lammps/lib/linalg/dlaed4.f

918 lines
26 KiB
Fortran

*> \brief \b DLAED4 used by sstedc. Finds a single root of the secular equation.
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download DLAED4 + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaed4.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaed4.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaed4.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE DLAED4( N, I, D, Z, DELTA, RHO, DLAM, INFO )
*
* .. Scalar Arguments ..
* INTEGER I, INFO, N
* DOUBLE PRECISION DLAM, RHO
* ..
* .. Array Arguments ..
* DOUBLE PRECISION D( * ), DELTA( * ), Z( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> This subroutine computes the I-th updated eigenvalue of a symmetric
*> rank-one modification to a diagonal matrix whose elements are
*> given in the array d, and that
*>
*> D(i) < D(j) for i < j
*>
*> and that RHO > 0. This is arranged by the calling routine, and is
*> no loss in generality. The rank-one modified system is thus
*>
*> diag( D ) + RHO * Z * Z_transpose.
*>
*> where we assume the Euclidean norm of Z is 1.
*>
*> The method consists of approximating the rational functions in the
*> secular equation by simpler interpolating rational functions.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The length of all arrays.
*> \endverbatim
*>
*> \param[in] I
*> \verbatim
*> I is INTEGER
*> The index of the eigenvalue to be computed. 1 <= I <= N.
*> \endverbatim
*>
*> \param[in] D
*> \verbatim
*> D is DOUBLE PRECISION array, dimension (N)
*> The original eigenvalues. It is assumed that they are in
*> order, D(I) < D(J) for I < J.
*> \endverbatim
*>
*> \param[in] Z
*> \verbatim
*> Z is DOUBLE PRECISION array, dimension (N)
*> The components of the updating vector.
*> \endverbatim
*>
*> \param[out] DELTA
*> \verbatim
*> DELTA is DOUBLE PRECISION array, dimension (N)
*> If N .GT. 2, DELTA contains (D(j) - lambda_I) in its j-th
*> component. If N = 1, then DELTA(1) = 1. If N = 2, see DLAED5
*> for detail. The vector DELTA contains the information necessary
*> to construct the eigenvectors by DLAED3 and DLAED9.
*> \endverbatim
*>
*> \param[in] RHO
*> \verbatim
*> RHO is DOUBLE PRECISION
*> The scalar in the symmetric updating formula.
*> \endverbatim
*>
*> \param[out] DLAM
*> \verbatim
*> DLAM is DOUBLE PRECISION
*> The computed lambda_I, the I-th updated eigenvalue.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> > 0: if INFO = 1, the updating process failed.
*> \endverbatim
*
*> \par Internal Parameters:
* =========================
*>
*> \verbatim
*> Logical variable ORGATI (origin-at-i?) is used for distinguishing
*> whether D(i) or D(i+1) is treated as the origin.
*>
*> ORGATI = .true. origin at i
*> ORGATI = .false. origin at i+1
*>
*> Logical variable SWTCH3 (switch-for-3-poles?) is for noting
*> if we are working with THREE poles!
*>
*> MAXIT is the maximum number of iterations allowed for each
*> eigenvalue.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date September 2012
*
*> \ingroup auxOTHERcomputational
*
*> \par Contributors:
* ==================
*>
*> Ren-Cang Li, Computer Science Division, University of California
*> at Berkeley, USA
*>
* =====================================================================
SUBROUTINE DLAED4( N, I, D, Z, DELTA, RHO, DLAM, INFO )
*
* -- LAPACK computational routine (version 3.4.2) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* September 2012
*
* .. Scalar Arguments ..
INTEGER I, INFO, N
DOUBLE PRECISION DLAM, RHO
* ..
* .. Array Arguments ..
