forked from lijiext/lammps
368 lines
11 KiB
Fortran
368 lines
11 KiB
Fortran
*> \brief \b DSYMM
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE DSYMM(SIDE,UPLO,M,N,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* DOUBLE PRECISION ALPHA,BETA
|
|
* INTEGER LDA,LDB,LDC,M,N
|
|
* CHARACTER SIDE,UPLO
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* DOUBLE PRECISION A(LDA,*),B(LDB,*),C(LDC,*)
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> DSYMM performs one of the matrix-matrix operations
|
|
*>
|
|
*> C := alpha*A*B + beta*C,
|
|
*>
|
|
*> or
|
|
*>
|
|
*> C := alpha*B*A + beta*C,
|
|
*>
|
|
*> where alpha and beta are scalars, A is a symmetric matrix and B and
|
|
*> C are m by n matrices.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] SIDE
|
|
*> \verbatim
|
|
*> SIDE is CHARACTER*1
|
|
*> On entry, SIDE specifies whether the symmetric matrix A
|
|
*> appears on the left or right in the operation as follows:
|
|
*>
|
|
*> SIDE = 'L' or 'l' C := alpha*A*B + beta*C,
|
|
*>
|
|
*> SIDE = 'R' or 'r' C := alpha*B*A + beta*C,
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] UPLO
|
|
*> \verbatim
|
|
*> UPLO is CHARACTER*1
|
|
*> On entry, UPLO specifies whether the upper or lower
|
|
*> triangular part of the symmetric matrix A is to be
|
|
*> referenced as follows:
|
|
*>
|
|
*> UPLO = 'U' or 'u' Only the upper triangular part of the
|
|
*> symmetric matrix is to be referenced.
|
|
*>
|
|
*> UPLO = 'L' or 'l' Only the lower triangular part of the
|
|
*> symmetric matrix is to be referenced.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] M
|
|
*> \verbatim
|
|
*> M is INTEGER
|
|
*> On entry, M specifies the number of rows of the matrix C.
|
|
*> M must be at least zero.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> On entry, N specifies the number of columns of the matrix C.
|
|
*> N must be at least zero.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] ALPHA
|
|
*> \verbatim
|
|
*> ALPHA is DOUBLE PRECISION.
|
|
*> On entry, ALPHA specifies the scalar alpha.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] A
|
|
*> \verbatim
|
|
*> A is DOUBLE PRECISION array of DIMENSION ( LDA, ka ), where ka is
|
|
*> m when SIDE = 'L' or 'l' and is n otherwise.
|
|
*> Before entry with SIDE = 'L' or 'l', the m by m part of
|
|
*> the array A must contain the symmetric matrix, such that
|
|
*> when UPLO = 'U' or 'u', the leading m by m upper triangular
|
|
*> part of the array A must contain the upper triangular part
|
|
*> of the symmetric matrix and the strictly lower triangular
|
|
*> part of A is not referenced, and when UPLO = 'L' or 'l',
|
|
*> the leading m by m lower triangular part of the array A
|
|
*> must contain the lower triangular part of the symmetric
|
|
*> matrix and the strictly upper triangular part of A is not
|
|
*> referenced.
|
|
*> Before entry with SIDE = 'R' or 'r', the n by n part of
|
|
*> the array A must contain the symmetric matrix, such that
|
|
*> when UPLO = 'U' or 'u', the leading n by n upper triangular
|
|
*> part of the array A must contain the upper triangular part
|
|
*> of the symmetric matrix and the strictly lower triangular
|
|
*> part of A is not referenced, and when UPLO = 'L' or 'l',
|
|
*> the leading n by n lower triangular part of the array A
|
|
*> must contain the lower triangular part of the symmetric
|
|
*> matrix and the strictly upper triangular part of A is not
|
|
*> referenced.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDA
|
|
*> \verbatim
|
|
*> LDA is INTEGER
|
|
*> On entry, LDA specifies the first dimension of A as declared
|
|
*> in the calling (sub) program. When SIDE = 'L' or 'l' then
|
|
*> LDA must be at least max( 1, m ), otherwise LDA must be at
|
|
*> least max( 1, n ).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] B
|
|
*> \verbatim
|
|
*> B is DOUBLE PRECISION array of DIMENSION ( LDB, n ).
