overflow.)
|
|
*>
|
|
*> Underflow is harmless if underflow is gradual. Otherwise, results
|
|
*> may correspond to a matrix modified by perturbations of size near
|
|
*> the underflow threshold.
|
|
*> \endverbatim
|
|
*>
|
|
* =====================================================================
|
|
SUBROUTINE DLAS2( F, G, H, SSMIN, SSMAX )
|
|
*
|
|
* -- LAPACK auxiliary routine (version 3.4.2) --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
* September 2012
|
|
*
|
|
* .. Scalar Arguments ..
|
|
DOUBLE PRECISION F, G, H, SSMAX, SSMIN
|
|
* ..
|
|
*
|
|
* ====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
DOUBLE PRECISION ZERO
|
|
PARAMETER ( ZERO = 0.0D0 )
|
|
DOUBLE PRECISION ONE
|
|
PARAMETER ( ONE = 1.0D0 )
|
|
DOUBLE PRECISION TWO
|
|
PARAMETER ( TWO = 2.0D0 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
DOUBLE PRECISION AS, AT, AU, C, FA, FHMN, FHMX, GA, HA
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC ABS, MAX, MIN, SQRT
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
FA = ABS( F )
|
|
GA = ABS( G )
|
|
HA = ABS( H )
|
|
FHMN = MIN( FA, HA )
|
|
FHMX = MAX( FA, HA )
|
|
IF( FHMN.EQ.ZERO ) THEN
|
|
SSMIN = ZERO
|
|
IF( FHMX.EQ.ZERO ) THEN
|
|
SSMAX = GA
|
|
ELSE
|
|
SSMAX = MAX( FHMX, GA )*SQRT( ONE+
|
|
$ ( MIN( FHMX, GA ) / MAX( FHMX, GA ) )**2 )
|
|
END IF
|
|
ELSE
|
|
IF( GA.LT.FHMX ) THEN
|
|
AS = ONE + FHMN / FHMX
|
|
AT = ( FHMX-FHMN ) / FHMX
|
|
AU = ( GA / FHMX )**2
|
|
C = TWO / ( SQRT( AS*AS+AU )+SQRT( AT*AT+AU ) )
|
|
SSMIN = FHMN*C
|
|
SSMAX = FHMX / C
|
|
ELSE
|
|
AU = FHMX / GA
|
|
IF( AU.EQ.ZERO ) THEN
|
|
*
|
|
* Avoid possible harmful underflow if exponent range
|
|
* asymmetric (true SSMIN may not underflow even if
|
|
* AU underflows)
|
|
*
|
|
SSMIN = ( FHMN*FHMX ) / GA
|
|
SSMAX = GA
|
|
ELSE
|
|
AS = ONE + FHMN / FHMX
|
|
AT = ( FHMX-FHMN ) / FHMX
|
|
C = ONE / ( SQRT( ONE+( AS*AU )**2 )+
|
|
$ SQRT( ONE+( AT*AU )**2 ) )
|
|
SSMIN = ( FHMN*C )*AU
|
|
SSMIN = SSMIN + SSMIN
|
|
SSMAX = GA / ( C+C )
|
|
END IF
|
|
END IF
|
|
END IF
|
|
RETURN
|
|
*
|
|
* End of DLAS2
|
|
*
|
|
END
|