DOUBLE PRECISION D( * ), DELTA( * ), Z( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
INTEGER MAXIT
PARAMETER ( MAXIT = 30 )
DOUBLE PRECISION ZERO, ONE, TWO, THREE, FOUR, EIGHT, TEN
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0,
$ THREE = 3.0D0, FOUR = 4.0D0, EIGHT = 8.0D0,
$ TEN = 10.0D0 )
* ..
* .. Local Scalars ..
LOGICAL ORGATI, SWTCH, SWTCH3
INTEGER II, IIM1, IIP1, IP1, ITER, J, NITER
DOUBLE PRECISION A, B, C, DEL, DLTLB, DLTUB, DPHI, DPSI, DW,
$ EPS, ERRETM, ETA, MIDPT, PHI, PREW, PSI,
$ RHOINV, TAU, TEMP, TEMP1, W
* ..
* .. Local Arrays ..
DOUBLE PRECISION ZZ( 3 )
* ..
* .. External Functions ..
DOUBLE PRECISION DLAMCH
EXTERNAL DLAMCH
* ..
* .. External Subroutines ..
EXTERNAL DLAED5, DLAED6
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX, MIN, SQRT
* ..
* .. Executable Statements ..
*
* Since this routine is called in an inner loop, we do no argument
* checking.
*
* Quick return for N=1 and 2.
*
INFO = 0
IF( N.EQ.1 ) THEN
*
* Presumably, I=1 upon entry
*
DLAM = D( 1 ) + RHO*Z( 1 )*Z( 1 )
DELTA( 1 ) = ONE
RETURN
END IF
IF( N.EQ.2 ) THEN
CALL DLAED5( I, D, Z, DELTA, RHO, DLAM )
RETURN
END IF
*
* Compute machine epsilon
*
EPS = DLAMCH( 'Epsilon' )
RHOINV = ONE / RHO
*
* The case I = N
*
IF( I.EQ.N ) THEN
*
* Initialize some basic variables
*
II = N - 1
NITER = 1
*
* Calculate initial guess
*
MIDPT = RHO / TWO
*
* If ||Z||_2 is not one, then TEMP should be set to
* RHO * ||Z||_2^2 / TWO
*
DO 10 J = 1, N
DELTA( J ) = ( D( J )-D( I ) ) - MIDPT
10 CONTINUE
*
PSI = ZERO
DO 20 J = 1, N - 2
PSI = PSI + Z( J )*Z( J ) / DELTA( J )
20 CONTINUE
*
C = RHOINV + PSI
W = C + Z( II )*Z( II ) / DELTA( II ) +
$ Z( N )*Z( N ) / DELTA( N )
*
IF( W.LE.ZERO ) THEN
TEMP = Z( N-1 )*Z( N-1 ) / ( D( N )-D( N-1 )+RHO ) +
$ Z( N )*Z( N ) / RHO
IF( C.LE.TEMP ) THEN
TAU = RHO
ELSE
DEL = D( N ) - D( N-1 )
A = -C*DEL + Z( N-1 )*Z( N-1 ) + Z( N )*Z( N )
B = Z( N )*Z( N )*DEL
IF( A.LT.ZERO ) THEN
TAU = TWO*B / ( SQRT( A*A+FOUR*B*C )-A )
ELSE
TAU = ( A+SQRT( A*A+FOUR*B*C ) ) / ( TWO*C )
END IF
END IF
*
* It can be proved that
* D(N)+RHO/2 <= LAMBDA(N) < D(N)+TAU <= D(N)+RHO
*
DLTLB = MIDPT
DLTUB = RHO
ELSE
DEL = D( N ) - D( N-1 )
A = -C*DEL + Z( N-1 )*Z( N-1 ) + Z( N )*Z( N )
B = Z( N )*Z( N )*DEL
IF( A.LT.ZERO ) THEN