|
|
*> Before entry, the leading m by n part of the array B must
|
|
*> contain the matrix B.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDB
|
|
*> \verbatim
|
|
*> LDB is INTEGER
|
|
*> On entry, LDB specifies the first dimension of B as declared
|
|
*> in the calling (sub) program. LDB must be at least
|
|
*> max( 1, m ).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] BETA
|
|
*> \verbatim
|
|
*> BETA is DOUBLE PRECISION.
|
|
*> On entry, BETA specifies the scalar beta. When BETA is
|
|
*> supplied as zero then C need not be set on input.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] C
|
|
*> \verbatim
|
|
*> C is DOUBLE PRECISION array of DIMENSION ( LDC, n ).
|
|
*> Before entry, the leading m by n part of the array C must
|
|
*> contain the matrix C, except when beta is zero, in which
|
|
*> case C need not be set on entry.
|
|
*> On exit, the array C is overwritten by the m by n updated
|
|
*> matrix.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDC
|
|
*> \verbatim
|
|
*> LDC is INTEGER
|
|
*> On entry, LDC specifies the first dimension of C as declared
|
|
*> in the calling (sub) program. LDC must be at least
|
|
*> max( 1, m ).
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \date November 2011
|
|
*
|
|
*> \ingroup double_blas_level3
|
|
*
|
|
*> \par Further Details:
|
|
* =====================
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> Level 3 Blas routine.
|
|
*>
|
|
*> -- Written on 8-February-1989.
|
|
*> Jack Dongarra, Argonne National Laboratory.
|
|
*> Iain Duff, AERE Harwell.
|
|
*> Jeremy Du Croz, Numerical Algorithms Group Ltd.
|
|
*> Sven Hammarling, Numerical Algorithms Group Ltd.
|
|
*> \endverbatim
|
|
*>
|
|
* =====================================================================
|
|
SUBROUTINE DSYMM(SIDE,UPLO,M,N,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
|
|
*
|
|
* -- Reference BLAS level3 routine (version 3.4.0) --
|
|
* -- Reference BLAS is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
* November 2011
|
|
*
|
|
* .. Scalar Arguments ..
|
|
DOUBLE PRECISION ALPHA,BETA
|
|
INTEGER LDA,LDB,LDC,M,N
|
|
CHARACTER SIDE,UPLO
|
|
* ..
|
|
* .. Array Arguments ..
|
|
DOUBLE PRECISION A(LDA,*),B(LDB,*),C(LDC,*)
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. External Functions ..
|
|
LOGICAL LSAME
|
|
EXTERNAL LSAME
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL XERBLA
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC MAX
|
|
* ..
|
|
* .. Local Scalars ..
|
|
DOUBLE PRECISION TEMP1,TEMP2
|
|
INTEGER I,INFO,J,K,NROWA
|
|
LOGICAL UPPER
|
|
* ..
|
|
* .. Parameters ..
|
|
DOUBLE PRECISION ONE,ZERO
|
|
PARAMETER (ONE=1.0D+0,ZERO=0.0D+0)
|
|
* ..
|
|
*
|
|
* Set NROWA as the number of rows of A.
|
|
*
|
|
IF (LSAME(SIDE,'L')) THEN
|
|
NROWA = M
|
|
ELSE
|
|
NROWA = N
|
|
END IF
|
|
UPPER = LSAME(UPLO,'U')
|
|
*
|
|
* Test the input parameters.
|
|
*
|
|
INFO = 0
|
|
IF ((.NOT.LSAME(SIDE,'L')) .AND. (.NOT.LSAME(SIDE,'R'))) THEN
|
|
INFO = 1
|
|
ELSE IF ((.NOT.UPPER) .AND. (.NOT.LSAME(UPLO,'L'))) THEN
|
|
INFO = 2
|
|
ELSE IF (M.LT.0) THEN
|
|
INFO = 3
|
|
ELSE IF (N.LT.0) THEN
|
|
INFO = 4
|
|
ELSE IF (LDA.LT.MAX(1,NROWA)) THEN
|
|
INFO = 7
|
|
ELSE IF (LDB.LT.MAX(1,M)) THEN
|
|
INFO = 9
|
|
ELSE IF (LDC.LT.MAX(1,M)) THEN
|
|
INFO = 12
|
|
END IF
|
|
IF (INFO.NE.0) THEN
|
|
CALL XERBLA('DSYMM ',INFO)
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Quick return if possible.