TAU = TWO*B / ( SQRT( A*A+FOUR*B*C )-A )
ELSE
TAU = ( A+SQRT( A*A+FOUR*B*C ) ) / ( TWO*C )
END IF
*
* It can be proved that
* D(N) < D(N)+TAU < LAMBDA(N) < D(N)+RHO/2
*
DLTLB = ZERO
DLTUB = MIDPT
END IF
*
DO 30 J = 1, N
DELTA( J ) = ( D( J )-D( I ) ) - TAU
30 CONTINUE
*
* Evaluate PSI and the derivative DPSI
*
DPSI = ZERO
PSI = ZERO
ERRETM = ZERO
DO 40 J = 1, II
TEMP = Z( J ) / DELTA( J )
PSI = PSI + Z( J )*TEMP
DPSI = DPSI + TEMP*TEMP
ERRETM = ERRETM + PSI
40 CONTINUE
ERRETM = ABS( ERRETM )
*
* Evaluate PHI and the derivative DPHI
*
TEMP = Z( N ) / DELTA( N )
PHI = Z( N )*TEMP
DPHI = TEMP*TEMP
ERRETM = EIGHT*( -PHI-PSI ) + ERRETM - PHI + RHOINV +
$ ABS( TAU )*( DPSI+DPHI )
*
W = RHOINV + PHI + PSI
*
* Test for convergence
*
IF( ABS( W ).LE.EPS*ERRETM ) THEN
DLAM = D( I ) + TAU
GO TO 250
END IF
*
IF( W.LE.ZERO ) THEN
DLTLB = MAX( DLTLB, TAU )
ELSE
DLTUB = MIN( DLTUB, TAU )
END IF
*
* Calculate the new step
*
NITER = NITER + 1
C = W - DELTA( N-1 )*DPSI - DELTA( N )*DPHI
A = ( DELTA( N-1 )+DELTA( N ) )*W -
$ DELTA( N-1 )*DELTA( N )*( DPSI+DPHI )
B = DELTA( N-1 )*DELTA( N )*W
IF( C.LT.ZERO )
$ C = ABS( C )
IF( C.EQ.ZERO ) THEN
* ETA = B/A
* ETA = RHO - TAU
ETA = DLTUB - TAU
ELSE IF( A.GE.ZERO ) THEN
ETA = ( A+SQRT( ABS( A*A-FOUR*B*C ) ) ) / ( TWO*C )
ELSE
ETA = TWO*B / ( A-SQRT( ABS( A*A-FOUR*B*C ) ) )
END IF
*
* Note, eta should be positive if w is negative, and
* eta should be negative otherwise. However,
* if for some reason caused by roundoff, eta*w > 0,
* we simply use one Newton step instead. This way
* will guarantee eta*w < 0.
*
IF( W*ETA.GT.ZERO )
$ ETA = -W / ( DPSI+DPHI )
TEMP = TAU + ETA
IF( TEMP.GT.DLTUB .OR. TEMP.LT.DLTLB ) THEN
IF( W.LT.ZERO ) THEN
ETA = ( DLTUB-TAU ) / TWO
ELSE
ETA = ( DLTLB-TAU ) / TWO
END IF
END IF
DO 50 J = 1, N
DELTA( J ) = DELTA( J ) - ETA
50 CONTINUE
*
TAU = TAU + ETA
*
* Evaluate PSI and the derivative DPSI
*
DPSI = ZERO
PSI = ZERO
ERRETM = ZERO
DO 60 J = 1, II
TEMP = Z( J ) / DELTA( J )
PSI = PSI + Z( J )*TEMP
DPSI = DPSI + TEMP*TEMP
ERRETM = ERRETM + PSI
60 CONTINUE
ERRETM = ABS( ERRETM )
*
* Evaluate PHI and the derivative DPHI
*
TEMP = Z( N ) / DELTA( N )
PHI = Z( N )*TEMP
DPHI = TEMP*TEMP
ERRETM = EIGHT*( -PHI-PSI ) + ERRETM - PHI + RHOINV +
$ ABS( TAU )*( DPSI+DPHI )
*