|
|
*
|
|
IF ((M.EQ.0) .OR. (N.EQ.0) .OR.
|
|
+ ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
|
|
*
|
|
* And when alpha.eq.zero.
|
|
*
|
|
IF (ALPHA.EQ.ZERO) THEN
|
|
IF (BETA.EQ.ZERO) THEN
|
|
DO 20 J = 1,N
|
|
DO 10 I = 1,M
|
|
C(I,J) = ZERO
|
|
10 CONTINUE
|
|
20 CONTINUE
|
|
ELSE
|
|
DO 40 J = 1,N
|
|
DO 30 I = 1,M
|
|
C(I,J) = BETA*C(I,J)
|
|
30 CONTINUE
|
|
40 CONTINUE
|
|
END IF
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Start the operations.
|
|
*
|
|
IF (LSAME(SIDE,'L')) THEN
|
|
*
|
|
* Form C := alpha*A*B + beta*C.
|
|
*
|
|
IF (UPPER) THEN
|
|
DO 70 J = 1,N
|
|
DO 60 I = 1,M
|
|
TEMP1 = ALPHA*B(I,J)
|
|
TEMP2 = ZERO
|
|
DO 50 K = 1,I - 1
|
|
C(K,J) = C(K,J) + TEMP1*A(K,I)
|
|
TEMP2 = TEMP2 + B(K,J)*A(K,I)
|
|
50 CONTINUE
|
|
IF (BETA.EQ.ZERO) THEN
|
|
C(I,J) = TEMP1*A(I,I) + ALPHA*TEMP2
|
|
ELSE
|
|
C(I,J) = BETA*C(I,J) + TEMP1*A(I,I) +
|
|
+ ALPHA*TEMP2
|
|
END IF
|
|
60 CONTINUE
|
|
70 CONTINUE
|
|
ELSE
|
|
DO 100 J = 1,N
|
|
DO 90 I = M,1,-1
|
|
TEMP1 = ALPHA*B(I,J)
|
|
TEMP2 = ZERO
|
|
DO 80 K = I + 1,M
|
|
C(K,J) = C(K,J) + TEMP1*A(K,I)
|
|
TEMP2 = TEMP2 + B(K,J)*A(K,I)
|
|
80 CONTINUE
|
|
IF (BETA.EQ.ZERO) THEN
|
|
C(I,J) = TEMP1*A(I,I) + ALPHA*TEMP2
|
|
ELSE
|
|
C(I,J) = BETA*C(I,J) + TEMP1*A(I,I) +
|
|
+ ALPHA*TEMP2
|
|
END IF
|
|
90 CONTINUE
|
|
100 CONTINUE
|
|
END IF
|
|
ELSE
|
|
*
|
|
* Form C := alpha*B*A + beta*C.
|
|
*
|
|
DO 170 J = 1,N
|
|
TEMP1 = ALPHA*A(J,J)
|
|
IF (BETA.EQ.ZERO) THEN
|
|
DO 110 I = 1,M
|
|
C(I,J) = TEMP1*B(I,J)
|
|
110 CONTINUE
|
|
ELSE
|
|
DO 120 I = 1,M
|
|
C(I,J) = BETA*C(I,J) + TEMP1*B(I,J)
|
|
120 CONTINUE
|
|
END IF
|
|
DO 140 K = 1,J - 1
|
|
IF (UPPER) THEN
|
|
TEMP1 = ALPHA*A(K,J)
|
|
ELSE
|
|
TEMP1 = ALPHA*A(J,K)
|
|
END IF
|
|
DO 130 I = 1,M
|
|
C(I,J) = C(I,J) + TEMP1*B(I,K)
|
|
130 CONTINUE
|
|
140 CONTINUE
|
|
DO 160 K = J + 1,N
|
|
IF (UPPER) THEN
|
|
TEMP1 = ALPHA*A(J,K)
|
|
ELSE
|
|
TEMP1 = ALPHA*A(K,J)
|
|
END IF
|
|
DO 150 I = 1,M
|
|
C(I,J) = C(I,J) + TEMP1*B(I,K)
|
|
150 CONTINUE
|
|
160 CONTINUE
|
|
170 CONTINUE
|
|
END IF
|
|
*
|
|
RETURN
|
|
*
|
|
* End of DSYMM .
|
|
*
|
|
END
|