W = RHOINV + PHI + PSI
*
* Main loop to update the values of the array DELTA
*
ITER = NITER + 1
*
DO 90 NITER = ITER, MAXIT
*
* Test for convergence
*
IF( ABS( W ).LE.EPS*ERRETM ) THEN
DLAM = D( I ) + TAU
GO TO 250
END IF
*
IF( W.LE.ZERO ) THEN
DLTLB = MAX( DLTLB, TAU )
ELSE
DLTUB = MIN( DLTUB, TAU )
END IF
*
* Calculate the new step
*
C = W - DELTA( N-1 )*DPSI - DELTA( N )*DPHI
A = ( DELTA( N-1 )+DELTA( N ) )*W -
$ DELTA( N-1 )*DELTA( N )*( DPSI+DPHI )
B = DELTA( N-1 )*DELTA( N )*W
IF( A.GE.ZERO ) THEN
ETA = ( A+SQRT( ABS( A*A-FOUR*B*C ) ) ) / ( TWO*C )
ELSE
ETA = TWO*B / ( A-SQRT( ABS( A*A-FOUR*B*C ) ) )
END IF
*
* Note, eta should be positive if w is negative, and
* eta should be negative otherwise. However,
* if for some reason caused by roundoff, eta*w > 0,
* we simply use one Newton step instead. This way
* will guarantee eta*w < 0.
*
IF( W*ETA.GT.ZERO )
$ ETA = -W / ( DPSI+DPHI )
TEMP = TAU + ETA
IF( TEMP.GT.DLTUB .OR. TEMP.LT.DLTLB ) THEN
IF( W.LT.ZERO ) THEN
ETA = ( DLTUB-TAU ) / TWO
ELSE
ETA = ( DLTLB-TAU ) / TWO
END IF
END IF
DO 70 J = 1, N
DELTA( J ) = DELTA( J ) - ETA
70 CONTINUE
*
TAU = TAU + ETA
*
* Evaluate PSI and the derivative DPSI
*
DPSI = ZERO
PSI = ZERO
ERRETM = ZERO
DO 80 J = 1, II
TEMP = Z( J ) / DELTA( J )
PSI = PSI + Z( J )*TEMP
DPSI = DPSI + TEMP*TEMP
ERRETM = ERRETM + PSI
80 CONTINUE
ERRETM = ABS( ERRETM )
*
* Evaluate PHI and the derivative DPHI
*
TEMP = Z( N ) / DELTA( N )
PHI = Z( N )*TEMP
DPHI = TEMP*TEMP
ERRETM = EIGHT*( -PHI-PSI ) + ERRETM - PHI + RHOINV +
$ ABS( TAU )*( DPSI+DPHI )
*
W = RHOINV + PHI + PSI
90 CONTINUE
*
* Return with INFO = 1, NITER = MAXIT and not converged
*
INFO = 1
DLAM = D( I ) + TAU
GO TO 250
*
* End for the case I = N
*
ELSE
*
* The case for I < N
*
NITER = 1
IP1 = I + 1
*
* Calculate initial guess
*
DEL = D( IP1 ) - D( I )
MIDPT = DEL / TWO
DO 100 J = 1, N
DELTA( J ) = ( D( J )-D( I ) ) - MIDPT
100 CONTINUE
*
PSI = ZERO
DO 110 J = 1, I - 1
PSI = PSI + Z( J )*Z( J ) / DELTA( J )
110 CONTINUE
*
PHI = ZERO
DO 120 J = N, I + 2, -1
PHI = PHI + Z( J )*Z( J ) / DELTA( J )
120 CONTINUE
C = RHOINV + PSI + PHI
W = C + Z( I )*Z( I ) / DELTA( I ) +
$ Z( IP1 )*Z( IP1 ) / DELTA( IP1 )
*
IF( W.GT.ZERO ) THEN
*
* d(i)< the ith eigenvalue < (d(i)+d(i+1))/2
*
* We choose d(i) as origin.
*
ORGATI = .TRUE.
A = C*DEL + Z( I )*Z( I ) + Z( IP1 )*Z( IP1 )
B = Z( I )*Z( I )*DEL
IF( A.GT.ZERO ) THEN
TAU = TWO*B / ( A+SQRT( ABS( A*A-FOUR*B*C ) ) )
ELSE
TAU = ( A-SQRT( ABS( A*A-FOUR*B*C ) ) ) / ( TWO*C )
END IF
DLTLB = ZERO
DLTUB = MIDPT
ELSE
*
* (d(i)+d(i+1))/2 <= the ith eigenvalue < d(i+1)
*
* We choose d(i+1) as origin.
*
ORGATI = .FALSE.
A = C*DEL - Z( I )*Z( I ) - Z( IP1 )*Z( IP1 )
B = Z( IP1 )*Z( IP1 )*DEL
IF( A.LT.ZERO ) THEN
TAU = TWO*B / ( A-SQRT( ABS( A*A+FOUR*B*C ) ) )
ELSE
TAU = -( A+SQRT( ABS( A*A+FOUR*B*C ) ) ) / ( TWO*C )
END IF
DLTLB = -MIDPT
DLTUB = ZERO
END IF
*
IF( ORGATI ) THEN
DO 130 J = 1, N
DELTA( J ) = ( D( J )-D( I ) ) - TAU
130 CONTINUE
ELSE
DO 140 J = 1, N
DELTA( J ) = ( D( J )-D( IP1 ) ) - TAU
140 CONTINUE
END IF
IF( ORGATI ) THEN
II = I
ELSE
II = I + 1
END IF
IIM1 = II - 1
IIP1 = II + 1
*
* Evaluate PSI and the derivative DPSI
*
DPSI = ZERO
PSI = ZERO
ERRETM = ZERO
DO 150 J = 1, IIM1
TEMP = Z( J ) / DELTA( J )
PSI = PSI + Z( J )*TEMP
DPSI = DPSI + TEMP*TEMP
ERRETM = ERRETM + PSI
150 CONTINUE
ERRETM = ABS( ERRETM )
*
* Evaluate PHI and the derivative DPHI
*
DPHI = ZERO
PHI = ZERO
DO 160 J = N, IIP1, -1
TEMP = Z( J ) / DELTA( J )
PHI = PHI + Z( J )*TEMP
DPHI = DPHI + TEMP*TEMP
ERRETM = ERRETM + PHI
160 CONTINUE
*
W = RHOINV + PHI + PSI
*
* W is the value of the secular function with
* its ii-th element removed.
*
SWTCH3 = .FALSE.
IF( ORGATI ) THEN
IF( W.LT.ZERO )
$ SWTCH3 = .TRUE.
ELSE
IF( W.GT.ZERO )
$ SWTCH3 = .TRUE.
END IF
IF( II.EQ.1 .OR. II.EQ.N )
$ SWTCH3 = .FALSE.
*
TEMP = Z( II ) / DELTA( II )
DW = DPSI + DPHI + TEMP*TEMP
TEMP = Z( II )*TEMP
W = W + TEMP
ERRETM = EIGHT*( PHI-PSI ) + ERRETM + TWO*RHOINV +
$ THREE*ABS( TEMP ) + ABS( TAU )*DW
*
* Test for convergence
*
IF( ABS( W ).LE.EPS*ERRETM ) THEN
IF( ORGATI ) THEN
DLAM = D( I ) + TAU
ELSE
DLAM = D( IP1 ) + TAU
END IF
GO TO 250
END IF
*
IF( W.LE.ZERO ) THEN
DLTLB = MAX( DLTLB, TAU )
ELSE
DLTUB = MIN( DLTUB, TAU )
END IF
*
* Calculate the new step
*
NITER = NITER + 1
IF( .NOT.SWTCH3 ) THEN
IF( ORGATI ) THEN
C = W - DELTA( IP1 )*DW - ( D( I )-D( IP1 ) )*
$ ( Z( I ) / DELTA( I ) )**2
ELSE
C = W - DELTA( I )*DW - ( D( IP1 )-D( I ) )*
$ ( Z( IP1 ) / DELTA( IP1 ) )**2
END IF
A = ( DELTA( I )+DELTA( IP1 ) )*W -
$ DELTA( I )*DELTA( IP1 )*DW
B = DELTA( I )*DELTA( IP1 )*W
IF( C.EQ.ZERO ) THEN
IF( A.EQ.ZERO ) THEN
IF( ORGATI ) THEN
A = Z( I )*Z( I ) + DELTA( IP1 )*DELTA( IP1 )*
$ ( DPSI+DPHI )
ELSE
A = Z( IP1 )*Z( IP1 ) + DELTA( I )*DELTA( I )*
$ ( DPSI+DPHI )
END IF
END IF
ETA = B / A
ELSE IF( A.LE.ZERO ) THEN
ETA = ( A-SQRT( ABS( A*A-FOUR*B*C ) ) ) / ( TWO*C )
ELSE
ETA = TWO*B / ( A+SQRT( ABS( A*A-FOUR*B*C ) ) )
END IF
ELSE
*
* Interpolation using THREE most relevant poles
*
TEMP = RHOINV + PSI + PHI
IF( ORGATI ) THEN
TEMP1 = Z( IIM1 ) / DELTA( IIM1 )
TEMP1 = TEMP1*TEMP1
C = TEMP - DELTA( IIP1 )*( DPSI+DPHI ) -
$ ( D( IIM1 )-D( IIP1 ) )*TEMP1
ZZ( 1 ) = Z( IIM1 )*Z( IIM1 )
ZZ( 3 ) = DELTA( IIP1 )*DELTA( IIP1 )*
$ ( ( DPSI-TEMP1 )+DPHI )
ELSE
TEMP1 = Z( IIP1 ) / DELTA( IIP1 )
TEMP1 = TEMP1*TEMP1
C = TEMP - DELTA( IIM1 )*( DPSI+DPHI ) -
$ ( D( IIP1 )-D( IIM1 ) )*TEMP1
ZZ( 1 ) = DELTA( IIM1 )*DELTA( IIM1 )*
$ ( DPSI+( DPHI-TEMP1 ) )
ZZ( 3 ) = Z( IIP1 )*Z( IIP1 )
END IF
ZZ( 2 ) = Z( II )*Z( II )
CALL DLAED6( NITER, ORGATI, C, DELTA( IIM1 ), ZZ, W, ETA,
$ INFO )
IF( INFO.NE.0 )
$ GO TO 250
END IF
*
* Note, eta should be positive if w is negative, and
* eta should be negative otherwise. However,
* if for some reason caused by roundoff, eta*w > 0,
* we simply use one Newton step instead. This way
* will guarantee eta*w < 0.
*
IF( W*ETA.GE.ZERO )
$ ETA = -W / DW
TEMP = TAU + ETA
IF( TEMP.GT.DLTUB .OR. TEMP.LT.DLTLB ) THEN
IF( W.LT.ZERO ) THEN
ETA = ( DLTUB-TAU ) / TWO
ELSE
ETA = ( DLTLB-TAU ) / TWO
END IF
END IF
*
PREW = W
*
DO 180 J = 1, N
DELTA( J ) = DELTA( J ) - ETA
180 CONTINUE
*
* Evaluate PSI and the derivative DPSI
*
DPSI = ZERO
PSI = ZERO
ERRETM = ZERO
DO 190 J = 1, IIM1
TEMP = Z( J ) / DELTA( J )
PSI = PSI + Z( J )*TEMP
DPSI = DPSI + TEMP*TEMP
ERRETM = ERRETM + PSI
190 CONTINUE
ERRETM = ABS( ERRETM )
*
* Evaluate PHI and the derivative DPHI
*
DPHI = ZERO
PHI = ZERO
DO 200 J = N, IIP1, -1
TEMP = Z( J ) / DELTA( J )
PHI = PHI + Z( J )*TEMP
DPHI = DPHI + TEMP*TEMP
ERRETM = ERRETM + PHI
200 CONTINUE
*
TEMP = Z( II ) / DELTA( II )
DW = DPSI + DPHI + TEMP*TEMP
TEMP = Z( II )*TEMP
W = RHOINV + PHI + PSI + TEMP
ERRETM = EIGHT*( PHI-PSI ) + ERRETM + TWO*RHOINV +
$ THREE*ABS( TEMP ) + ABS( TAU+ETA )*DW
*
SWTCH = .FALSE.
IF( ORGATI ) THEN
IF( -W.GT.ABS( PREW ) / TEN )
$ SWTCH = .TRUE.
ELSE
IF( W.GT.ABS( PREW ) / TEN )
$ SWTCH = .TRUE.
END IF
*
TAU = TAU + ETA
*
* Main loop to update the values of the array DELTA
*
ITER = NITER + 1
*
DO 240 NITER = ITER, MAXIT
*
* Test for convergence
*
IF( ABS( W ).LE.EPS*ERRETM ) THEN
IF( ORGATI ) THEN
DLAM = D( I ) + TAU
ELSE
DLAM = D( IP1 ) + TAU
END IF
GO TO 250
END IF
*
IF( W.LE.ZERO ) THEN
DLTLB = MAX( DLTLB, TAU )
ELSE
DLTUB = MIN( DLTUB, TAU )
END IF
*
* Calculate the new step
*
IF( .NOT.SWTCH3 ) THEN
IF( .NOT.SWTCH ) THEN
IF( ORGATI ) THEN
C = W - DELTA( IP1 )*DW -
$ ( D( I )-D( IP1 ) )*( Z( I ) / DELTA( I ) )**2
ELSE
C = W - DELTA( I )*DW - ( D( IP1 )-D( I ) )*
$ ( Z( IP1 ) / DELTA( IP1 ) )**2
END IF
ELSE
TEMP = Z( II ) / DELTA( II )
IF( ORGATI ) THEN
DPSI = DPSI + TEMP*TEMP
ELSE
DPHI = DPHI + TEMP*TEMP
END IF
C = W - DELTA( I )*DPSI - DELTA( IP1 )*DPHI
END IF
A = ( DELTA( I )+DELTA( IP1 ) )*W -
$ DELTA( I )*DELTA( IP1 )*DW
B = DELTA( I )*DELTA( IP1 )*W
IF( C.EQ.ZERO ) THEN
IF( A.EQ.ZERO ) THEN
IF( .NOT.SWTCH ) THEN
IF( ORGATI ) THEN
A = Z( I )*Z( I ) + DELTA( IP1 )*
$ DELTA( IP1 )*( DPSI+DPHI )
ELSE
A = Z( IP1 )*Z( IP1 ) +
$ DELTA( I )*DELTA( I )*( DPSI+DPHI )
END IF
ELSE
A = DELTA( I )*DELTA( I )*DPSI +
$ DELTA( IP1 )*DELTA( IP1 )*DPHI
END IF
END IF
ETA = B / A
ELSE IF( A.LE.ZERO ) THEN
ETA = ( A-SQRT( ABS( A*A-FOUR*B*C ) ) ) / ( TWO*C )
ELSE
ETA = TWO*B / ( A+SQRT( ABS( A*A-FOUR*B*C ) ) )
END IF
ELSE
*
* Interpolation using THREE most relevant poles
*
TEMP = RHOINV + PSI + PHI
IF( SWTCH ) THEN
C = TEMP - DELTA( IIM1 )*DPSI - DELTA( IIP1 )*DPHI
ZZ( 1 ) = DELTA( IIM1 )*DELTA( IIM1 )*DPSI
ZZ( 3 ) = DELTA( IIP1 )*DELTA( IIP1 )*DPHI
ELSE
IF( ORGATI ) THEN
TEMP1 = Z( IIM1 ) / DELTA( IIM1 )
TEMP1 = TEMP1*TEMP1
C = TEMP - DELTA( IIP1 )*( DPSI+DPHI ) -
$ ( D( IIM1 )-D( IIP1 ) )*TEMP1
ZZ( 1 ) = Z( IIM1 )*Z( IIM1 )
ZZ( 3 ) = DELTA( IIP1 )*DELTA( IIP1 )*
$ ( ( DPSI-TEMP1 )+DPHI )
ELSE
TEMP1 = Z( IIP1 ) / DELTA( IIP1 )
TEMP1 = TEMP1*TEMP1
C = TEMP - DELTA( IIM1 )*( DPSI+DPHI ) -
$ ( D( IIP1 )-D( IIM1 ) )*TEMP1
ZZ( 1 ) = DELTA( IIM1 )*DELTA( IIM1 )*
$ ( DPSI+( DPHI-TEMP1 ) )
ZZ( 3 ) = Z( IIP1 )*Z( IIP1 )
END IF
END IF
CALL DLAED6( NITER, ORGATI, C, DELTA( IIM1 ), ZZ, W, ETA,
$ INFO )
IF( INFO.NE.0 )
$ GO TO 250
END IF
*
* Note, eta should be positive if w is negative, and
* eta should be negative otherwise. However,
* if for some reason caused by roundoff, eta*w > 0,
* we simply use one Newton step instead. This way
* will guarantee eta*w < 0.
*
IF( W*ETA.GE.ZERO )
$ ETA = -W / DW
TEMP = TAU + ETA
IF( TEMP.GT.DLTUB .OR. TEMP.LT.DLTLB ) THEN
IF( W.LT.ZERO ) THEN
ETA = ( DLTUB-TAU ) / TWO
ELSE
ETA = ( DLTLB-TAU ) / TWO
END IF
END IF
*
DO 210 J = 1, N
DELTA( J ) = DELTA( J ) - ETA
210 CONTINUE
*
TAU = TAU + ETA
PREW = W
*
* Evaluate PSI and the derivative DPSI
*
DPSI = ZERO
PSI = ZERO
ERRETM = ZERO
DO 220 J = 1, IIM1
TEMP = Z( J ) / DELTA( J )
PSI = PSI + Z( J )*TEMP
DPSI = DPSI + TEMP*TEMP
ERRETM = ERRETM + PSI
220 CONTINUE
ERRETM = ABS( ERRETM )
*
* Evaluate PHI and the derivative DPHI
*
DPHI = ZERO
PHI = ZERO
DO 230 J = N, IIP1, -1
TEMP = Z( J ) / DELTA( J )
PHI = PHI + Z( J )*TEMP
DPHI = DPHI + TEMP*TEMP
ERRETM = ERRETM + PHI
230 CONTINUE
*
TEMP = Z( II ) / DELTA( II )
DW = DPSI + DPHI + TEMP*TEMP
TEMP = Z( II )*TEMP
W = RHOINV + PHI + PSI + TEMP
ERRETM = EIGHT*( PHI-PSI ) + ERRETM + TWO*RHOINV +
$ THREE*ABS( TEMP ) + ABS( TAU )*DW
IF( W*PREW.GT.ZERO .AND. ABS( W ).GT.ABS( PREW ) / TEN )
$ SWTCH = .NOT.SWTCH
*
240 CONTINUE
*
* Return with INFO = 1, NITER = MAXIT and not converged
*
INFO = 1
IF( ORGATI ) THEN
DLAM = D( I ) + TAU
ELSE
DLAM = D( IP1 ) + TAU
END IF
*
END IF
*
250 CONTINUE
*
RETURN
*
* End of DLAED4
*
END